
University of Toronto

Department of Electrical and Computer Engineering

ECE410F Control Systems

Problem Set #4

Solutions

1. Notice that if you only use the second input of the system, i.e. set u1 = 0, then the system
becomes

ẋ =





0 1 0
0 0 1
0 0 0



x +





0
0
1



u2 .

This system is in controllable canonical form. In particular, it is controllable and it is very easy
to compute a feedback control u = Kx. Let K = [k1 k2 k3]. The characteristic polynomial of
A is s3 = 0 and the characteristic polynomial of A + e3K is s3 − k3s

2 − k2s− k1. The desired
characteristic polynomial is s3 + 30s2 + 300s + 1000. Therefore the feedback control is

u = [−1000 − 300 − 30]x .

2. Find a feedback gain K such that the closed-loop poles are assigned to {−10,−2 ± i}. We
have the system matrices:

A =





5 2 1
−2 1 −1
−4 0 −1



 B =





−2 2
2 −1
2 −2





First, one can verify using Matlab that this system is controllable but it is not controllable
using any one column of B. Therefore, we must use the multi-input pole-placement procedure
to design the feedback u = Kx.

[

b1 Ab1 A2b1

]

=





−2 −4 −6
2 4 6
2 6 10



which has rank 2

We are, in particular, interested in the linearly independent columns of this matrix. Notice
that 2(column2) − column1 = column3, as one would expect from the rank test.

[

b2 Ab2 A2b2

]

=





2 6 ∗
−1 −3 ∗
−2 −6 ∗



which has rank 1

Q =





−2 −4 2
2 4 −1
2 6 −2



 , Q−1 =





−1
2 1 −1
1
2 0 1

2
1 1 0





S =

[

0 0 0
0 1 0

]

, K1 = SQ−1 =

[

0 0 0
1
2 0 1

2

]

1



A + BK1 =





5 2 1
−2 1 −1
−4 0 −1



 +





−2 2
2 −1
2 −2





[

0 0 0
1
2 0 1

2

]

=





6 2 2
−5

2 1 −3
2

−5 0 −2



 .

Now we have a new single input system

ẋ = (A + BK1)x + b1v ,

so we can do single-input pole placement to design v = Fx.

Open loop: det(sI − A − BK1) = s3 − 5s2 + 7s − 3

Desired: r(s) = (s + 10)((s + 2)2 + 1) = s3 + 14s2 + 45s + 50.

QcQ̂ =





−2 −4 −4
2 4 5
2 6 8









7 −5 1
−5 1 0

1 0 0



 =





2 6 −2
−1 −6 2
−8 −4 2



 .

(QcQ̂)−1 =





1 1 0
3.5 3 0.5
11 10 1.5



 .

F = [−53 − 38 − 19](QcQ̂)−1 = [−395 − 357 − 47.5] .

K = K1 + e1F =

[

−395 −357 −47.5
1
2 0 1

2

]

3. We can assume without loss of generality that A1 and A2 are both in Jordan form. For
controllability, we consider only the state equation, not the output equation. The overall
system is

[

ẋ

ξ̇

]

=

[

A1 0
0 A2

] [

x

ξ

]

+

[

B1

B2

]

u.

First suppose the subsystems are controllable. Then use the PBH test. We must test whether

rank

[

A1 − λI 0 B1

0 A2 − λI B2

]

= 2n (1)

for all λ ∈ {eig(A1)}∪{eig(A2)}. But we know that rank[A1−λI B1] = n for all λ ∈ eig(A1)
and rank[A2 − λI B2] = n for all λ ∈ eig(A2). So, if λ is an eigenvalue of A1 in (1) then
the first n rows are linearly independent. Also, the second n rows have no zero rows because
the eigenvalues of A1 and A2 are disjoint. This means the second set of n rows are linearly
independent and also linearly independent of the first n rows. This shows the matrix has
rank 2n. The same argument can be used when substituting an eigenvalue of A2 in (1). We
conclude the overall system is controllable.
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Next, suppose the overall system is controllable. Construct the controllability matrix:

Qc =

[

B1 A1B1 . . . An−1
1 B1

B2 A2B2 . . . An−1
2 B2

]

.

This matrix is by assumption of rank 2n. Therefore the first n rows must be linearly in-
dependent as well as the second n rows. Immediately we obtain that the subsystems are
controllable.

For observability, we can let u = 0 for simplicity. Again we can assume without loss of
generality that A1 and A2 are each in Jordan form. The overall system is

[

ẋ

ξ̇

]

=

[

A1 0
0 A2

] [

x

ξ

]

, y = [C1 C2]

[

x

ξ

]

,

First suppose the subsystems are observable. Then use the PBH test. We must test whether

rank





A1 − λI 0
0 A2 − λI

C1 C2



 = 2n (2)

for all λ ∈ {eig(A1)} ∪ {eig(A2)}. We know that rank

[

A1 − λI

C1

]

= n for all λ ∈ eig(A1)

and rank

[

A2 − λI

C2

]

= n for all λ ∈ eig(A2). So, if λ is an eigenvalue of A1 in (2) then the

first n columns are linearly independent. Also, the second n columns have no zero columns
because the eigenvalues of A1 and A2 are disjoint. This means the second set of n columns
are linearly independent and also linearly independent of the first n columns. This shows the
matrix has rank 2n. The same argument can be used when substituting an eigenvalue of A2

in (2). We conclude the overall system is observable.

