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Chapter 1

Linear Differential Equations

In this chapter, we discuss the solution of the linear differential equation

ẋ(t) = Ax(t)

x(0) = x0 , (1.1)

where x(t) ∈ R
n. Very often for simplicity we suppress the time dependence in the notation. We give

a systematic method for solving (1.1) and discuss properties of the solution. Finally, we discuss linear
systems with inputs and outputs.

1.1 Existence and Uniqueness of Solutions

It is known from the theory of ordinary differential equations that under certain regularity assumptions, a
(nonlinear) differential equation of the form

ẋ(t) = f(x, t), t ∈ [t0, t1] (1.2)

x(t0) = x0 (1.3)

has a unique solution passing through x0 at t = t0. The regularity conditions are

(i) f(·, ·) is a continuous function from R
n × [t0, t1] to R

n,

(ii) f satisfies a global Lipschitz condition

||f(x1, t) − f(x2, t)|| ≤ k(t)||x1 − x2|| ∀ x1, x2 ∈ R
n

where k(t) is continuous on [t0, t1].

One way to obtain the solution to (1.3) is by a Picard iteration. That is, we consider the iterations

x0(t) = x0
xn+1(t) = x0 +

∫ t

t0
f(xn(s), s)ds .

(1.4)

Then

lim
n→∞

sup
t∈[t0,t1]

||xn(t)− x(t)|| = 0
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where x(t) is the unique solution of (1.3). Let us apply the above results to (1.1). The R.H.S. of (1.1)
clearly satisfies the regularity conditions (i) and (ii). Hence there exists a unique solution to (1.1). The
Picard iteration gives

x0(t) = x0
xn+1(t) = x0 +

∫ t

0 Axn(s)ds .
(1.5)

From (1.5), we see that x(t) is given by an infinite series of the form

x(t) = x0 +

∫ t

0
Adsx0 +

∫ t

0

∫ s1

0
A2ds2ds1 x0

+...+

∫ t

0

∫ s1

0
...

∫ sn−1

0
Andsndsn−1...ds1x0 + ...

The integrals can be easily evaluated, with the nth term of the series given by

Antn

n!
x0 .

In analogy with the scalar exponential function, the matrix exponential of a square matrix M is defined
to be

eM :=

∞∑

n=0

Mn

n!

where M0 is defined to be I, the identity matrix. This series can be shown to converge. Observe that eM

satisfies two properties:

1. eM is invertible and (eM )−1 = e−M .

2. eM+N = eMeN ⇔ M and N commute, i.e., MN = NM .

The matrix function t 7→ eAt : R→ R
n×n is now defined, and the Picard iteration suggests that the solution

of (1.1) is
x(t) = eAtx0 . (1.6)

1.2 State Transition Matrix

The matrix function t 7→ eAt is called the state transition matrix of (1.1). In this section we prove several
useful properties of the state transition matrix and then consider three methods to compute it: when A is
diagonal or diagonalizable, when A is not diagonalizable, and a Laplace transform based approach.

The following two properties of eAt can be considered its defining properties:

d

dt
eAt = AeAt

eAt|t=0 = I . (1.7)

To see that these hold, note that they form a linear differential equation satisfying the regularity conditions
for existence and uniqueness. Since the infinite series defining eAt is uniformly convergent, its derivative
can be determined by differentiating term by term. It is easily verified that the result satisfies (1.7).
Uniqueness of solutions then shows that (1.7) defines eAt.

Lemma 1.2.1. The state transition matrix satisfies

eA(t+s) = eAteAs ∀ t, s semi-group property

(eAt)−1 = e−At .
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Proof. First, let F (t) = eAteAs. Then

F (0) = eAs

d

dt
F (t) = AF (t)

so that F (t) satisfies the same differential equation and initial condition as eA(t+s). By uniqueness, they
must be equal, which verifies the first property. Second, we can verify from the definition that e−AteAt = I,
which proves the second property.

1.2.1 Computing e
At: Diagonalizable Case

To study the structure of eAt, let us first study the special case when

A =








λ1 0 0
0 λ2

. . . 0
0 0 λn








.

The λi’s are not necessarily distinct and they may be complex, provided we interpret (1.1) as a differential
equation in C

n. In this case (1.1) is completely decoupled into n differential equations

ẋi(t) = λixi(t) i = 1, ..., n (1.8)

so that

xi(t) = eλitx0i (1.9)

where x0i is the ith component of x0. It follows that

x(t) =








eλ1t 0 0
0 eλ2t

. . . 0
0 0 eλnt







x0 (1.10)

and the matrix exponential eAt can simply be read off from the R.H.S. of (1.10):

eAt =








eλ1t 0 0
0 eλ2t

. . . 0
0 0 eλnt








(1.11)

To extend the above results to more general situations, assume that A is diagonalizable, i.e., there exists a
nonsingular matrix T (in general complex) such that T−1AT is a diagonal matrix. That is,

T−1AT := Λ =








λ1 0 0
0 λ2

. . . 0
0 0 λn








. (1.12)

Then

eAt = eTΛT−1t (1.13)
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Lemma 1.2.2. For any n× n matrix B

eTBT−1t = TeBtT−1 . (1.14)

Proof. By definition

eTBT−1t =
∞∑

k=0

(TBT−1)ktk

k!
.

The kth term of this series is

tk

k!
(TBT−1)k =

tk

k!
(TBT−1)(TBT−1)

k times

. . .
(TBT−1) .

Other than the T on the left most side and the T−1 on the right most side, all the other T ’s and T−1’s
multiply out to the identity matrix I. Hence

(TBT−1)ktk

k!
=

TBkT−1tk

k!

which is precisely the kth term of the infinite series for TeBtT−1.

From (1.11), (1.12) and (1.14), we find that whenever A is diagonalizable,

eAt = T








eλ1t 0 0
0 eλ2t

. . . 0
0 0 eλnt







T−1 (1.15)

From linear algebra, we know that either of the following two conditions will guarantee diagonalizability:

(i) A has distinct eigenvalues.

(ii) A is a symmetric matrix.

In these two cases, (1.15) completely characterizes the structure of eAt. The diagonalizing matrix T can
be taken to be the matrix whose columns are the independent eigenvectors of A.

Example 1.2.1.

A =





1 0 0
1 2 0
1 0 −1





Due to the form of A, we see right away that the eigenvalues are 1, 2 and −1 so that

Λ =





1 0 0
0 2 0
0 0 −1



 .

The eigenvector corresponding to the eigenvalue 2 is given by
[
0 1 0

]′, while that of −1 is
[
0 0 1

]′.
To find the eigenvector for the eigenvalue 1, we have





1 0 0
1 2 0
1 0 −1









v1
v2
v3



 =





v1
v2
v3



 ,
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so that





2
−2
1



 is an eigenvector. The diagonalizing matrix T is then

T =





2 0 0
−2 1 0
1 0 1





T−1 =





1
2 0 0
1 1 0
−1

2 0 1





eAt =





2 0 0
−2 1 0
1 0 1









et 0 0
0 e2t 0
0 0 e−t









1
2 0 0
1 1 0
−1

2 0 1



 =





et 0 0
−et + e2t e2t 0
1
2 (e

t − e−t) 0 e−t



 .

1.2.2 Computing e
At using Jordan form

If A is not diagonalizable, then the above procedure cannot be carried out. A is, in general, not diagonal-
izable if it does not have distinct eigenvalues. Let us consider the following l × l matrix A which has the
eigenvalue λ with multiplicity l:

A =










λ 1 0 0
. . .

0
1

0 0 λ










(1.16)

Write A = λI +N where

N =










0 1 0 0
. . .

0
1

0 0










(1.17)

Direct calculation shows that

[Nk]j,j+k =

{
1 j = 1, 2, ..., l
0 all other entries ,

so that N l = 0. N is thus a nilpotent matrix. Then the matrix exponential eNt is easily evaluated to be

eNt =

l−1∑

j=0

N jtj

j!
=








1 t · · · tl−1

(l−1)!

0
...
t

0 0 1








. (1.18)

To compute eAt when A is of the form (1.16), recall the following property of matrix exponentials, which
we now prove.

Lemma 1.2.3. If A and B commute, i.e. AB = BA, then e(A+B)t = eAteBt.
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Proof. Considering eAteBt, we have

d

dt
(eAteBt) = AeAteBt + eAtBeBt . (1.19)

If A and B commute, eAtB = BeAt so that the R.H.S. of (1.19) becomes (A + B)eAteBt. Furthermore,
at t = 0, eAteBt = I. Hence eAteBt satisfies the same differential equation as well as initial condition as
e(A+B)t. By uniqueness, they must be equal.

If A is of the form (1.16), then since λI commutes with N , we can write

eAt = e(λI)teNt = (eλtI)(eNt)

= eλt








1 t · · · tl−1

(l−1)!

0
...
t

0 0 1








(1.20)

using (1.18).

We are now in a position to show the general structure of the matrix exponential. From linear algebra, we
know that there always exists a matrix T such that

T−1AT = J =








J1 0
J2

. . .

0 Jk








i.e., the Jordan canonical form of A with

Ji =










λi 1 0 · · · 0
λi 1 0

...
1

0 λi










,

an ni × ni matrix with
∑k

i=1 ni = n. But

eJt =








eJ1t 0
eJ2t

. . .

0 eJkt








(1.21)

and each eJit is of the form

eJit = eλit









1 t · · · tni−1

(ni−1)!

. . .

. . . t
0 1









(1.22)

Finally,
eAt = TeJtT−1 (1.23)

Equations (1.21), (1.22) and (1.23) give the complete form for the matrix exponential eAt.
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The above procedure in principle enables us to evaluate eAt, the only problem being to find the matrix T
which transforms A either to diagonal or Jordan canonical form. In general, this can be a very tedious
task. The above formula is most useful as a means to study the qualitative dependence of eAt on t, and
will be particularly important in our discussion of stability. Finally, we remark that the above results hold
regardless of whether the λi’s are real or complex. In the latter case, we take the underlying vector space
to be complex. The results then go through without modification.

1.2.3 Computing e
At using Laplace Transforms

Another method to evaluate eAt analytically is to use Laplace transforms. If we let G(t) = eAt, then the
Laplace transform of G(t), denoted by Ĝ(s), satisfies

sĜ(s) = AĜ(s) + I

or
Ĝ(s) = (sI −A)−1 (1.24)

Applying the inversion integral, we find

eAt =
1

2πi
lim
β→∞

∫ σ+iβ

σ−iβ

(sI −A)−1estds (1.25)

Each term in the inversion integral may be evaluated by residue calculus.

(sI −A)−1 may be evaluated in a recursive way: Let det(sI −A) = sn+ p1s
n−1 + ...+ pn = p(s). Write

(sI −A)−1 =
B(s)

p(s)
=

sn−1B1 + sn−2B2 + ...+Bn

p(s)

In your problem set, you are asked to use the identity (sI −A)B(s) = p(s)I to derive recursive equations
for the Bk matrices.

The above procedure is particularly easy to use if A has distinct eigenvalues λ1, ..., λn, for then

(sI −A)−1 =
B(s)

∑n
i=1 (s − λi)

=

n∑

i=1

Ri

(s − λi)

by partial fractions expansion with

Ri = lim
s→λi

(s − λi)
B(s)

p(s)
=

B(λi)
∑n

k=1,k 6=i (λi − λk)

Hence,

eAt =

n∑

i=1

Rie
λit . (1.26)

Example 1.2.2.

To illustrate this procedure for evaluating eAt, again consider

A =





1 0 0
1 2 0
1 0 −1





7



p(s) = det





s− 1 0 0
−1 s− 2 0
−1 0 s+ 1



 = (s− 1)(s − 2)(s + 1)

= s3 − 2s2 − s + 2

The matrix polynomial B(s) can then be determined using the recursive procedure as

B(s) =





s2 − s− 2 s+ 1 s− 2
0 s2 − 1 0
0 0 s2 − 3s + 2





(sI −A)−1 =
1

(s− 1)(−2)





−2 0 0
2 0 0
−1 0 0



 +
1

(s− 2)(3)





0 3 0
0 3 0
0 0 0





+
1

(s+ 1)(6)





0 0 0
0 0 0
−3 0 6





eAt =





et 0 0
−et 0 0
1
2e

t 0 0



 +





0 e2t 0
0 e2t 0
0 0 0



 +





0 0 −1
2e

−t

0 0 0
0 0 e−t





=





et −et + e2t 1
2 (e

t − e−t)
0 e2t 0
0 0 e−t





the same result as before.

Example 1.2.3.

As a second example, let A =

[
σ −ω
ω σ

]

. Then

A =

[
σ 0
0 σ

]

+

[
0 −ω
ω 0

]

.

