
CONTROL SYSTEMS LABORATORY
ECE410F

LAB2 : Controller Design Using Pole Placement and Full Order Observers

1 Purpose

The purpose of this experiment is to design a control system for the cart system (IP02), studied in Lab 1,
such that a square wave is tracked using state feedback and observer theory. The state feeddback design is
carried out using both pole placement and full order observers.

2 Introduction

In a third year control course, you would have designed P and PID control laws for a linear system such as
a motor. Such control laws may have performance limitations. In this experiment, we would like to improve
control performance using pole placement and observer theory.

Suppose we would like the cart to track a square wave input and suppose the performance specifications are
given as

(a) The closed loop system is stable.

(b) The output of the closed loop system tracks step reference inputs.

(c) The overshoot (%OS)is less than 15% and the peak time (tp) is less than 0.2 second.

First we set up state equations to describe the system. Let x1 be the position of the cart on the track and
let x2 be the cart velocity. We assume that the position of the cart can be measured as an output. The state
equation of the cart is

ẋ =

[

0 1
0 − 1

T

]

x +

[

0
1

]

Kp

T
u

y = [1 0]x .

The values for the parameters Kp and T are normally determined through experimentation (in a process
called system identification). In this case the values will be provided to you. Tracking a square wave is
equivalent to tracking a constant set point yd provided the settling time is much faster than the switching
time of the square wave. For this lab, the square wave generated by the computer has been chosen to be
±15mm with a frequency of 0.5 Hz. So let yd(t) = yd be the set point to be tracked. We want to use pole
placement to achieve this tracking task, but pole placement in normally used for stabilization: that is, to
send all the states to zero by selecting poles in the open left half complex plane. To transform the tracking
problem to a stabilization we define new state variables

z1 = x1 − yd

z2 = x2

This essentially shifts the origin of the new coordinate system. We obtain the new state equation
[

ż1

ż2

]

=

[

0 1
0 − 1

T

][

z1

z2

]

+

[

0
1

]

Kp

T
u (1)

ỹ = [1 0]z . (2)

Observe that if z1(t) −→ 0 then y(t) −→ yd, as desired. That is, asymptotic tracking correponds to regulating
z1(t) to 0. We have, therefore, transformed the tracking specifications into stabilization requirements in terms
of the new state [z1 z2]. You will design a controller, using pole placement, to stabilize the system (1).
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2.1 Choosing the closed loop poles

We can easily find the location of the closed loop poles from the constraints placed on the response of our
system. First, recall that the characteristic equation of a second order system can be written in the form:

s2 + 2ζωns + ω2

n (3)

where ζ is the damping ratio and ωn is the natural frequency. Second, both the damping ratio and the
natural frequency can be found from the specifications for percent overshoot and peak time (Figure 1). That
is,

ζ =
−ln(%OS/100)

√

π2 + ln2(%OS/100)
(4)

ωn =
π

tp
√

1 − ζ2
. (5)

t

p(t)

pf

ptp

tp

%OS =
ptp−pf

pf
× 100

Figure 1: Illustration of percent overshoot and peak time.

The last step, to obtain the location of the closed loop poles, is to substitute the values we have found in
(4) and (5) into (3), and solve for the roots of the characteristic equation.

3 Preparation

(a) Check that the system (1) is controllable by computing rank(Qc). Do this calculation assuming Kp

and T are parameters. Next, using the values T = 1

17.13
and Kp = 2.46T , determine if the system is

controllable both using your computed matrix Qc and using the Matlab command ctrb. Compare
the two answers.

(b) We shall use (1) to design our observer-based output feedback controller. Using pole placement design
(see the Appendix for a review of the procedure) and assuming T and Kp are unknown parameters,
design a state feedback for the closed loop poles that you have found in the preceding section. Since
yd is available, we can consider z1(t) as the measured output. Using the Appendix as a guide, design
a full order observer with observer poles both placed at {−40,−40}. Determine also the compensator
transfer function in the form

U(s) = C(s)Ỹ (s)

where Ỹ (s) = Y (s)−Yd(s). Write a small Matlab program to determine the compensator C(s) using
the parameters Kp and T as inputs (in case your servomotor parameter values have drifted). You may
even want to include the closed loop poles as input parameters if you want to experiment with different
choices.
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(c) Design a simulink model for your system (plant, controller, and observer), and simulate the response
to a step input. You can assume that T and Kp have the values given in (a). To ease your design
process, a simulink file has been provided lab2 prep. Make sure that you understand the entire file, as
your TA will ask you questions about it.

Each student must hand in their preparation in the beginning of the lab. The preparation report should
include:

1. Determination of controllability of the system: Qc matrix, rank of Qc.

2. Controller gain (K), observer gain (L), and the transfer function U(s)/Ỹ (s) = C(s) as a function of T
and Kp, including your derivations.

3. The damping ratio ζ, the natural frequency ωn, the state feedback poles, the controller gain (K),
observer gain (L), and the transfer function U(s)/Ỹ (s)(s) = C(s) with T = 1

17.13
and Kp = 2.46T .

4. The response of the system to a step input (i.e. the plot of the position, y = x1 vs. time). Identify the
percent overshoot and peak time on your plot.

4 Experiment

CAUTION: Before running your experiment

• Please ensure that the cart is positioned at the middle of the track!

