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1. The system clearly has (A,B) stabilizable and (
√

Q,A) detectable. The unique solution of
the algebraic Riccati equation (ARE) is given by

[

0 0
1 −1

] [

p1 p2

p2 p3

]

+

[

p1 p2

p2 p3

] [

0 1
0 −1

]

−
[

p1 p2

p2 p3

] [

0
1

]

[

0 1
]

[

p1 p2

p2 p3

]

+

[

1 0
0 1

]

= 0

This gives the equations

p2
2 = 1

p1 − p2 − p2p3 = 0

2p2 − 2p3 − p2
3 + 1 = 0

The unique positive semidefinite solution is given by

p2 = 1

Then we have
p2
3 + 2p3 − 3 = 0

giving
p3 = 1

Finally,
p1 = 2

The optimal control law is given by

u = −
[

0 1
]

[

2 1
1 1

]

x = −
[

1 1
]

x

The closed loop system matrix is given by

Ac =

[

0 1
−1 −2

]

The characteristic polynomial is given by s2 + 2s + 1 so that the closed loop poles are both
at -1.
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2. Again it is easy to check stabilizability and detectability. The ARE is given by
[

0 −10
1 −2

] [

p1 p2

p2 p3

]

+

[

p1 p2

p2 p3

] [

0 1
−10 −2

]

−
[

p1 p2

p2 p3

] [

0
2

]

[

0 2
]

[

p1 p2

p2 p3

]

+

[

0 0
0 1

]

= 0

This gives the equations

−20p2 − 4p2
2 = 0

p1 − 2p2 − 10p3 − 4p2p3 = 0

2p2 − 4p3 − 4p2
3 + 1 = 0

We see that
p2 = 0

Then
4p2

3 + 4p3 − 1 = 0

giving

p3 =
−4 ±

√
32

8
=

√
2 − 1

2

p1 = 10p3 = 5(
√

2 − 1)

The optimal feedback law is

u = −
[

0 2
]

[

5(
√

2 − 1) 0

0
√

2−1

2

]

x

= −
[

0 (
√

2 − 1)
]

x

The closed loop system matrix is given by

Ac =

[

0 1

−10 −2
√

2

]

The poles are the roots of s2 + 2
√

2s + 10, which are at −
√

2 ± 2
√

2i.

3. This is a standard LQR problem, with Q = I2×2 and R = ǫ > 0. The pair (A,B) is
controllable, hence stabilizable, which guarantees this problem to be solvable. The optimal
control is K∗ = −R−1BTP , where P is the positive definite solution of (ARE):

AT P + PA − PBR−1BTP + Q = 0 ,

i.e.
[

0 0
1 0

]

P + P

[

0 1
0 0

]

− 1

ǫ
P

[

0
1

]

[

0 1
]

P +

[

1 0
0 1

]

= 0 .

Solving the above equation, we obtain

P =

[

√

1 + 2
√

ǫ
√

ǫ√
ǫ
√

(1 + 2
√

ǫ)ǫ

]

.

2



Therefore, the associated control law is

u∗ = K∗x

K∗ =
[

− 1√
ǫ

−
√

1+2
√

ǫ

ǫ

]

.

The magnitude of u at t = 0, ‖u(0)‖, is

u(0) = ‖K∗x(0)‖

=
1√
ǫ

+

√

1 + 2
√

ǫ

ǫ
.
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Figure 1: u(0)

In Figure 1, we observe that as ǫ −→ 0, the control effort at the initial time goes to ∞, as
expected.

4. The state-space model of the system is

ẋ = λx + u

y = x .

Stabilizability and detectability are easily verified so the problem is solvable. We solve

AT P + PA − PBR−1BT P + CTQC = 0

to obtain 2λP − P
2

ǫ
+ 1 = 0. Solving for P and keeping in mind that P > 0, we get

P = ǫλ +
√

λ2ǫ2 + ǫ .

and

u∗ =

(

−λ −
√

λ2 +
1

ǫ

)

x .

Next we consider the closed-loop poles of the system

eig(A + BK∗) = −
√

λ2 +
1

ǫ
.
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We see that regardless of whether λ < 0 or λ > 0, if ǫ → 0 then the closed-loop poles approach
−∞, whereas if ǫ → ∞ then the poles approach −|λ|.

5. We show that if any of the pair is not detectable, so are the others. Suppose (
√

Q,A) is not
detectable. There exists a λ with Reλ ≥ 0, such that

Rank

[ √
Q

A − λI

]

< n

Thus there exists a v such that
[ √

Q

A − λI

]

v = 0

But
√

Qv = 0 if and only if Qv = 0 if and only Cv = 0. This shows that (
√

Q,A) is not
detectable if and only if (Q,A) is not detectable if and only if (C,A) is not detectable.
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