But

e





0 −ω
ω 0



t

= L−1

{ [
s ω
−ω s

]−1
}

where L−1 is the inverse Laplace transform operator

= L−1

[ s
s2+ω2 − ω

s2+ω2

ω
s2+ω2

s
s2+ω2

]

=

[
cosωt sinωt
− sinωt cosωt

]

eAt = e(σI)t
[

cosωt sinωt
− sinωt cosωt

]

=

[
eσt cosωt eσt sinωt
−eσt sinωt eσt cosωt

]

Of course, the above procedures of evaluating eAt analytically would be virtually impossible to carry out
when the dimension n is say ≥ 5. In general, we must resort to numerical techniques. Numerically stable
and efficient methods of evaluating the matrix exponential can be found in the research literature.
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1.3 Modal Decomposition

We can give a dynamical interpretation to the above results. Suppose A has distinct eigenvalues λ1, ..., λn

so that it has a set of linearly independent eigenvectors v1, ..., vn. In this case A can be diagonalized,
Λ = T−1AT , where the diagonalizing matrix is T = [v1 . . . vn]. We have seen that eAt = TeΛtT−1, so that

eAt[v1 . . . vn] = [v1 . . . vn]e
Λt .

or
eAtvi = eλitvi .

Now if we set x0 = vj, then

x(t) = eAtx0 = eAtvj

= eλjtvj

so that the solution is just the stretching or shrinking of the eigenvector vj . In general, since {vi} form a
basis for Rn, we can write

x0 =

n∑

j=1

ξjvj = Tξ (1.27)

for some ξ =
[
ξ1 . . . ξn

]′
so that

x(t) = eAt
n∑

j=1

ξjvj

=
n∑

j=1

ξje
λjtvj . (1.28)

That is, x(t) is expressible as a (time-varying) linear combination of the eigenvectors of A. More directly,
we have

eAtx0 = TeΛtT−1x0 = TeΛtξ

= T








ξ1e
λ1t 0 0
0 ξ2e

λ2t

. . . 0
0 0 ξne

λnt








=
∑

j

ξje
λjtvj ,

the same result as in (1.28). The representation (1.28) of the solution x(t) in terms of the eigenvectors of
A is called the modal decomposition of x(t).

1.4 Phase Portraits

Consider again the linear time-invariant system (1.1) and suppose that the system is second order, so
that x = [x1 x2]

′. A phase portrait of (1.1) is a plot in the x1 − x2 plane of trajectories of (1.1) for
a set of initial conditions spread over the x1 − x2 plane. The picture gives the qualitative behavior of
the system in the sense that one cannot deduce the exact form of the solutions (often distinguished as
the quantitative behavior), but can deduce features such as stability, existence of equilibria, existence of

9
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Figure 1.1: Phase portraits for a stable node, unstable node, and saddle point.

periodic trajectories, and so forth. In the case when (1.1) has a single equilibrium point at the origin,
phase portraits can be used to visually classify the types of equilibria at the origin.

Recall that in general the solution of (1.1) is

x(t) = TeJtT−1x0

where T is a nonsingular matrix and J is the Jordan form of A. If we define z = T−1x then we can sketch
the phase portrait in the z1 − z2 plane and perform a linear transformation back to the x1 − x2 plane to
obtain the system phase portrait. Alternatively one can work directly in x coordinates. There are several
cases depending on the eigenvalues of A.

1.4.1 Case 1: Real Eigenvalues

In this case there is a single equilibrium point at the origin and A can be diagonalized so the Jordan form
is

J =

[
λ1 0
0 λ2

]

,

where λ1 6= λ2 6= 0. We know from our discussion of modal decomposition that if a trajectory starts along
the eigenvector v1 (v2) then it remains on it and grows or shrinks as eλ1t (eλ2t). If a trajectory starts at
an arbitrary initial condition its behavior is governed by a linear combination of trajectories starting at
the components of the initial condition in the directions of the two eigenvectors. Figure 1.1, generated by
the Matlab command streamslice shows the possible cases. If λ1 < 0 and λ2 < 0 the equilibrium point
is called a stable node. If λ1λ2 < 0 the equilibrium point is called a saddle point. If λ1 > 0 and λ2 > 0 the
equilibrium point is called an unstable node.

1.4.2 Case 2: Complex Conjugate Eigenvalues

In this case the real Jordan form is

J =

[
α −β
β α

]

,

where the complex conjugate eigenvalues are λ1,2 = α± jβ. If one transforms z to polar coordinates (r, θ)
the differential equation obtained is

ṙ = αr , θ̇ = β .

10
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Figure 1.2: Phase portraits for a stable focus, unstable focus, and center.

The solution of these uncoupled equations is a logarithmic spiral in the z1 − z2 plane, which can be
transformed to the x1 − x2 plane. Figure 1.2 shows the possible cases. If α < 0 then the equilibrium
point is called a stable focus. If α = 0 the equilibrium point is called a center and all the trajectories form
periodic orbits. If α > 0 the equilibrium point is called an unstable focus.

1.4.3 Case 3: Nonzero Real Repeated Eigenvalues

In this case the eigenvalues of A are λ1 = λ2 = λ 6= 0 and the Jordan form is

J =

[
λ k
0 λ

]

,

where k is either 0 or 1. If k = 0 then we have the same situation as the first case: the equilibrium is either
a stable or unstable node. However, every vector starting at the origin is an eigenvector. If k = 1 there
is only one eigenvector associated with the two eigenvalues. If λ < 0 (λ > 0) the equilibrium point is, as
before, called a stable node (unstable node).

1.4.4 Case 4: Zero Eigenvalues

If there are zero eigenvalues then there is not a unique equilibrium point at the origin but a set of equilibrium
points called the equilibrium set. It is an exercise for you to sketch the qualitative types of phase portraits
that occur in this case.

The table below summarizes the types of equilibrium points for second-order linear systems. Cases with
zero eigenvalues are omitted.

λ1, λ2 real, λ1 < 0, λ2 < 0 Stable node
λ1, λ2 real, λ1 > 0, λ2 > 0 Unstable node
λ1, λ2 real, λ1λ2 < 0 Saddle point
λ1, λ2 complex conjugate, Reλ1 > 0 Unstable focus
λ1, λ2 complex conjugate, Reλ1 < 0 Stable focus
λ1, λ2 complex conjugate, Reλ1 = 0 Center

11



1.5 Linear System with Inputs

The solution of the homogeneous equation (1.1) can be easily generalized to differential equations with
inputs. Consider the equation

ẋ(t) = Ax(t) + Bu(t)
x(0) = x0

(1.29)

where u is a piecewise continuous Rm-valued function. Define a function z(t) = e−Atx(t). Then z(t)
satisfies

ż(t) = −e−AtAx(t) + e−AtAx(t) + e−AtBu(t)

= e−AtBu(t)

Since the above equation does not depend on z(t) on the right hand side, it can be directly integrated to
give

z(t) = z(0) +

∫ t

0
e−AsBu(s)ds = x(0) +

∫ t

0
e−AsBu(s)ds .

Hence

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds .

This is the variation of constants formula for solving (1.29). Uniqueness follows from uniqueness of the
homogeneous equation.

Now consider linear systems with inputs and outputs

ẋ(t) = Ax(t) + Bu(t)

x(0) = x0 (1.30)

y(t) = Cx(t) + Du(t) . (1.31)

From the above results, the solution is obtained immediately

y(t) = CeAtx0 +

∫ t

0
CeA(t−s)Bu(s)ds + Du(t) . (1.32)

In the case x0 = 0 and D = 0, we find

y(t) =

∫ t

0
CeA(t−s)Bu(s)ds

which is of the form y(t) =
∫ t

0 H(t−s)u(s)ds, a convolution integral. H(t) = CeAtB is called the impulse
response of the system. If we allow generalized functions, we can incorporate a nonzero D term as

H(t) = CeAtB +Dδ(t) (1.33)

where δ(t) is the Dirac δ-function. Noting that the Laplace transform of eAt is (sI − A)−1, the transfer
function of the linear system from u to y, which is the Laplace trasnform of the impulse response, is given
by

H(s) = C(sI −A)−1B +D . (1.34)

12



1.6 Stability

Let us consider the unforced state equation first: ẋ = Ax, x(0) = x0.

Theorem 1.6.1. The vector x(t) → 0 as t → ∞ for every x0 ⇔ all the eigenvalues of A lie in the open
left half-plane.

Proof.

x̂(s) = (sI −A)−1x0

Thus

x(t)→ 0 ∀x0

⇔ all poles of (sI −A)−1 lie in {s : Res < 0}
⇔ all eigenvalues of A lie in {λ : Reλ < 0}

Now let us look at the full system model:

ẋ = Ax+Bu

y = Cx+Du .

The transfer matrix from u to y is

H(s) = C(sI −A)−1B +D .

We can write this as

H(s) =
1

det(sI −A)
C · adj(sI −A) · B +D .

Notice that the elements of the matrix adj(sI − A) are all polynomials in s; consequently, they have no
poles. Notice also that det(sI −A) is the characteristic polynomial of A. We can therefore conclude from
the preceding equation that

{eigenvalues of A} ⊃ {poles of H(s)} .

Hence, if all the eigenvalues of A are in the open left half-plane, then H(s) is a stable transfer matrix. The
converse is not necessarily true.

Example 1.6.1.

Consider

A =





0 1 1
−2 −2 0
2 1 −1



 , B =





−1 0
2 1
−1 −1





C = [2 2 1], D = [0 0]

{eigenvalues of A} = {0,−1,−2}

13



H(s) =
1

det(sI −A)
C · adj(sI −A) ·B

=
1

s2 + 3s2 + 2s
· [2 2 1] ·





s2 + 3s + 2 s+ 2 s+ 2
−2s− 2 s2 + s− 2 −2
2s+ 2 s+ 2 s2 + 2s+ 2









−1 0
2 1
−1 −1





=
1

s2 + 3s2 + 2s
[2s2 + 4s+ 2 2s2 + 5s + 2 s2 + 4s+ 2]





−1 0
2 1
−1 −1





=
1

s3 + 3s2 + 2s
[s2 + 2s s2 + s]

=

[
s+ 2

s2 + 3s+ 2

s+ 1

s2 + 3s + 2

]

Thus {poles of H(s)} = {-1,-2}. Hence the eigenvalue of A at λ = 0 does not appear as a pole of H(s).
Actually, this shouldn’t be surprising – a more obvious example is

A =

[
1 0
0 0

]

, B =

[
1
0

]

C = [1 0], D = 0

H(s) =
1

s− 1
.
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Chapter 2

Linear Algebra

This chapter gives an introduction to those parts of linear algebra that are needed to understand two key
concepts of linear system theory: controllability and observability. It is assumed that the reader has some
background in linear algebra.

2.1 Vector Spaces

A linear space (or vector space) X over the field R of reals is a set of elements (called vectors) with two
operations: addition of vectors and scalar multiplication. (Check P. Halmos, Finite Dimensional Vector
Spaces for a precise definition). In this course, we will mostly be working with X = R

n. For vectors
x1, . . . , xn in X , Span {x1, . . . , xn} denotes the linear span of the vectors, i.e.,

{
n∑

i=1

ci xi : ci ∈ R

}

.

We say X is finite-dimensional if there exist vectors x1, . . . , xn such that X = Span {x1, . . . , xn}. The least
such n is the dimension of X , denoted dim(X ). A set of vectors {x1, . . . , xn} is linearly independent if

(∀ci) c1x1 + · · ·+ cnxn = 0 =⇒ c1 = · · · = cn = 0.

A set {x1, . . . , xn} is a basis for X if

X = Span {x1, . . . , xn} and {x1, . . . , xn} is lin. indep.

Then every x in X can be written

x = c1x1 + · · ·+ cnxn

where the coefficients are unique.

Definition 2.1.1. A subset V of X is a subspace, and we write V ⊂ X , if V is closed under addition, i.e.,

x, y ∈ V =⇒ x+ y ∈ V,

and closed under scalar multiplication, i.e.,

x ∈ V, c ∈ R =⇒ c x ∈ V.
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For example, in R
2 the subspaces are {0}, straight lines through 0, R2 itself. In X , the subspace {0} is

sometimes denoted 0 (the zero subspace). The empty set is not a subspace.

Let V,W be subspaces of X . Then V +W denotes the set

{v + w : v ∈ V, w ∈ W},

and it is a subspace of X . The set union V ∪W is not a subspace in general (when is it?). The intersection
V ∩W is however a subspace. As an example:

X = R
3, V a line through 0, W a plane through 0.

Then V +W = R
3 if V does not lie in W. If V ⊂ W, then of course V +W =W.

As an exercise show that

dim(V +W) = dim(V) + dim(W) − dim(V ∩W).

Two subspaces V,W are independent if V ∩W = 0. This is not the same as being orthogonal. For example
two lines through the origin in the plane are independent iff they are not colinear (i.e., the angle between
them is not 0), while they are orthogonal iff the angle is 90◦. Three subspaces U ,V,W are independent
if U ,V +W are independent, V,U +W are independent, and W,U + V are independent. This is not the
same as being pairwise independent. As an example, let U ,V,W be 1-dimensional subspaces of R3, i.e.,
three lines through 0. When are they independent? Pairwise independent?