• Do not change any of the calibration gains in the simulink model, as they are placed there for safety!

• Do not change the frequency and gain of the square input, unless you have permission from your TA!

• When running the experiment ensure that one student from the group is firmly holding the track!

• If for any reason your model goes unstable, turn off the experiment right away!

(a) Using the values for parameters Kp and T given above, compute the gains of the state feedback
controller and the observer using the Matlab command place. Compare the results you obtain with
Matlab with the result you computed in the lab preparation. (The answers should be the same. Note,
Matlab uses the convention that u = −Kx while we use u = Kx)

(b) Copy all the files from the X drive (soft on ’ugsparc48’) / ECE / ECE410 / Lab2 into your own
directory.

(c) Open the Matlab file lab2.m. At the bottom of the file enter your controller gain (K) and your observer
gain (L).

(d) Open the Simulink model lab2 part1.mdl and build the closed-loop system (including the observer)
in Simulink (notice the similarities between this file and lab2 prep). Then plot the step response of
the closed loop system and determine if the performance specs are satisfied. If not, adjust the desired
closed loop poles until they are satisfied.

(e) Using your final design from step (c), build and run your state-feedback observer-based controller on
the actual system. For this step you must open the file lab2 part2.mdl. Apply a square wave reference
input for yd(t) (this has been set up for you). Save the actual position y(t) and the reference yd(t) to
a data file.
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(f) Load the experimental data into Matlab, and plot yd(t) and y(t) versus time t. Does your controller
satisfy the design specifications? If so, demonstrate the step response to the TA. Show the TA the
Matlab plot too.

(g) Compare the experimental response to the simulated response computed earlier. Do the experimental
and simulated step responses agree? If not, re-tune your pole placement controller.

5 Report

Please follow the report format instructions provided by your TA for Lab 2.

A Pole Placement Controller Design

We consider the single input open-loop state space model

ẋ = Ax + bu .

We want to design a controller of the form u = Kx, where K ∈ R
1×n is a constant matrix, in order to

stabilize the system. This is called a state feedback control law. With this control law the closed-loop system
is

ẋ = (A + BK)x .

We know that the stability of the closed-loop system is determined by eig(A + BK).

Suppose that we have computed the characteristic polynomial of A as:

p(s) = sn + ao
nsn−1 + · · · ao

2s + ao
1 ,

where the superscript o stands for “open-loop”. Suppose that the desired eigenvalues of A + bK are
{λ1, · · · , λn}. The associated desired characteristic polynomial for these eigenvalues is denoted

r(s) = sn + ansn−1 + · · · a2s + a1 .

Now define the following Toeplitz matrix:

Q̂ =















ao
2 ao

3 · · · ao
n 1

ao
3

ao
4

· · · 1 0
... · · ·

...
ao

n · · ·
1 0 · · · 0















.

Also define the coefficient row vectors

ao = (ao
1, a

o
2, . . . , a

o
n)

a = (a1, a2, . . . , an) .

Here is our main result about pole placement.

Theorem A.1. The controller u = Kx with

K = [ao − a](QcQ̂)−1

has the property

eig(A + bK) = {λ1, · · · , λn} .
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B Full State Observer Design

The purpose of an observer is to reconstruct the state vector when only the output y can be measured
directly. The reconstructed state or state estimate is denoted x̂. We want our observer to have the property
that x − x̂ −→ 0 as t → ∞. The full state observer equation is:

˙̂x = Ax̂ + Bu + L(y − ŷ) , x̂(0) = x̂0 (6)

ŷ = Cx̂

The initial condition x̂0 can be arbitrarily chosen (often taken to be 0). The error in the state estimate,
defined as e = x − x̂, is governed by the equation

ė = (A − LC)e , e(0) = x0 − x̂0 . (7)

Observe that if the eigenvalues of A − LC all lie in the left half plane, then regardless of e(0), e(t) → 0
exponentially and the goal of accurate state estimation is achieved.

So to design the observer you just have to design the coefficients of L so that (A − LC) is stable. The
eigenvalues of (A−LC) are called the poles of the observer. You can use pole placement to design the poles
because of the fact that det(sI − AT + CT LT ) = det(sI − A + LC). That is, you will do pole placement
design for the matrix AT − CT LT using the method you learned in class.

Your final observer-based pole placement controller will be u = Kx̂ rather than u = Kx. Once you finish
the design of the observer, you can write a transfer function for the feedback controller u = Kx̂, called the
“compensator”, from the input of the compensator y to the output of the compensator u.

For example, let’s take the case of a single input u and a single output y. Then the state feedback is u = Kx̂.
Plug this control into the full state observer equation (6) to get

˙̂x = (A − LC + BK)x̂ + Ly .

Taking Laplace transforms:
X̂(s) = (sI − A + LC − BK)−1LY (s)

Plugging this into the state feedback u = Kx̂ we get the transfer function for the compensator C(s) to be:

C(s) :=
U(s)

Y (s)
= K(sI − A + LC − BK)−1L .

A block diagram of the system together with the compensator is shown in Figure 2.

5



System

Observer

CompensatorPSfrag replacements

ẋ = Ax + Bu C

K

u yx

x̂
˙̂x = Ax̂ + Bu + L(y − ŷ)

ŷ = Cx̂

Figure 2: Block diagram of system with compensator.
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