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1. (a) By direct computation,




C

CA

CA2



 =





1 1 1
−1 −2 −3
1 4 9





which is easily verified to be nonsingular. Hence (C,A) is observable.

(b) For K =
[

0 0 1
]

, we find

A + BK =





−1 0 0
0 −2 0
0 0 −2





We then have




C

C(A + BK)
C(A + BK)2



 =





1 1 1
−1 −2 −2
1 4 4





which is easily verified to be singular. Hence (C,A+BK) is not observable. To construct
an example of a system becoming observable after state feedback, just reverse the steps
in part (b). Set

A =





−1 0 0
0 −2 0
0 0 −2



 , B =





0
0
1



 , C =
[

1 1 1
]

Then (C,A) is not observable. Let K =
[

0 0 −1
]

. (C,A + BK) is then observable.

2. The system equations are given by

ẋ =







0 ω 0

−ω 0 1

0 0 1






x y = [ 1 0 0 ]x

To construct a minimal observer, we identify

A11 = 0 A12 = [ ω 0 ] A21 =

[

−ω

0

]

A22 =

[

0 1

0 1

]

Original system is observable if and only if [A12, A22] is observable, i.e.

[

ω 0

0 ω

]

is nonsin-

gular, which is true if ω 6= 0. Decompose the system equations into

ẋ1 = ωx2

ẋ2 = −ωx1 + x3

ẋ3 = x3
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Thus the minimal observer is of the form
[

˙̂x2

˙̂x3

]

=

[

0 1

0 1

][

x̂2

x̂3

]

+

[

−ω

0

]

y +

[

l1

l2

]

(ẏ − ωx̂2)

For the observer to have poles at −1 and −2 we require the eigenvalues of
[

0 1

0 1

]

−

[

l1

l2

]

[ ω 0 ] =

[

−l1ω 1

−l2ω 1

]

to be at −1 and −2

det

{

sI −

[

−l1ω 1

−l2ω 1

]}

= det

[

s + l1ω −1

l2ω s − 1

]

= s2 + (l1ω − 1)s + (l2 − l1)ω

= s2 + 3s + 2 for pole placement

∴ l1 =
4

ω
, l2 =

6

ω
[

˙̂x2

˙̂x3

]

=

[

−4 1

−6 1

][

x̂2

x̂3

]

+

[

−ω

0

]

y +

[

4

ω

6

ω

]

ẏ

Letting

[

x̂2

x̂3

]

−

[

4

ω

6

ω

]

y = z, we obtain

ż =

[

−4 1

−6 1

](

z +

[

4

ω

6

ω

]

y

)

+

[

−ω

0

]

y

=

[

−4 1

−6 1

]

z +

[

−10

ω
− ω

−18

ω

]

y

The minimal order observer is given by

x̂1 = y
[

x̂2

x̂3

]

= z +

[

4

ω

6

ω

]

y

3. (i) State space realization of
1

s2(s + 1)
: Choose controllable canonical form to give

ẋ =















0
... 1 0

· · · · · · · · · · · ·

0
... 0 1

0
... 0 −1















x +













0

· · ·

0

1













u

y = [ 1 0 0 ]x
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(ii) Pole placement by state feedback: Since we desire all transients to decay at least as fast
as e−2t, choose desired closed loop polynomial to be r(s) = (s+2)3 = s3 +6s2 +12s+8.
Since system is in controllable canonical form the desired feedback law is

u = −[ 8 12 5 ]x

(iii) Minimal order observer design: we need to estimate x2 and x3.

A22 =

[

0 1

0 −1

]

A12 = [ 1 0 ]

The pair (A12, A22) is observable. Again, we choose the observer poles to be at −2 so
that the desired r(s) = s2 + 4s + 4

A22 − LA12 =

[

0 1

0 −1

]

−

[

l1

l2

]

[1 0] =

[

−l1 1

−l2 −1

]

with det(sI − A22 + LA12) = s2 + (l1 + 1)s + (l1 + l2)

Hence l1 = 3, l2 = 1

Also

(A22 − LA12)L + (A21 − LA11) =

[

−3 1

−1 −1

][

3

1

]

=

[

−8

−4

]

(B2 − LB1) =

[

0

1

]

Thus the minimal order observer equations are given by

ż =

[

−3 1

−1 −1

]

z +

[

−8

−4

]

y +

[

0

1

]

u

[

x̂2

x̂3

]

= z +

[

3

1

]

y x̂1 = y

(iv) Compensator design:

u = kT x̂ = −8y − [12 5]

[

z1 + 3y

z2 + y

]

= −49y − 12z1 − 5z2

To find the transfer function of the compensator, we substitute the expression for u into
the equation for z to give

ż =

[

−3 1

−1 −1

]

z +

[

−8

−4

]

y +

[

0

1

]

(−49y − 12z1 − 5z2)

=

[

−3 1

−13 −6

]

z +

[

−8

−53

]

y
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Therefore

ẑ(s) =

[

s + 3 −1

13 s + 6

]

−1 [

−8

−53

]

ŷ(s)

Hence

û(s) = −49y +

[12 5]

[

s + 6 1

−13 s + 3

] [

8

53

]

s2 + 9s + 31

= −
49s2 + 80s + 32

s2 + 9s + 31
ŷ(s)

It is straightforward to verify that the closed loop poles are the roots of s5 + 10s4 +
40s3 + 80s2 + 80s + 32 = (s + 2)5.
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