More generally, subspaces V1, . . . ,Vk are independent if

Vi ∩




∑

j 6=i

Vj



 = 0 for every i.

The following three conditions are equivalent:

1. V1, . . . ,Vk are independent.

2. (∀v ∈ V1 + · · ·+ Vk) (∃ unique vi ∈ Vi) v = v1 + · · ·+ vk.

3. dim(V1 + · · · + Vk) = dim(V1) + · · ·+ dim(Vk).

If V,W are independent subspaces, we write their sum as V ⊕ W. This is called an internal direct sum.
Likewise for more than two.

Let X1 and X2 be two vector spaces, not necessarily subspaces of a larger space. The Cartesian product
X1 × X2 is the set of ordered pairs (x1, x2). It’s a vector space under componentwise addition and scalar
multiplication. This space is denoted X1 ⊕X2 too, the external direct sum.

Let X be a vector space and V ⊂ X . It is a fact that every subspace has an independent complement, i.e.,

V ⊂ X =⇒ (∃W ⊂ X ) X = V ⊕W.

In fact, V has many complements, but there is a vector space that uniquely captures the notion of “X
minus V.” It’s called the quotient space, denoted X/V. We will not go into the details of the construction
here, but we will at times make use of the notation (see the Representation theorem below).

Finally, the orthogonal complement V⊥ (called “V perp”) of a subspace V ⊂ X is given by

V⊥ = {x ∈ X | x · v = 0 , v ∈ V} .

It is the set of all vectors orthogonal to every vector in V .

16



2.2 Linear Transformations

Let X ,Y be two vector spaces. A function A : X → Y is a linear transformation (LT) iff

A(x1 + x2) = Ax1 +Ax2, x1, x2 ∈ X
A(ax) = aAx, a ∈ R, x ∈ X .

An LT is uniquely determined by its action on a basis. That is, if A : X → Y is an LT and if {e1, . . . , en}
is a basis for X , then if we know the vectors Aei, we can compute Ax for every x ∈ X , by linearity.

Example 2.2.1.

Let X be a vector space of dimension n and let {e1, . . . , en} be a basis. Every vector x in X has a unique
expansion

x = a1e1 + · · · + anen, ai ∈ R.

The function

x 7−→






a1
...
an






defines an LT Q : X → R
n. It maps x to its vector of coordinates with respect to the basis.

For example, let X = R
2. Take the natural basis

e1 =

[
1
0

]

, e2 =

[
0
1

]

.

In this case

Q : x =

[
x1
x2

]

7−→
[
x1
x2

]

,

i.e., Q is the identity LT. If the basis instead is

e1 =

[
1
1

]

, e2 =

[
−1
1

]

,

then for any x in X

x =

[
x1
x2

]

= a1e1 + a2e2

= a1

[
1
1

]

+ a2

[
−1
1

]

=

[
1 −1
1 1

] [
a1
a2

]

,

so

Q : x =

[
x1
x2

]

7−→
[
1 −1
1 1

]−1 [
x1
x2

]

.
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Every LT on finite-dimensional vector spaces has a matrix representation. Let A be an LT X → Y, with

dim(X ) = n, basis {e1, . . . , en}; dim(Y) = p, basis {f1, . . . , fp} .

The following is a recipe for constructing the matrix A:

1. Take the ith basis vector ei of X .

2. Apply the LT A to get Aei.

3. Express the vector Aei in the basis for Y and enter this coordinate vector as column i of A.

Example 2.2.2.

Let A : R2×2 → R map a 2× 2 matrix B to trace B. Let’s find its matrix representation. We need a basis
for R2×2; let’s take, say,

E1 =

[
1 1
0 0

]

, E2 =

[
1 0
1 0

]

, E3 =

[
1 0
0 1

]

, E4 =

[
0 0
0 1

]

.

You can check these are linearly independent. And we need a basis for R; let’s take f = 3. To find the
first column of A, apply the recipe with i = 1 :

1. E1 =

[
1 1
0 0

]

2. AE1 = trace E1 = 1

3. 1 = 1
3f , so 1st col of A is 1

3 .

Proceeding column by column, we get

A =
[

1
3

1
3

2
3

1
3

]
.

An LT induces two special subspaces.

Definition 2.2.1. Let A : X → Y be an LT. The kernel or nullspace of A is the subspace of X

N (A) = Ker A := {x : Ax = 0}.

The image or range space of A is the subspace of Y

R(A) = Im(A) := {y : (∃x ∈ X )y = Ax}.

More generally, if V ⊂ X , the image of V under A is

AV := {y : (∃x ∈ V)y = Ax}.

Thus
R(A) = AX .
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Example 2.2.3.

The following example shows how to compute N (A). Suppose we have

A =

[
1 2 −1
1 0 1

]

,

and we want to find all x ∈ R
3 such that Ax = 0 or

x1 + 2x2 − x3 = 0

x1 + x3 = 0 .

Equivalently

x1 = −x3
x2 = x3 .

Hence

N (A) = span of





−1
1
1





Example 2.2.4.

The following example illustrates the determination of R(A) and its use in solution of linear equations.
Consider the linear system of equations

Ax = b ,

with

A =





1 2 3 −1
1 0 1 1
0 1 1 −1



 b =





4
2
1





Then x =







2
1
0
0






,







1
0
1
0






,







0
1
1
1







are all solutions.

The range of A is the column span of A or

R(A) = span











1
1
0



 ,





2
0
1










.

We get an under-determined set of equations

x2 + x3 − x4 = 1

x1 + 2x2 + 3x3 − x4 = 4

which has an infinite number of solutions. However, if b =





5
2
1



, then there is no solution.

Recall that an LT A is one-to-one if v1 6= v2 implies Av1 6= Av2. An LT A is onto if for every y ∈ Y there
exists an x ∈ X such that Ax = y. Clearly A is onto if R(A) = Y. Can we find a characterization of
whether A is one-to-one in terms of N (A) or R(A)?
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Lemma 2.2.1. Let A be a linear transformation from X to Y. Then A is one-to-one iff N (A) = 0.

Lemma 2.2.2. Let A be a linear transformation from X to Y where dim(X ) = n. Then

dimR(A) + dimN (A) = n .

Whether a matrix A is one-to-one or onto (or both) can be easily checked as follows:

A is onto ⇐⇒ A has full row rank;

A is one-to-one ⇐⇒ A has full column rank.

The rank of a matrix is the dimension of R(A).

2.3 Invariant Subspaces

Example 2.3.1.

Let A : R2 → R
2 be the LT that maps

[
x1
x2

]

to

[
x1 + x2
2x1 + 2x2

]

. Thus, with respect to the natural bases,

the matrix representation is

A =

[
1 1
2 2

]

.

Clearly, N (A) is the 1-dimensional subspace spanned by

[
1
−1

]

. Also,

x ∈ N (A)⇒ Ax = 0 ∈ N (A),

or equivalently,

AN (A) ⊂ N (A).

Definition 2.3.1. If A : X → X is an LT, a subspace V ⊂ X is A-invariant if AV ⊂ V.

For example, the zero subspace, X itself, N (A), and Im A are A-invariant. N (A) is the eigenspace for the
zero eigenvalue, assuming λ = 0 is an eigenvalue (as in the example above). More generally, suppose λ is
an eigenvalue of A, and assume λ ∈ R. Then Ax = λx for some x 6= 0 so V = span {x} is A-invariant. So
is the eigenspace

{x : Ax = λx} = {x : (A− λI)x = 0} = N (A− λI).

Theorem 2.3.1 (Representation Theorem). Suppose V ⊂ X is an A-invariant subspace for LT A : X →
X . The A has a matrix representation

A =

[
A11 A12

0 A22

]

.

The LT A11 : V → V is called the restriction of A to V. Likewise A22 : X/V → X/V is the restriction of A
to X/V.
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Proof. Let {e1, . . . , ek} be a basis for V and let {e1, . . . , ek, . . . , en} be a basis for X . We know that for any
x ∈ V, Ax ∈ V. In particular, if we pick x = ei, i = 1, . . . , k then since Aei ∈ V,

Aei = a1ie1 + . . .+ akiek

for suitable constants aij, We know that the coefficients aij, j = 1, . . . , k form the ith column of A. Hence,
A takes the form

A =

[
A11 ∗
0 ∗

]

.

Example 2.3.2.

Let X = R
3, let V be the (x1, x2)-plane, and let A : X → X be the LT that rotates a vector 90◦ about the

x3-axis using the right-hand rule. Thus V is A-invariant.

Let us take the bases

e1 =





1
0
0



 , e2 =





0
1
0



 for V

e1, e2, e3 =





1
1
1



 for X .

The matrix representation of A with respect to the latter basis is

A =





0 −1 −2
1 0 0

0 0 1



 .

So, in particular, the induced matrix representation of A22 is 1.
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2.4 Appendix

This Appendix provides some background material used in the main result on controllability in Section 3.1.
In particular, we present the Cayley-Hamilton theorem and adjoints of linear operators. It is intended
primarily for readers who want to have a more in depth understanding of the mathematical foundations of
certain arguments appearing in the proofs of Chapter 3. This material may be skipped on a first reading.

2.4.1 Cayley-Hamilton Theorem

Theorem 2.4.1. A square matrix satisfies its own characteristic equation.

Proof. Let ∆(s) = det(sI − A) = sn + d1s
n−1 + · · · + dn = 0 be the characteristic equation of a matrix

A : X → X. Also let

Adj(sI −A) = B0s
n−1 +B1s

n−2 + · · ·+Bn−2s+Bn−1.

where Bi are constant matrices in R
n×n. We have that

(sI −A)Adj(sI −A) = det(sI −A) · I . (2.1)

Substituting the expression for Adj(sI −A) on the l.h.s. we obtain

(sI −A)
[
B0s

n−1 +B1s
n−2 + · · ·+Bn−2s+Bn−1

]

= B0s
n + (B1 −AB0)s

n−1 + · · ·+ (Bn−1 −ABn−2)s−ABn−1.

When we compare coefficients with the r.h.s. of Equation (2.1) we find that

B0 = I

(B1 −AB0) = d1I

(B2 −AB1) = d2I

...

(Bn−1 −ABn−2) = dn−1I

−ABn−1 = dnI .

When these coefficients are substituted in ∆(s) with s = A we find

∆(A) = AnB0 +An−1(B1 −AB0) +An−2(B2 −AB1)+

· · ·+A(Bn−1 −ABn−2)−ABn−1 = 0

2.4.2 Adjoints of Linear Maps

R
n is a vector space with an inner product

〈x, y〉Rn := x′y ,

where x′ is the transpose of x, and x, y ∈ R
n. The associated norm is

‖x‖Rn := 〈x, x〉 12 .
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More generally, a vector space V equipped with an inner product is called an inner product space. (An
inner product space is called a Hilbert space if it is complete, i.e., if every Cauchy sequence converges.)

Let V be an inner product space with an inner product 〈· , ·〉. Recall
∣
∣〈x, y〉

∣
∣ ≤ ‖x‖ ‖y‖ , ∀x, y ∈ V . (Schwartz inequality)

Definition 2.4.1. (Adjoint) Let V andW be inner product spaces with inner products 〈· , ·〉V and 〈· , ·〉W ,
respectively and L : V → W a continuous linear map (also called a linear transformation). The adjoint of
L is defined as the linear map L∗ : W → V which satisfies:

〈w,Lv〉W = 〈L∗w, v〉V , ∀v ∈ V , ∀w ∈W .

One can show that the adjoint of a linear map, as defined above, always exists and is unique. We denote
by ‖ · ‖V and ‖ · ‖W the associated norms on V and W , respectively.

Example 2.4.1. Let V = R
n, W = R

m, endowed with the standard Cartesian basis and inner product,
and consider a linear map from R

n to R
m having a matrix representation A. The transpose A′ of A is the

matrix representation of the adjoint of the map.

Example 2.4.2. Let L2([0, t1]) denote the space of square integrable, vector-valued functions defined on
[0, t1], i.e., the set of functions u(·) : [0, t1] → Rk with

∫ t1
0 ‖u(t)‖2 dt < ∞. The inner product 〈· , ·〉2 in

L2([0, t1]) is defined by

〈u1, u2〉2 :=
∫ t1

0
u′1(t)u2(t) dt ,

where u′1(t) denotes the transpose of u1(t) ∈ R
k. Let F (t) be an n× k real matrix defined for t ∈ [0, t1] and

satisfying
∫ t1
0 ‖F (t)‖2 dt <∞. Define the linear map L : L2([0, t1])→ R

n by:

L(u) =

∫ t1

0
F (t)u(t) dt .

One can find the adjoint L∗ : Rn → L2([0, t1]) of the map L as follows. We have

〈Lu, x〉Rn =

[∫ t1

0
F (t)u(t)dt

]′
x

=

∫ t1

0
u′(t)F ′(t)xdt

=

∫ t1

0
u′(t)(L∗x)(t)dt

= 〈u,L∗x〉2 .