Next, suppose the overall system is observable. Construct the observability matrix:

Qo =











C1 C2

C1A1 C2A2
...

...

C1A
n−1
1 C2A

n−1
2











.

This matrix is by assumption of rank 2n. Therefore the first n columns must be linearly
independent as well as the second n columns. Immediately we obtain that the subsystems
are observable.

Now suppose the spectra of the Ai’s are not disjoint. Then the results above will not hold in
some cases. For example, controllability does not hold for the overall system if S1 is given by

ẋ =

[

1 0
0 2

]

x +

[

1
1

]

u,

and S2 is given by

ẋ =

[

1 0
0 3

]

x +

[

1
1

]

u.

3



4. The overall system (A,B,C,D) after a series connection is given by
[

ẋ

ξ̇

]

=

[

A1 0
B2C1 A2

] [

x

ξ

]

+

[

B1

B2D1

]

u

y =
[

D2C1 C2

]

[

x

ξ

]

+ D2D1u.

The corresponding controllability matrix and observability matrices are

Qc =
[

B AB A2B · · ·
]

=

[

B1 A1B1 A2
1B1 · · ·

B2D1 B2C1B1 + A2B2D1 A2
2B2D1 + B2C1A1B1 + A2B2C1B1 · · ·

]

,

Qo =











C

CA

CA2

...











=











D2C1 C2

D2C1A1 + C2B2C1 C2A2

D2C1A
2
1 + C2B2C1A1 + C2A2B2C1 C2A

2
2

...
...











.

From Qc, it is obvious that one necessary condition for controllability is that S1 is controllable.
From Qo, one necessary condition for observability is that S2 is observable.

Unlike the previous problem, the controllability and observability of each subsystem is not
sufficient to preserve controllability and observability of the systems connected in series. For
example, if A1 = 2, A2 = 1, B1 = B2 = C1 = C2 = D1 = D2 = 1, it is easy to check that
rankQc=1, so that the overall system is not controllable.

5. First, we use the given feedback controller u(t) = kx to get an expression for x(t):

x(t) =
√

2e(1+k)t.

To render the origin stable clearly we require that k < −1. The cost function can be written
as

J =

∫

∞

0
2e2(1+k)tdt .

Under the condition k < −1, J is well-defined so we calculate

J = − 1

k + 1
.

Now to minimize this J it is clear that we should set k = −∞. In other words, to minimize
J we require infinite control effort. Such a controller is not physically realizable.

The problem with the previous example is that we did not put a cost on the control effort.
Now let us revise the performance index (or cost function) to be:

J =

∫

∞

0
(x2(t) + u2(t))dt.
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This is the standard linear quadratic regulator problem (LQR), with A = 1, B = 1, Q = 1
and R = 1. It is obvious that (A,B) is controllable, hence stabilizable, which guarantees this
problem is solvable. The optimal control is u∗(t) = kx(t) where k = −R−1BT P , and P is the
positive semi-definite solution of the algebraic Riccati equation (ARE):

AT P + PA − PBR−1BT P + Q = 0.

In this case (ARE) yields
P 2 − 2P − 1 = 0

and the positive solution is P = 1 +
√

2. Therefore, the optimal control is

u∗(t) = −(1 +
√

2)x .

We can also use the Matlab command lqr to compute k.

6. In this question, our objective is to design using Matlab a controller that minimizes the
performance index

J =

∫

∞

0
[y2(τ) + εu2(τ)]dτ

=

∫

∞

0
[xT (τ)CT Cx(τ) + εu2(τ)]dτ

The optimal controller that minimizes J is u = −R−1BT P where P is the solution of (ARE).
Below is a Matlab script to solve the problem.

>> A=[0 1 0 -1; 0 0 0 0; 0 0 0 1; 0 0 -4.4 0];

B=[0 -4.2e-3 0 -2.8e-2]’;

C=[1 0 0 0];

R=1e-5;

Q=C’*C;

P=care(A,B,Q,R)

P =

2.7398 3.7533 2.8341 -0.4501

3.7533 5.9892 4.4617 -0.5890

2.8341 4.4617 3.4564 -0.4456

-0.4501 -0.5890 -0.4456 0.0990

>> K=-inv(R)*B’*P

K =

316.2278 866.4054 626.2078 29.8190

>> eig(A+B*K)
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ans =

-1.4743 + 2.6659i

-1.4743 - 2.6659i

-0.7626 + 0.2195i

-0.7626 - 0.2195i

For the observer design, we assume the desired poles are {−20,−20,−20,−20}. Then, we use
the pole-placement technique to find the observer gain. Below is a Matlab script. At the
end we show a simulink diagram and the response of the closed-loop system for the initial
condition x0 = (1, 1, 1, 1).

>> L=acker(A’,C’,[-20 -20 -20 -20])’

L =

1.0e+04 *

0.0080

3.6364

0.7193

3.3968
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x’ = Ax+Bu
 y = Cx+Du
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Figure 1: Simulink Diagram
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Figure 2: Initial Response
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