Hence
(
L∗x

)
(t) = F ′(t)x , x ∈ R

n , t ∈ [0, t1] ,

where, again, F ′(t) is the transpose of F (t). Note that LL∗ is a map from R
n to R

n and so it has a matrix
representation given by:

LL∗ =

∫ t1

0
F (t)F ′(t) dt .

Definition 2.4.2. (Orthogonality) Let V be an inner product space with inner product 〈· , ·〉. We say
that two vectors x, y ∈ V are orthogonal, and we use the notation x ⊥ y, if 〈x, y〉 = 0. Let M be a subspace
of V . The orthogonal complement of M in V is denoted by M⊥ and defined by:

M⊥ :=
{
x ∈ V

∣
∣ 〈x, y〉 = 0 , ∀y ∈M

}

23



It is clear that M⊥ is a subspace of V . We say that two subspaces M and N of V are orthogonal, denoted

by M ⊥ N if whenever x ∈M and y ∈ N , then x ⊥ y. We will use the notation V = M
⊥
⊕ N and say that

V is the orthogonal direct sum of M and N to denote that V = M ⊕N and M ⊥ N .

We are going to make use of the following fact which we state here without proof.

Theorem 2.4.2. If M is a finite dimensional subspace of an inner product space V then V = M ⊕M⊥

and, in addition, M =
(
M⊥)⊥.

Lemma 2.4.1. Let L be as in Definition 2.1 with V, W inner product spaces. Then

(a) N (L∗) = R(L)⊥ and N (L) = R(L∗)⊥.

(b) N (LL∗) = N (L∗) and N (L∗L) = N (L),

where N and R denote the nullspace and the range respectively.

Proof. The second identities in (a) and (b) can be derived from the first by interchanging the roles of L
and L∗. For (a) note that

w ∈ N (L∗) ⇐⇒ 〈L∗w, v〉V = 0 , ∀v ∈ V (2.2)

⇐⇒ 〈w,Lv〉W = 0 , ∀v ∈ V (2.3)

⇐⇒ w ∈ R(L)⊥ . (2.4)

To prove (b) it is enough to show N (LL∗) ⊂ N (L∗), since the inclusion N (L∗) ⊂ N (LL∗) is obvious. We
have,

w ∈ N (LL∗) =⇒ 〈w,LL∗w〉W = 0 (2.5)

=⇒ 〈L∗w,L∗w〉V = ‖L∗w‖2V = 0 (2.6)

=⇒ w ∈ N (L∗) , (2.7)

and the proof is complete.

Theorem 2.4.3. Let V and W be inner product spaces such that either V or W is finite dimensional. Let
L : V →W be a continuous linear map. Then

(a) W = R(L)
⊥
⊕ N (L∗) and V = R(L∗)

⊥
⊕ N (L)

(b) R(L) = R(LL∗) and R(L∗) = R(L∗L)

(c) If w0 ∈ R(L), then v0 = L∗η0, where η0 satisfies LL∗η0 = w0 is the solution of minimum norm of
the equation Lv = w0, i.e., if v is any other solution, then ‖v0‖V ≤ ‖v‖V .

(d) If w0 ∈ W , then any v0 ∈ V satisfying L∗Lv0 = L∗w0, solves the minimization problem inf
v∈V
‖Lv −

w0‖W .

Proof. Since R(L) is a finite dimensional subspace it follows from Theorem 2.1 and Lemma 2.2 that

N (L∗)⊥ =
(
R(L)⊥

)⊥
= R(L)

and hence

W = R(L)⊕R(L)⊥ = R(L)
⊥
⊕ N (L∗) .

24



Also, since (LL∗)∗ = LL∗,
R(L) = N (L∗)⊥ = N (LL∗)⊥ = R(LL∗) .

The proofs of the second parts of (a) and (b) are analogous.

For part (c), note that since R(L) = R(LL∗) and w0 ∈ R(L) there exists η0 ∈ W such that LL∗η0 = w0.
If v is any solution of Lv = w0, then L(v − v0) = 0 or equivalently (v − v0) ∈ N (L); also, v0 ∈ R(L∗).
Hence, by (a) of Lemma 1, (v − v0) ⊥ v0, implying that

‖v‖2V = ‖v − v0 + v0‖2V = ‖v − v0‖2V + ‖v0‖2V .

It follows that ‖v0‖V ≤ ‖v‖V .
For part (d), first note that since R(L∗) = R(L∗L) the existence of some v0 satisfying L∗Lv0 = L∗w0 is
guaranteed. Note that (Lv0 − w0) ∈ N (L∗) Let v ∈ V be arbitrary. Since (Lv − Lv0) ∈ R(L), it follows
by Lemma 1 that (Lv − Lv0) ⊥ (Lv0 − w0); therefore,

‖Lv − w0‖2W = ‖Lv − Lv0 + Lv0 − w0‖2W = ‖Lv − Lv0‖2W + ‖Lv0 − w0‖2W .

Thus, ‖Lv − w0‖W ≥ ‖Lv0 − w0‖W .
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Chapter 3

Controllability

All the material in this chapter pertains to the differential equation

ẋ = Ax+Bu, , x(0) = 0 , (3.1)

where x ∈ R
n and u ∈ R

m, so A ∈ R
n×n and B ∈ R

n×m. We study the concept of controllability and
two important properties of controllability: invariance under change of basis and invariance under state
feedback. We also discuss controllable canonical form for single input systems, which is very useful for the
pole assignment problem discussed in the next chapter.

3.1 Reachable States

Consider the following problem. For fixed t1 and a given vector v in R
n, does there exist a control input

u, defined on [0, t1], such that the solution of (3.1) satisfies x(t1) = v? We shall refer to this problem as
the reachability problem.

Let U be the space of piecewise continuous functions with finite energy in every finite time interval. Define
the linear operator Lc : U → R

n by

Lcu =

∫ t1

0
eA(t1−s)Bu(s)ds .

The reachability problem is equivalent to the solvability of the linear equation

Lcu = v .

To bring out the analogy a bit further, recall that the linear equation

Aξ = b

has a solution if and only if b ∈ R(A) where R(A) is the range of the matrix A. Similarly, the reachability
problem is solvable if and only if v ∈ R(Lc). Then we say that the state v is reachable at time t1. The
set of reachable states is given by R(Lc). Every state is reachable iff Lc is onto. If every state is reachable
then we say that the system (A,B) is controllable.

Define the controllability matrix Qc, which has dimension n× nm, as

Qc = [ B AB A2B ... An−1B ] .

We will see shortly that the rank of this matrix determines whether a system is controllable.
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Example 3.1.1.

u1

u2
K

M1 M2

y2y1

0

The system equations are

M1ÿ1 = −K(y1 − y2) + u1

M2ÿ2 = −K(y2 − y1) + u2 .

We define the state vector

x =







y1
ẏ1
y2
ẏ2







.

Then the state equations are

ẋ =







0 1 0 0
−K
M1

0 K
M1

0

0 0 0 1
K
M2

0 −K
M2

0













x1
x2
x3
x4






+







0 0
1

M1
0

0 0
0 1

M2







[
u1
u2

]

.

The controllability matrix is

Qc =









0 0 1
M1

0 0 0 −K
M2

1

K
M1M2

1
M1

0 0 0 −K
M2

1

K
M1M2

0 0

0 0 0 1
M2

0 0 K
M1M2

−K
M2

2

0 1
M2

0 0 K
M1M2

−K
M2

1

0 0









which has 4 linearly independent columns so that it is full rank.

Example 3.1.2.

K

M1 M2

y2y1

u u

The system equations are
M1ÿ1 = −u−K(y1 − y2)
M2ÿ2 = u−K(y2 − y1)

and defining the state vector

x =







y1
ẏ1
y2
ẏ2







,
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we obtain the state equations

ẋ =







0 1 0 0
−K
M1

0 K
M1

0

0 0 0 1
K
M2

0 −K
M2

0






x+







0
− 1

M1

0
1
M2






u .

The controllability matrix is

Qc =









0 − 1
M1

0 K
M2

1

+ K
M1M2

− 1
M1

0 K
M2

1

+ K
M1M2

0

0 1
M2

0 − K
M1M2

− K
M2

2

1
M2

0 − K
M1M2

− K
M2

2

0









.

Note that for this Qc

the 3rd column =








0
1
M1

(
K
M1

+ K
M2

)

0
1

M2








= −
(

K
M1

+ K
M2

) [
1st

column

]

so that only two columns in Qc are linearly independent.

Associated with Qc, we define the controllable subspace which is R(Qc). Note that for the two cart-two
force system R(Qc) = R

4 while for the two cart-one force system R(Qc) = R
2.

The infinite dimensional vector space U has an inner product

〈u,w〉U :=

∫ t1

0
u(τ)Tw(τ)dτ .

Referring to the Appendix, the adjoint operator L∗
c : R

n → U of Lc is

(L∗
cv)(τ) = BT e(t1−τ)AT

v .

We define, for each t > 0, the controllability gramian

Wc(t) := (LcL
∗
c)(t) =

∫ t

0
eA(t−τ)BBT eA

T (t−τ)dτ

=

∫ t

0
eAτBBT eA

T τdτ .

We will shortly make use of the fact that R(Lc) = R(LcL
∗
c); the proof is in the Appendix. This result is

useful because LcL
∗
c : R

n → R
n is a matrix.

Example 3.1.3.
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Suppose we have

A =

[
−1 1
0 −2

]

, B =

[
0
1

]

.

(sI −A)−1 =

[
s+ 1 −1
0 s+ 2

]−1

=





s+ 2 1
0 s+ 1





(s+1)(s+2)

=

[
1

s+1
1

(s+1)(s+2)

0 1
s+2

]

=

[ 1
s+1

1
s+1 − 1

s+2

0 1
s+2

]

eAt = L−1(sI −A)−1 =

[
e−t e−t − e−2t

0 e−2t

]

Wc(t) =
∫ t

0

[
e−τ e−τ − e−2τ

0 e−2τ

] [
0
1

]

[0 1]

[
e−τ 0

e−τ − e−2τ e−2τ

]

dτ

=
∫ t

0

[
e−τ e−τ − e−2τ

0 e−2τ

] [
0 0

e−τ − e−2τ e−2τ

]

dτ

=
∫ t

0

[
e−2τ − 2e−3τ + e−4τ e−3τ − e−4τ

e−3τ − e−4τ e−4τ

]

dτ

=

[
1
2(1− e−2t)− 2

3(1− e−3t) + 1
4 (1− e−4t) 1

3(1− e−3t)− 1
4(1− e−4t)

1
3(1− e−3t)− 1

4 (1− e−4t) 1
4(1− e−4t)

]

.

Note that Wc is a symmetric n× n matrix.

We want to find a characterization of R(Lc) that allows us to determine in a computationally direct way
whether a linear system is controllable. The main result of this section is the following.

Theorem 3.1.1. R(Lc) = R(Qc).

Proof. First we will show that R(Lc) ⊂ R(Qc). The Cayley-Hamilton theorem (refer to the Appendix for a
proof) says that a matrix satisfies its own characteristic polynomial; that is, if p(s) = sn+an−1s

n−1+· · ·+a0
is the characteristic polynomial of the matrix A, then p(A) = An+an−1A

n−1+ ...+a0I = 0. A consequence
is that An is a linear combination of {Aj , j = 0, ..., n − 1} and hence Ak, k ≥ n is also. Since

eAt =

∞∑

k=0

Aktk

k!

the Cayley-Hamilton theorem allows us to conclude that

eAt = ϕ0(t)I + ϕ1(t)A+ ...+ ϕn−1(t)A
n−1

for certain functions {ϕi(t)}. Let x ∈ R(Lc). Then there exists a control u such that

x =

∫ t

0
eA(t−τ)Bu(τ)dτ

=

∫ t

0
[ϕ0(t− τ)I + ...+ ϕn−1(t− τ)An−1]Bu(τ)dτ .
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Let

vj =

∫ t

0
ϕj(t− τ)u(τ)dτ .

Then

x = [B AB ... An−1B]








v0
v1
...

vn−1







∈ R(Qc) .

Second, we show that R(Qc) ⊂ R(Lc). Using facts about adjoints and orthogonal subspaces found in the
Appendix, we have that

R(Lc) = R(LcL
∗
c) = N (LcL

∗
c)

⊥

R(Qc) = N (Qc
T )⊥ .

From these facts, showing that R(Qc) ⊂ R(Lc) is equivalent to showing that

N (LcL
∗
c) ⊂ N (QT

c ) .

To this end, let x ∈ N (LcL
∗
c). Then we have

0 = xTWcx

=

∫ t

0
xT eAτBBT eA

T τxdτ

=

∫ t

0
‖BT eA

T τx‖2dτ .

This yields
BT eA

T τx = 0 , 0 ≤ τ ≤ t .

Setting τ = 0 gives
BTx = 0

For k = 1, . . . , n− 1, take the kth derivative of BT eA
T τ with respect to τ and evaluate the result at τ = 0.

This gives successively

BTATx = 0

BT (AT )2x = 0

...

BT (AT )n−1x = 0

so that QT
c x = 0. That is x ∈ N (QT

c ), as desired.

We summarize our results as follows. We say a linear system ẋ = Ax+Bu or the pair (A,B) is controllable
if any one (hence all) of the following conditions holds:

(i) R(Lc) = R
n for some (hence all) t > 0.

(ii) R(Qc) = R
n.

(iii) rank [B AB · · · An−1B] = n.

Note that if the system is controllable, then the state can be transferred from any state x0 (not just 0) at
τ = 0 to any other state x1 at time τ = t1. This is because if we want to transfer the state from x0 to x1,
we can simply use the control which transfers the state from 0 to z = x1 − eAt1x0. In fact, a control input
that achieves the transfer is given by

u(τ) = BT eA
T (t1−τ)W−1

c (t1)(x1 − eAt1x0) .

You can verify for yourself that this control achieves the transfer.
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3.2 Alternate Proof of Controllability

Controllability is a deep property of a control system. The proof in the previous section, while the most
common one in the textbooks, has the shortcomings that it requires background on linear operators and
adjoints and that it does not give much intuition about controllability. Also, it is not easily extended to
the nonlinear setting. In this section, we give another proof that a system is controllable if and only if all
states are reachable from the origin, in order to provide an alternate view and further insight.

Theorem 3.2.1. R(Lc) = R
n if and only if rank(Qc) = n.

Proof. (Necessity) We show that if R(Lc) = R
n then rank(Qc) = n. Suppose rank(Qc) < n. Consider the

expression

e−At1x1 − x0 =

∫ t1

0
e−AτBu(τ)dτ .

By assumption there exists a non-zero vector v ∈ R
n such that vTQc = 0. This implies

vTB = 0 , vTAB = 0 , . . . , vTAn−1B = 0 .

By the Cayley-Hamilton theorem (see the Appendix), we obtain vTAkB = 0, for all k = 0, 1, . . .. It follows

that vT e−AτB = 0 since e−AτB = B −ABτ +A2B τ2

2! + · · · . Therefore

vT
(
e−At1x1 − x0

)
=

∫ t1

0
vT e−AτBu(τ)dτ = 0 .

This means there is a constraint on x0 and x1. But x0 and x1 must be arbitrary because R(Lc) = R
n.

Thus, we arrive at a contradiction.

(Sufficiency) We show that if rank(Qc) = n then R(Lc) = R
n. Suppose not. That is, suppose the map Lc

is not onto. Equivalently, the linear map

e−At1Lc =

∫ t1

0
e−AτBu(τ)dτ

is not onto. This means there is a non-zero vector v ∈ R
n such that

vT
∫ t1

0
e−AτBu(τ)dτ = 0 .

Choose a control of the form u(τ) = (0, . . . , 0, usi (τ), 0, . . . , 0) where the ith component is

usi (τ) =

{
1 0 ≤ τ ≤ 2
0 τ > s

and s ∈ R is a parameter. Then we have

vT
∫ s

0
e−Aτ bidτ = 0 , i = 1, . . . ,m

where bi is the ith column of B. This expression holds for all s ∈ R. This means

vT e−Asbi = 0 , s ∈ R, i = 1, . . . ,m .

Differentiating this expression repeatedly with respect to s and setting s = 0 we obtain

vTAkbi = 0 , i = 1, . . . ,m

for all k = 0, 1, . . . Equivalently, vTQc = 0, which contradicts rank(Qc) = n.
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3.3 Invariance under Change of Basis

Recall that if x is a state vector, so is T−1x for any nonsingular matrix T . In fact, if we let z = T−1x,

ż = T−1ẋ

= T−1ATz + T−1Bu

so that with z as the state vector, the system matrices change from (A,B) to (T−1AT, T−1B). We refer to
this as a change of basis because if we let the columns of T form a new basis for Rn, z is the representation
of x in this new basis.

Theorem 3.3.1. (A,B) is controllable if and only if (T−1AT, T−1B) is controllable for every nonsingular
T .

Proof. Consider the controllability matrix Q̃c for the pair (T−1AT, T−1B):

Q̃c = [T−1B T−1ATT−1B · · · ]
= T−1[B AB · · · ]
= T−1Qc .

Since rank(T−1Qc) = rank(Qc) the result is proved.

If the pair (A,B) is not controllable, there is a particular basis in which the controllable and uncontrollable
parts are displayed transparently. We illustrate the choice of basis and the computation involved with the
following example.

Example 3.3.1.

For the two cart-one force system, if we take M1 = K = 1, M2 =
1
2 , we obtain the system matrices

A =







0 1 0 0
−1 0 1 0
0 0 0 1
2 0 −2 0







B =







0
−1
0
2







.

We know that this system is not controllable, and that the first two columns of the controllability matrix
span R(Qc). It is easily verified that we can take the following two vectors as a basis for R(Qc)

v1 =







1
0
−2
0







, v2 =







0
1
0
−2







.

We complete this to a basis in R
4 by augmenting with, say, the vectors

v3 =







0
0
1
0







, v4 =







0
0
0
1







.
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Define the matrix

T =





| | | |
v1 v2 v3 v4
| | | |



 =







1 0 0 0
0 1 0 0
−2 0 1 0
0 −2 0 1







.

With respect to this basis, the state x is transformed to z = T−1x. Since

T−1 =







1 0 0 0
0 1 0 0
2 0 1 0
0 2 0 1







the equation governing z is given by

ż = Ãz + B̃u

where

Ã = T−1AT

=







0 1 0 0
−3 0 1 0
0 0 0 1
0 0 0 0







=

[
Ã11 Ã12

0 Ã22

]

(3.1)

where Ã11 is the upper left 2x2 block, Ã12 the upper right 2x2 block, and Ã22 the lower right 2x2 block.

B̃ = T−1B

=







0
−1
0
0







=

[
B̃1

0

]

. (3.2)

Note that the pair (Ã11, B̃1) is controllable because rank(Qc) = rank([B̃1 Ã11B̃1 Ã2
11B̃1]), while z3 and

z4 corresponding to the Ã22 block is uncontrollable, since they are decoupled from z1 and z2 and are
unaffected by u.

In general, whenever Qc is not full rank, we can find a basis so that in the new basis, A and B take the
form given in (3.1) and (3.2), respectively, with (Ã11, B̃1) controllable. The procedure is:

1. Find a basis for R(Qc). Denote the vectors in this basis by {v1, v2, · · · , vk}.

2. Complete the basis to form a basis for R
n. Define the matrix T to have as its columns the basis

vectors {v1, v2, · · · , vn}.

3. Compute Ã = T−1AT and B̃ = T−1B. Ã will take the form (3.1) and B̃ will take the form (3.2).
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3.4 Invariance under State Feedback

A control law of the form

u(t) = Kx(t) + v(t)

with v(t) a new input, is referred to as a state feedback. The closed-loop system equation is given by

ẋ = (A+BK)x(t) +Bv(t)

It is an important property that controllability is unaffected by state feedback.

Theorem 3.4.1. (A,B) is controllable if and only if (A+BK,B) is controllable for all K.

A proof can be obtained using the PBH test. For details, refer to the problem sets.

3.5 Controllable Canonical Form

For single input systems, there is a special form of system matrices for which controllability always holds.
This special form is referred to as the controllable canonical form. Using a lower case b to indicate explicitly
that the input matrix is a column vector for a single input system, the controllable canonical form is given
by

A =








0 1 · · · 0 0
...

. . .

0 0 · · · 0 1
−α0 −α1 · · · −αn−1








b =










0
0
...
0
1










.

It is easy to verify that the controllability matrix for this pair (A, b) always has rank n, regardless of
the values of the coefficients αj ; hence the name controllable canonical form. An A matrix taking the
above form is referred to as a companion form matrix. It is straightforward to show that the characteristic
polynomial of the companion form matrix is given by

det(sI −A) = sn + αn−1s
n−1 + · · · + α0 .

It will be seen in the next chapter that when using pole assignment in single-input systems, the controllable
canonical form is particularly convenient for control design. To prepare for that discussion, we have that

Theorem 3.5.1. If (A, b) is controllable there exists a similarity transformation T such that (T−1AT, T−1b)
is in controllable canonical form.
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Proof. Consider the matrix

T = [An−1b An−2b · · · b]













1 0 . . . 0
αn−1

αn−2
...

...
α2 0
α1 α2 . . . αn−1 1













= [b · · · An−1b]










α1 α2 · · · αn−1 1
α2 · · · αn−1 1 0
... ... 1 0 0

αn−1 ... 0 · · · 0
1 0 · · · 0 0










=





| |
v1 · · · vn
| |



 .

The second matrix (called a Toeplitz matrix) forming T is non-singular. The first matrix forming T is Qc.
Thus, controllability ensures T−1 exists, so that its columns v1, ..., vn form a basis of Rn.

Note that

v1 = An−1b+ αn−1A
n−2b+ ...+ α1b

v2 = An−2b+ αn−1A
n−3b+ . . .+ α2b

...

vn−1 = Ab+ αn−1b

vn = b

and that

Av1 = Anb+ ...+ α1Ab+ α0b− α0b

= −α0b by the Cayley-Hamilton Theorem

= −α0vn

Av2 = v1 − α1vn
...

Avn = vn−1 − αn−1vn

Thus the matrix representation of A with respect to the basis {v1...vn} looks like

Ã =








0 1 · · · 0 0
...

. . .

0 0 · · · 0 1
−α0 −α1 · · · −αn−1








Similarly, the vector b looks like









0
0
...
0
1










= b̃
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But Ã and b̃ are then related to the original matrices through

Ã = T−1AT

b̃ = T−1b

so that they are related by a similarity transformation. Thus the new system z(t) = T−1x(t) will satisfy
an equation of the form

ż = Ãz + b̃u

with (Ã, b̃) in controllable canonical form.

3.6 PBH Test

There is a very useful test for controllability, referred to as the PBH test.

Theorem 3.6.1 (PBH). (A,B) is controllable if and only if rank[A − λI B] = n for all eigenvalues λ
of A.

This theorem can be proved using the change of basis described above for uncontrollable systems. Details
are provided in the problem sets. It is important to note that Rank[A−λI B] = n for all eigenvalues λ of
A if and only if Rank[A− λI B] = n for all complex numbers λ. This is because for λ not an eigenvalue
of A, Rank(A− λI) = n.
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Chapter 4

Pole Assignment for Linear Systems

In the previous chapters we examined the open loop response of a linear system and structural properties
such as stability, and particularly controllability; later we will also study observability. In this chapter
we study the design of control laws for regulating a linear system to the origin, called the stabilization
problem. We confine ourselves to LTI systems of the form

ẋ(t) = Ax(t) +Bu(t)
x(0) = x0

(4.1)

and we assume that the full state vector x(t) is available for measurement. A natural control law for (4.1)
is to use linear state feedback of the form

u = Kx(t) . (4.2)

The closed-loop system under (4.2) is then

ẋ = (A+BK)x(t) , (4.3)

and the closed-loop response is completely determined by (A+BK), while the stability of the closed-loop
system as well as the rate of regulation of x to zero is determined by the eigenvalues of (A+BK), which
are called the poles of the closed-loop system. In particular, the system (4.3) is asymptotically stable if
and only if all eigenvalues of (A+BK) lie in Re s < 0. The immediate question that arises is: can we use
state feedback to arbitrarily assign the eigenvalues of A + BK for a given (A,B) pair? This problem of
finding K to achieve a prescribed set of eigenvalues is called the pole assignment problem.

To facilitate the subsequent discussion, let us first formulate the problem in a more precise form. The
eigenvalues of A + BK are just the roots of the characteristic polynomial of A + BK, which we denote
by pK(s) = det(sI −A−BK). pK(s) is a monic polynomial of degree n with real coefficients. Specifying
the poles of the closed-loop system to be λ1, ..., λn (where a complex λi is included if and only if its
complex conjugate λ∗

i is also included) is equivalent to specifying the nth degree monic polynomial with
real coefficients r(s) = (s − λ1)(s − λ2)...(s − λn). The pole assignment problem can be formulated as
follows.

Pole Assignment Problem Given an nth degree monic polynomial with real coefficients r(s), find a
matrix K such that pK(s) = det(sI −A−BK) = r(s).

In this chapter we give necessary and sufficient conditions for the solvability of the pole assignment problem
and give a constructive procedure for finding K.
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4.1 Single-Input Systems

First consider the pole assignment problem for single-input systems of the form ẋ = Ax+ bu. The control
law is of the form

u = kTx (4.4)

for some column vector k, with the closed-loop system given by

ẋ = (A+ bkT )x . (4.5)

The solution of this problem rests on two observations:

(i) The eigenvalues of A+ bkT are invariant under similarity transformation, i.e., det(sI−A) = det(sI−
T−1AT ). Let z(t) = T−1x(t), T nonsingular. Then

ż = T−1ATz + T−1bu . (4.6)

Suppose we solve the pole assignment problem for (4.6), i.e., for a given monic polynomial r(s) whose
roots appear in complex conjugate pairs, there exists a vector k1 such that

det(sI − T−1AT − T−1bkT1 ) = r(s) . (4.7)

Then since
det(sI − T−1AT − T−1bkT1 ) = det(sI −A− bkT1 T

−1) (4.8)

we find that the pole assignment problem for (4.4) is solved by taking

kT = kT1 T
−1 . (4.9)

(ii) We know how to solve the pole assignment problem if (A, b) is in controllable canonical form,

A = Ac =








0 1 · · · 0 0
...

. . .

0 0 · · · 0 1
−α0 −α1 · · · −αn−1







, b = bc =










0
0
...
0
1










.

For,

Ac + bcl
T =









0 1 0 ... 0
0 0 1 ... 0

... 1
l0 − α0 ... ln−1 − αn−1









, l =








l0
l1
...

ln−1








.

Thus
det(sI −Ac − bcl

T ) = sn + (αn−1 − ln−1)s
n−1 + ...+ (α1 − l1)s+ (α0 − l0)

which can be made into any monic nth degree r(s) with real coefficients, r(s) = sn+rn−1s
n−1+...+r0

by simply choosing

l =








α0 − r0
α1 − r1

...
αn−1 − rn−1








. (4.10)
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We can now put (i) and (ii) together. We know from the previous chapter that if (A, b) is controllable,
there exists a nonsingular transformation T such that (T−1AT, T−1b) = (Ac, bc) is in controllable canonical
form. Hence we have the following result.

Proposition 4.1.1. Assume (A, b) is controllable. Let the desired closed-loop characteristic polynomial be
given by r(s), a monic polynomial of nth degree with real coefficients. Then the following vector k solves
the pole assignment problem:

kT = [(α0 − r0) (α1 − r1)...(αn−1 − rn−1)]T
−1 (4.11)

where

T = [An−1b An−2b...b]










1 0 ... 0
αn−1 1 0 ... 0
...

0
α1 ... αn−1 1










(4.12)

and αi’s are the coefficients of the characteristic polynomial of A, (i.e. det(sI−A) = sn+αn−1s
n−1+...+α0).

4.2 Multivariable Systems

The pole assignment problem for a single-input controllable system is relatively straightforward, but the
pole assignment problem for multivariable systems is considerably harder. Interestingly, its solution relies
on the solution of the single-input case. The generalization rests on the following result, which takes
advantage of the invariance of controllability under state feedback.

Theorem 4.2.1. Let (A,B) be controllable, and let b1, ..., bm be the columns of the B matrix. For each i
such that bi 6= 0 there exists a m× n matrix Ki such that (A+BKi, bi) is controllable.

Proof. Without loss of generality, let i = 1. By controllability, the matrix

Q̃c = [b1 Ab1...A
n−1b1 b2...A

n−1b2...bm...An−1bm]

has rank n (Q̃c is obtained from Qc by reordering its columns which does not affect the rank). We now
look for the first n linearly independent columns in the matrix Qc, giving rise to a matrix U of the form:

U = [b1 Ab1...A
ν1−1b1 b2 Ab2...A

ν2−1b2...bm Abm...Aνm−1bm]

in which some of the bi’s may be missing (the corresponding νi = 0). By controllability

m∑

i=1

νi = n

We now associate the following matrix S with the above U matrix:

U = [b1 ... A
ν1−1

b1 b2... A
ν2−1

b2 . . . A
ν
m−1−1

bm−1 bm ...A
νm−1

bm ]

l l ν1 − th
column

l l (ν1 + ν2)th
column

l l (ν1 + ν2 + νm−1)th
column

l

S = [0 ...0 e2 0...0 e3 ... 0 em 0 ...0 ]

where ei is a m× 1 vector with the only nonzero element being 1 in the ith position.
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LetK1 = SU−1 orK1U = S. By the nonsingularity of U , such aK1 is well-defined. We claim (A+BK1, b1)
is controllable. For,

K1b1 = 0 K1b2 = 0 K1bm = 0
K1Ab1 = 0

...
... . . .

...
K1A

ν1−1b1 = e2 K1A
ν2−1b2 = e3 K1A

νm−1bm = 0

Thus

b1 = b1
(A+BK1)b1 = Ab1

(A+BK1)
ν1b1 = (A+BK1)A

ν1−1b1 = Aν1b1 +Be2 = Aν1b1 + b2
= b2 + lin. comb. of prev. columns

(A+BK1)
ν1+1b1 = (A+BK1)(A

ν1b1 + b2) = Ab2 + lin. comb. of prev. columns
(A+BK1)

ν1+...+νm−1b1 = Aνm−1bm + lin. comb. of prev. columns

Hence all the above vectors are linearly independent by definition of the νi’s, so that [b1 (A+BK1)b1...(A+
BK1)

n−1b1] is nonsingular. We conclude that

ẋ = (A+BK1)x+ b1v (4.13)

is controllable.

The pole assignment problem for the linear multivariable case has now been reduced to the single-input
case. The procedure is the following. Let ẋ = Ax+Bu be controllable with b1 6= 0. Construct K1 such that
(4.13) is controllable. Find k1 such that with v = kT1 x, (4.13) has the pre-assigned poles. The closed-loop
system is then

ẋ = (A+BK1 + b1k
T
1 )x

= [A+B(K1 + e1k
T
1 )]x (4.15)

(4.15) may thus be obtained by letting

u = Kx = (K1 + e1k
T
1 )x . (4.16)

4.3 Pole Assignability Implies Controllability

We have proved that controllability is sufficient for pole assignability. We now prove the converse so that
controllability is also necessary for pole assignability. Let λi, i = 1, ..., n be a set of n distinct real numbers,
none of which is an eigenvalue of A. By the assumption of pole assignability, there exists a K such that

(A+BK)xi = λixi

where xi are the eigenvectors associated with λi. Thus

(λiI −A)−1BKxi = xi i = 1, ..., n

But (λiI −A)−1 =
∑n−1

j=0 ρj(λi)A
j for some suitable functions ρj, j = 0, ..., n − 1. Hence

n−1∑

j=0

ρj(λi)A
jBKxi = xi i = 1, ..., n

The left hand side are elements in the range space of [B AB...An−1B]. By linear independence of xi, we
conclude R[B AB...An−1B] = n, i.e. (A,B) is controllable. Combining the above results, we have
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Theorem 4.3.1 (Pole Assigment). The closed-loop poles of (4.1) can be arbitrarily assigned if and only if
(A,B) is controllable.

4.4 Stabilizability

The results of the previous sections show that controllability is equivalent to pole assignability. In appli-
cations only a portion of the system may be controllable. We would like to see how this affects the ability
to assign poles of the closed-loop system. Recall from before that there exists a nonsingular matrix T such
that by letting z = T−1x, we can transform the system into

[
ż1
ż2

]

=

[
Ã11 Ã12

0 Ã22

] [
z1
z2

]

+

[
B̃1

0

]

u (4.17)

We see that the z2 component is decoupled from z1 and we have no control whatsoever over z2. Hence the
eigenvalues of Ã22 will be unchanged regardless of what feedback law we choose. On the other hand, since
(Ã11, B̃1) is controllable, by suitable choice of feedback

u = K̃z = K̃1z1 + K̃2z2

we can make Ã11 + B̃1K̃1 in the closed-loop system

ż =

[
Ã11 + B̃1K̃1 Ã12 + B̃1K̃2

0 Ã22

]

z

have any desired set of eigenvalues. Thus we see that we can, by feedback, modify at will q poles of the
closed-loop system, corresponding to those in Ã11, but n − q poles, corresponding to those in Ã22, will
remain fixed. The eigenvalues which can be modified by feedback are called controllable eigenvalues.

These considerations suggest the following definition, which describes a weaker property than pole assignabil-
ity.

Definition 4.4.1. The system (4.1) is said to be stabilizable if there exists a matrix K such that for
u = Kx, the closed-loop system (4.3) is stable.

It is evident from the decomposition (4.17) that a system is stabilizable if and only if Ã22 is (asymptotically)
stable. Informally, we have that: system (4.1) is stabilizable if and only if all the unstable modes are
controllable. Finally, a nice test for stabilizability based on the PBH test is discussed in the problem sets.

43



44



Chapter 5

Observability, Observers, and Feedback

Compensators

In the previous chapter we studied the design of state feedback laws using pole assignment. Such control
laws require the state to be measured. For many systems, we may only get partial information about the
state through the measured output. In this chapter, we shall study the property of observability and show
that whenever the system is observable, we can estimate the state accurately using an observer. The state
estimate can then be used to design feedback compensators.

5.1 Observability

Consider the linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (5.1)

y(t) = Cx(t) (5.2)

where y ∈ R
p is the output.

We assume that the only signals that are measured are the inputs u(t) and outputs y(t). Since the state
plays such an important role in control design, we want to know whether we can determine the state x(t)
from the input-output measurements on [0 t]. This motivates the following definition.

Definition 5.1.1. The system (5.1), (5.2) is said to be observable at time t if the state x(t) can be
determined from u(s), y(s) , 0 ≤ s ≤ t.

We can include a term Du(t) on the right hand side of (5.2). However, since we can consider y(t)−Du(t)
as a new known measurement, there is no loss of generality in assuming that D = 0. Since x(t) can
be determined once the initial state x0 and the inputs are known, the state determination problem is
equivalent to finding the initial state from input-output measurements. The system will not be observable
if the initial state cannot be determined from input-output measurements.

Definition 5.1.2. Two initial state vectors ξ and η are said to be indistinguishable at t if for the same
input u(s), 0 ≤ s ≤ t, the outputs corresponding to ξ and η are the same.

The system (5.1), (5.2) is observable if and only if there are no initial state vectors which are indistinguish-
able from each other. Now fix t. We define the observability Gramian Wo to be

Wo =

∫ t

0
eA

T τCTCeAτdτ . (5.3)
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Theorem 5.1.1 (Observability). The system (5.1), (5.2) is observable at time t if and only if the observ-
ability Gramian Wo is nonsingular.

Proof. First assume that Wo is nonsingular. The output is given by

y(t) = CeAtx0 +

∫ t

0
CeA(t−s)Bu(s)ds .

Let

ỹ(t) = y(t)−
∫ t

0
CeA(t−s)Bu(s)ds .

Then

CeAτx0 = ỹ(τ) , 0 ≤ τ ≤ t .

Multiplying both sides of (5.1) by eA
T τCT and integrate from 0 to t gives

Wox0 =

∫ t

0
eA

T τCT ỹ(τ)dτ . (5.4)

Since Wo is nonsingular, we can invert (5.4) to obtain x0:

x0 = W−1
o

∫ t

0
eA

T τCT ỹ(τ)dτ .

Now suppose Wo is singular. There exists a nonzero vector v such that Wov = 0. This in turn implies that
vTWov = 0, from which we find

CeAτv = 0 , 0 ≤ τ ≤ t .

This means that for the input u = 0, the vectors v and 0 are indistinguishable initial conditions, both
giving rise to an output y = 0. Hence the system is not observable.

Since observability of the system depends only on the pair (C,A), we shall also say (C,A) is observable.
On comparing the observability Gramian for the pair (C,A) and the controllability Gramian for the pair
(A,B), we see that they are very similar in form. In particular, if we make the correspondence

AT ←→ A
CT ←→ B

then we have changed the observability Gramian into the controllability Gramian. Using this correspon-
dence, the following result is immediate.

Theorem 5.1.2 (Duality Theorem). (C,A) is observable if and only if (AT , CT ) is controllable.

Let us define the observability matrix Qo as

Qo =








C
CA
...

CAn−1








.

From the duality theorem, we can immediately deduce the following algebraic criterion for observability:
(C,A) is observable if and only if Rank(Qo) = n. Equivalently, (C,A) is observable if and only if N (Qo) =
{0}.
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5.2 Full State Observers

In the previous chapter, we saw how stabilizing control laws can be designed using pole placement whenever
the state is available. For many systems, the state is not available for measurement. We know that for
the system (5.1), (5.2), the initial state, and hence the state trajectory, can in principle be determined
if (C,A) is observable. However, the procedure involves integration and inversion of a matrix which is
ill-conditioned. An alternative, more robust and practical approach to estimate the state is desired.

A natural approach for designing a state estimator is suggested by the following idea. If we build a duplicate
of system (5.1), in general, as the initial conditions would not match, the outputs of the two systems would
be different, but the error might be used as a feedback signal to improve the state estimation. Specifically,
we seek an estimator of the form

˙̂x = Ax̂+Bu+ L(y − ŷ) , x̂(0) = x̂0 (5.5)

ŷ = Cx̂

where x̂0 can be arbitrarily chosen (often taken to be 0). The error in the state estimate, defined as
e = x− x̂, is governed by the equation

ė = (A− LC)e , e(0) = x0 − x̂0 . (5.6)

Observe that if the eigenvalues of A − LC all lie in the left half plane, then regardless of e(0), e(t) → 0
exponentially and the goal of accurate state estimation is achieved. The question of the speed of convergence
of x̂ to x is precisely the dual of the pole assignment problem.

Theorem 5.2.1. There exists an n × p matrix L such that det(sI − A + LC) = r(s), where r(s) is any
nth degree monic polynomial with real coefficients, if and only if (5.1), (5.2) is observable.

Proof. By duality, (C,A) is observable if and only if (AT , CT ) is controllable. By the pole assignment
theorem, this is equivalent to the existence of a matrix LT such that det(sI − AT + CTLT ) is any pre-
assigned monic polynomial. Since det(sI −AT + CTLT ) = det(sI −A+ LC), the result follows.

The state estimator (5.5) is called a full state observer. Its dimension is equal to n. However it is not hard
to see that there is redundancy in the observer design. Indeed, the output y measures exactly a part of
the state so that we really only need to estimate the remaining part. This leads to the idea of minimal
order observers or reduced order observers.

5.3 Minimal Order Observers

We assume that the matrix C is of full rank p and that a basis has been chosen so that

C = [Ip 0] , Ip the p× p identity matrix

There is no loss of generality in making these assumptions. Partition x =

[
x1
x2

]

so that y = x1. Partition

A and B correspondingly. Equation (5.1) can then be written as

ẋ1 = A11x1 + A12x2 + B1u

ẋ2 = A22x2 + A21x1 + B2u .

Then we have
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Lemma 5.3.1. The system ẋ = Ax+Bu, y = Cx is observable if and only if ẋ2 = A22x2 + v, w = A12x2
is observable.

Proof. Since x1 and u are known exactly, we may write (5.1) as

ẋ1 −A11x1 −B1u
︸ ︷︷ ︸

w

= A12x2 (5.7)

ẋ2 = A22x2 + A21x1 +B2u
︸ ︷︷ ︸

v

. (5.8)

The lemma now follows from the definition of observability.

The same result can be proved more formally using the PBH test.

To estimate x2, we imitate the development in the previous section to write

˙̂x2 = A22x̂2 +A21x1 +B2u+ L(A12x2 −A12x̂2) . (5.9)

Then the estimation error e2 = x2 − x̂2 will satisfy

ė2 = (A22 − LA12)e2 .

By observability, the eigenvalues of A22 − LA12 may be pre-assigned. Notice that (5.9) on the surface
would have to be implemented in the form

˙̂x2 = A22x̂2 + A21x1 + B2u + L(ẋ1 −A11x1 −B1u−A12x̂2)

which calls for differentiating x1 = y. This problem is removed by writing

z = x̂2 − Lx1 .

Then z satisfies the equation

ż = (A22 − LA12)z + (A22 − LA12)Ly + (A21 − LA11)y + (B2 − LB1)u .

The state estimate is then given by

x̂ =

[
y

z + Ly

]

=

[
Ip 0
L In−p

] [
y
z

]

.

5.4 Feedback Compensation

Suppose we would like to use feedback to control system (5.1). A natural approach is to separate the task
of state estimation and control: first estimate the state using an observer, then use the state estimate,
instead of the actual state, in the feedback controller. This suggests the closed loop control law given by

u = Kx̂ (5.10)

where
˙̂x = Ax̂ + Bu + L(y − Cx̂) (5.11)

in the full observer case. The closed loop system is given by

d

dt

[
x
e

]

=

[
A+BK −BK

0 A− LC

] [
x
e

]

(5.12)
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Note that the poles of the closed loop system are exactly the union of the eigenvalues of A + BK and
A−LC, which may be pre-assigned if controllability of (A,B) and observability of (C,A) holds. This fact
is called the separation principle and it is one of the most useful results of linear system theory. In the
case of the minimal order observer, we have

ż = Fz + Gu + Hy

x̂ = M

[
y
z

]

with

x̂1 = y = x1

Again, we have

ė2 = Fe2

where the eigenvalues of F may be pre-assigned if (C,A) is observable. Hence, if we put u = Kx̂, we find,
on partitioning K = [K1 K2]

u = K1x̂1 +K2x̂2 = K1x1 +K2x̂2

= Kx−K2e2

The closed loop system is then

ẋ = (A+BK)x − BK2e2

ė2 = Fe2

Again, the closed loop system may take any pre-assigned set of poles provided (A,B) is controllable and
(C,A) is observable.

Note that the controller is of the output feedback form. On substituting the control law (5.10) into (5.11),
we obtain

˙̂x = (A+BK − LC)x̂+ Ly . (5.13)

So the control law (5.10) can be described as the output of the system (5.13) driven by the measured
system output y.

Example 5.4.1.

As an example, consider the problem of designing a compensator for the system with transfer function
1

s(s+1) , so that all states of the closed loop system are regulated to zero with transients decaying at least at

the rate of e−2t. We would like to accomplish this using the feedback compensator design with a minimal
order observer

Since we require a decay rate of at least e−2t, the closed loop poles must have real part ≤ −2. Also, the
dimension of the minimal order observer is 1, so that the closed loop characteristic polynomial must have
degree 3 and whose roots must have real part ≤ −2. To be specific, let us choose the desired closed loop
characteristic polynomial r(s) to be (s+ 2)3. This will now be the compensator design specification.

The design is accomplished by the following steps.
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1
s(s+1)

-

F (s)

1. State space realization of the open loop transfer function: To simplify the design procedure, we can
choose a convenient realization such as the controllable canonical form. This gives the following
realization for the transfer function 1

s(s+1)

ẋ =

[
0 1
0 −1

]

x+

[
0
1

]

u

y = [1 0]x

2. State feedback design: We design a feedback law so that if the state were actually available for
measurement, the design specifications would be met. In this case, we want to find a vector k so that
the control law u = kTx results in two closed loop poles at -2. Thus k should be chosen to achieve

det(sI −A− bkT ) = r1(s) = (s+ 2)2 = s2 + 4s+ 4

Since the system is in controllable canonical form, k is obtained immediately

k =

[
−4
−3

]

3. Minimal order observer design: Since x2 is not available for measurement, we design an observer to
estimate x2. The dynamics of the observer should given an error system with a pole at -2 to meet
the design specifications. Now (1) may be written more explicitly as

ẋ1 = x2

ẋ2 = −x2 + u

Thus the minimal order observer is

˙̂x2 = −x̂2 + u + L(ẋ1 − x̂2)

= −(1 + L)x̂2 + u + Lẋ1

This determines L = 1. Defining z = x̂2 − x1 = x̂2 − y, we get

ż = −2x̂2 + u = −2z − 2y + u (5.14)

x̂2 = z + y (5.15)

4. Compensator design: On putting parts (2) and (3) together, we obtain the following controller

u = −4y − 3x̂2 = −7y − 3z

with z satisfying (5.14).
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The compensator transfer function F (s) can be obtained as follows. From (5.14) and (4),

sẑ(s) = −5ẑ(s) − 9ŷ(s)

so that
ẑ(s)

ŷ(s)
= − 9

s+ 5

Hence

û(s) = −F (s)ŷ(s) = −7ŷ(s) +
27

s+ 5
ŷ(s)

= − 7s+ 8

s+ 5
ŷ(s)

The closed loop system is given by

1
s(s+1)

-

7s+8
s+5

y
u

with transfer function
1

s(s+1)

1 + 1
s(s+1)

7s+8
s+5

=
s+ 5

s3 + 6s2 + 12s+ 8
=

s+ 5

(s + 2)3

5.5 Detectability

There is a property for (C,A) which is analogous to the property of stabilizability for (A,B).

Definition 5.5.1. A pair (C,A) is said to be detectable if there exists a matrix L such that A − LC is
stable.

Since the eigenvalues of A − LC are the same as those of (A − LC)T = AT − CTLT , we immediately see
that (C,A) is detectable if and only if (AT , CT ) is stabilizable. Thus all properties about detectability can
be inferred from those of stabilizability. In particular, to ensure that the state estimation error converges
to 0, we really only need detectability of (C,A). However, we would then not be able to guarantee that
the error goes to 0 at a certain rate.

5.6 Observable Canonical Form

The pair (C,A) is said to be in observable canonical form iff (AT , CT ) is in controllable canonical form.
Suppose we have a single output system which is complete observable. Then we can apply the coordinate
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transformation of Theorem 3.5.1 to put (AT , cT ) in controllable canonical form. The result is observable
canonical form given by

A =








0 0 · · · 0 −α0

1 0 · · · 0 −α1
...

. . .
...

0 · · · 0 1 −αn−1 .








c = [0 · · · 0 1] .

It is easy to verify that the observability matrix for this pair (c,A) always has rank n, regardless of the
values of the coefficients αj . This form does not have the usefulness of controllable canonical form, so it is
not further discussed.

5.7 Kalman Decomposition

A system can be decomposed both with respect to controllability and observability, and this is called a
Kalman decomposition. Suppose we have determined that neither R(Qc) nor N (Qo) are trivial subspaces.
We define a set of subspaces as follows:

1. Define X2 = R(Qc) ∩ N (Qo), the controllable, unobservable subspace.

2. Set X1 to be the complementary subspace of X2 in R(Qc); that is, X1 ⊕ X2 = R(Qc).

3. Set X4 to be the complementary subspace of X2 in N (Qo); that is, X4 ⊕ X2 = N (Qo).

4. Let X3 be a complement of X1 ⊕ X2 ⊕ X3; that is, X1 ⊕ X2 ⊕ X3 ⊕ X4 = R
n.

Let T be the matrix whose columns are the basis vectors of these subspaces (in numerical order). Then

A = T−1AT, B = T−1B, C = CT

gives

A =







Aco 0 A13 0
A21 Aco A23 A24

0 0 Aco 0
0 0 A43 Aco







, B =







Bco

Bco

0
0







.

C = [Cco 0 Cco 0] .

Lemma 5.7.1. The system
ẋ = Ax+Bu , y = Cx+Du

and the system
ż = Acoz +Bcou , y = Ccoz +Du

have the same transfer matrix.

The system (Aco, Bco, Cco,D) has the minimum state dimension of all input-output equivalent state models.
For that reason it is called the minimal realization of the transfer matrix. The dimension of this system is
dim(R(Qc))− dim(R(Qc) ∩ N (Qo)).
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Chapter 6

Linear Quadratic Optimal Control

In this chapter, we study a different control design methodology, based on optimization. Control design
objectives are formulated in terms of a cost criterion. An optimal control law is one that minimizes the
cost criterion. One of the most successful results of linear control theory is that if the cost criterion is
quadratic and the optimization is over an infinite horizon, the resulting optimal control law is a linear
feedback with many nice properties, including closed loop stability. These results are intimately connected
to the system theoretic properties of stabilizability and detectability.

6.1 Optimal Control Problem

Consider the linear system in state space form

ẋ = Ax+Bu , x(0) = x0 . (6.1)

We define the class of admissible controls U to be of the form u = φ(t) such that the following conditions
are satisfied: (i) φ is a continuous function, (ii) the closed loop system has a unique solution, and (iii) the
closed loop system results in limt→∞ x(t) = 0. The control objective is to find, in the class of admissible
controls a control law that minimizes the cost function

J(x0, φ) =

∫ ∞

0

[
xT (t)Qx(t) + φT (t)Rφ(t)

]
dt , (6.2)

where Q is a symmetric positive semidefinite matrix and R is a symmetric positive definite matrix. We have
indicated explicitly the dependence of the cost criterion on the initial condition and the choice of control
law. We refer to the control problem as the linear quadratic optimal control problem and the control law
which solves this optimization problem is the optimal control.

We can interpret the cost criterion as follows. Since Q is positive semidefinite, xT (t)Qx(t) ≥ 0 and
represents the penalty incurred at time t for state trajectories that deviate from 0. Similarly, since R
is positive definite, φT (t)Rφ(t) > 0 unless φ(t) = 0. It represents the control effort at time t in trying
to regulate x(t) to 0. The entire cost criterion reflects the cumulative penalty incurred over the infinite
horizon. The admissible control requirement (iii) ensures that state regulation occurs as t → ∞. The
choice of the weighting matrices Q and R reflects the tradeoff between the requirements of regulating the
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state to 0 and minimizing the control effort. For example, a diagonal matrix

Q =











q1 0 0 · · · 0
0 q2 0 · · · 0

0 0
. . . · · · 0

... · · · · · · . . .
...

0 · · · · · · · · · qn











gives the quadratic form

xT (t)Qx(t) =
n∑

i=1

qix
2
i (t) .

The relative magnitudes of qi’s indicate the relative importance that the designer attaches to xi(t) being
away from 0.

To ensure the control problem is well-posed, we make the following standing assumption throughout this
chapter: (A,B) is stabilizable. By stabilizability, there exists a feedback gain K such that the closed loop
system

ẋ = (A+BK)x (6.3)

is stable. The feedback law u = Kx is clearly admissible. The solution of (6.3) is x(t) = e(A+BK)tx0,
satisfying condition (ii). The cost function is given by

J(x0,Kx) = xT0

∫ ∞

0
e(A+BK)T t(Q+KTRK)e(A+BK)tdtx0

which is finite. Hence the optimization problem is well-posed.

6.2 Dynamic Programming

To solve the optimal control problem, we use dynamic programming. Define the instantaneous cost

L(x, u) = xTQx+ uTRu .

For the initial state x0 = x, define the optimal cost or value function

V (x) = inf
φ∈U

J(x, φ)

where inf denotes infimum or the greatest lower bound. If the minimum is achieved using some control
law φ, the infimum is then actually the minimum. Note that we have used the variable x as the argument.
We shall derive a differential equation for V (x).

We argue intuitively as follows. Suppose we consider the control as being applied first over an interval
[0 τ ] and then over [τ ∞]. Let u(t), 0 ≤ t ≤ τ be the control applied over [0 τ ], leading to the state
x(τ) at time τ . It is intuitively clear that in order for the system to have optimal behaviour over [0 ∞),
regardless of what its behaviour over [0 τ ] is, the system must behave optimally from τ onwards. Such
optimal behaviour over [τ ∞) gives the cost V (x(τ)), so that the total cost is given by

J =

∫ τ

0
L(x(t), u(t))dt + V (x(τ)) .

Since u(t) is arbitrary, the optimal cost satisfies the equation

V (x) = min
u(t),0≤t≤τ

[∫ τ

0
L(x(t), u(t))dt + V (x(τ))

]

. (6.4)
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For small τ , we can perform an expansion of (6.4) in terms of τ . We use the notation o(τ) to denote a

quantity that has the property o(τ)
τ
→ 0 as τ → 0. First we approximate the integral by

∫ τ

0
L(x(t), u(t))dt = τL(x, u) + o(τ) .

Then we obtain

V (x(τ)) = V (x) + τ
∂V

∂x
(x)(Ax +Bu) + o(τ) ,

where ∂V
∂x

is the gradient of V with respect to x (a 1 × n row vector). Substituting into (6.4), we obtain
the Hamilton Jacobi Bellman (HJB) equation for V : satisfied by V (x)

min
u∈Rm

{
∂V

∂x
(x)(Ax +Bu) + L(x, u)

}

= 0 . (6.5)

To determine the minimizing element u in (6.5), we observe that, if R > 0, we can complete the square in
the following quadratic form

uTRu+ 2αTu+ β = (u+R−1α)TR(u+R−1α) + β − αTR−1α

so that
min
u

(uTRu+ 2αTu+ β) = β − αTR−1α

with the minimizing u given by
u = −R−1α .

Using these results in (6.5), we see that the minimizing u for (6.5) is

u = −1

2
R−1BT ∂V

∂x
(x) , (6.6)

resulting in the equation

∂V

∂x

T

(x)(Ax) + xTQx− 1

4

∂V

∂x
(x)BR−1BT ∂V

∂x

T

(x) = 0 . (6.7)

To solve (6.7), we use the trial solution
V (x) = xTPx

for some P ≥ 0. Note that

∂

∂xk
(xTPx) =

∂

∂xk

n∑

i,j=1

xiPijxj

=
∑

j

Pkjxj +
∑

i

xiPik

= (Px)k + (P Tx)k

= 2(Px)k .

Substituting into (6.7), we get

xT (ATP + PA− PBR−1BTP +Q)x = 0 .

Since this is true for all x, P must satisfy the matrix quadratic equation

ATP + PA− PBR−1BTP +Q = 0 . (6.8)
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Equation (6.8) is called the algebraic Riccati equation, and is one of the most famous equations in linear
control theory.

In terms of P , the minimizing u would be given by

u = −R−1BTPx (6.9)

so that this would be our candidate for the optimal control law. To establish that this is indeed the optimal
control law, we have to verify that the control law (6.9) is admissible, and that J(x0, φ) is minimized using
φ(x(t)) = −R−1BTPx(t). We make use of the following fundamental result, whose proof may be found in
W.M. Wonham, Linear Multivariable Control: A Geometric Approach.

Theorem 6.2.1 (Riccati). Assume (A,B) is stabilizable, and (
√
Q,A) is detectable. Then there exists a

unique solution P , in the class of positive semidefinite matrices, to the algebraic Riccati equation (6.8).
Furthermore, the closed-loop system matrix A−BR−1BTP is stable.

Armed with this theorem, we see immediately that if (A,B) is stabilizable, and (
√
Q,A) is detectable,

the control law (6.9) will be admissible as it is stabilizing. We now verify that it is optimal, again by
completion of squares. For any admissible u,

J(x0, u) =

∫ ∞

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt

=

∫ ∞

0

[
xT (t)PBR−1BTPx(t) + uT (t)Ru(t)− xT (t)(ATP + PA)x(t)

]
dt

=

∫ ∞

0

[
(u(t) +R−1BTPx(t)]TR[(u(t) +R−1BTPx(t)

]
dt

−
∫ ∞

0

[
uT (t)BTPx(t) + xT (t)PBu(t) + xT (t)ATPx(t) + xT (t)PAx(t)

]
dt

=

∫ ∞

0

[
[(u(t) +R−1BTPx(t)]TR[(u(t) +R−1BTPx(t)]− ẋT (t)Px(t)− xT (t)Pẋ(t)

]
dt

=

∫ ∞

0
[(u(t) +R−1BTPx(t)]TR[(u(t) +R−1BTPx(t)]−

∫ ∞

0

d

dt
(xT (t)Px(t))dt

= xT0 Px0 +

∫ ∞

0
[(u(t) +R−1BTPx(t)]TR[(u(t) +R−1BTPx(t)]dt .

Since xT0 Px0 is a constant unaffected by choice of u, and since u = −R−1BTPx is admissible and R > 0,
it is clear that the optimal control law is indeed given by

u(t) = −R−1BTPx(t)

with the optimal cost given by
V (x) = xTPx . (6.10)

Theorem 6.2.1 is a deep result. The algebraic Riccati equation is a quadratic matrix equation. As such,
it may have no positive semidefinite solutions, or even real solutions. It may also have an infinite number
of solutions. However, under verifiable system theoretic properties of stabilizability and detectability, a
unique positive semidefinite solution is guaranteed and it also gives the optimal control. We therefore have
a complete solution to the optimal control problem.

Note that the conditions of stabilizability and detectability are sufficient conditions for the existence and
uniqueness of solution of (6.8). Stabilizability is clearly necessary for the solution of the optimal control
problem, as has already been mentioned. Without stabilizability, the class of admissible control laws would
be empty. It is of interest to examine what can happen if detectability fails. We illustrate with several
examples.
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Example 6.2.1.

Consider the system
ẋ = u

with cost criterion

J(x0, u) =

∫ ∞

0
u2(t)dt .

Here Q = 0 and (
√
Q,A) is not detectable. The solution to the algebraic Riccati equation is P = 0.

However the resulting control law u = 0 is not admissible, even though it gives J = 0, since x(t) 6→ 0 as
t→∞. Now consider the admissible control law φǫ(x) = −ǫx for ǫ > 0. This gives the closed loop system

ẋ = −ǫx

with the solution x(t) = e−ǫtx0. The corresponding cost is

J(x0, φǫ(x)) =

∫ ∞

0
ǫ2e−2ǫtx20dt =

ǫx20
2

.

J(x0, φǫ(x)) can be made arbitrarily small by decreasing ǫ. However, infφ J(x0, φ) = 0 cannot be attained
with any admissible control. Hence the optimal control does not exist, although there is a unique positive
semidefinite solution to the algebraic Riccati equation.

Example 6.2.2.

Consider the system
ẋ = x+ u

with cost criterion

J(x0, u) =

∫ ∞

0
u2(t)dt .

Here Q = 0 and (
√
Q,A) is not detectable. The algebraic Riccati equation is given by

2P − P 2 = 0

so that there are 2 positive semidefinite solutions, 0 and 2. Once again, the solution P = 0 results in
the control law u = 0, which is not admissible. On the other hand, P = 2 results in u = −2x, which
is stabilizing and hence admissible. Therefore the optimal control is given by u = −2x, even though the
solution to the algebraic Riccati equation is not unique.

Example 6.2.3 (Double Integrator).

Consider the system ÿ = u with cost criterion

J =

∫ ∞

0
[y2(t) + ru2(t)]dt , r > 0 .

A state space representation of this system is

ẋ =

[
0 1
0 0

]

x+

[
0
1

]

u

y =
[
1 0

]
x .

The cost function can be rewritten as

J =

∫ ∞

0
[xT (t)Qx(t) + ru2(t)]dt
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where Q =

[
1 0
0 0

]

. It is easy to verify that (
√
Q,A) is detectable, and that (A,B) is stabilizable. We

proceed to solve the algebraic Riccati equation. Let P =

[
p1 p2
p2 p3

]

, where we have explicitly used the

fact that P is symmetric. The elements of P satisfy the following equations:

−1

r
p22 + 1 = 0

p1 −
1

r
p2p3 = 0

2p2 −
1

r
p23 = 0 .

The first gives the solutions p2 = ±√r. The third equation gives p3 = ±(2rp2)
1

2 . This implies p2 =
√
r.

Furthermore, for P to be positive semidefinite, all its diagonal entries must be nonnegative. Hence p3 =√
2r

3

4 . Finally, p1 =
1
r
p2p3 =

√
2r

1

4 so that

P =

[ √
2r

1

4

√
r√

r
√
2r

3

4

]

.

P is in fact positive definite since P11 > 0 and detP > 0 (these are the necessary and sufficient conditions
for a 2x2 matrix to be > 0).

The optimal closed loop system is given by

ẋ = (A−BR−1BTP )x

=

([
0 1
0 0

]

−
[
0
1

]
1

r

[ √
r
√
2r

3

4

])

x

=

[
0 1

−r− 1

2 −
√
2r−

1

4

]

x .

The poles of the closed loop system are given by the roots of the polynomial s2 +
√
2r−

1

4 s+ r−
1

2 . This is
in the form of the standard second order system characteristic polynomial s2+2ζω0s+ω2

0, with ω0 = r−
1

4 ,
and ζ = 1√

2
. The damping ratio of 1√

2
of the optimal closed loop system is often referred to as the best

compromise between small overshoot and good speed of response, and it is independent of r. For a fixed
damping ratio, the larger the natural frequency ω0, the faster the speed of response (recall that the peak
time is inversely proportional to ω0). Thus, we see that if r decreases, the speed of response becomes faster.
Since a small r implies small control penalty and hence allows larger control inputs, this behaviour gives
a good interpretation of the role of the quadratic weights in the cost criterion.

Example 6.2.4 (Servomotor).

Consider the servomotor system given by the transfer function

y(s) =
1

s(s+ 1)
u(s)

A state space representation of this system is

ẋ =

[
0 1
0 −1

]

x+

[
0
1

]

u .

y =
[
1 0

]
x .
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The cost function is

J =

∫ ∞

0
[y2(t) + ru2(t)]dt =

∫ ∞

0
[xT (t)Qx(t) + ru2(t)]dt ,

where Q =

[
1 0
0 0

]

, and r > 0. Again, it is easy to verify that (
√
Q,A) is detectable, and that (A,B) is

stabilizable. We proceed to solve the algebraic Riccati equation. Let P =

[
p1 p2
p2 p3

]

. The elements of P

satisfy the following equations:

−1

r
p22 + 1 = 0

p1 − p2 −
1

r
p2p3 = 0

2(p2 − p3)−
1

r
p23 = 0 .

Solving these equations, we get

p2 =
√
r

p3 = r

√

1 + 2r−
1

2 − r

p1 =

√

r + 2r
1

2 ,

so that

P =





√

r + 2r
1

2

√
r

√
r r

√

1 + 2r−
1

2 − r



 .

The optimal closed loop system matrix is given by

A−BR−1BTP =

[
0 1
−1

r
p2 −1− 1

r
p3

]

=

[
0 1

−r− 1

2 −
√

1 + 2r−
1

2

]

.

The characteristic polynomial of the closed loop system is given by s2 +

√

1 + 2r−
1

2 s + r−
1

2 , with poles

located at
−
√

1 + 2r−
1

2 ±
√

1− 2r−
1

2

2
.

6.3 Detectability and Closed Loop Stability

While the complete proof of Theorem (6.2.1) is beyond the scope of this course, we can give an indication
of the role played by detectability on closed loop stability. We first consider the Lyapunov equation

ATP + PA+Q = 0 . (6.11)

Pre-multiplying by eA
T s, post-multiplying by eAs, and integrating from 0 to t, we get, for each t,

P = eA
T tPeAt +

∫ t

0
eA

T sQeAsds (6.12)
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(6.12) is not a solution to (6.11) since P appears on both sides of (6.12); it is merely an alternative
representation for P . However, if A is stable, by letting t→∞, we get the solution

P =

∫ ∞

0
eA

T sQeAsds

We now discuss the converse result. Let Q ≥ 0, and set

Q(t) =

∫ t

0
eA

T sQeAsds .

Suppose there is a solution P ≥ 0 to the Lyapunov equation (6.11). From (6.12), we get that 0 ≤ Q(t) ≤ P ,
so that Q(t) is bounded as t→∞. Here is where detectability comes in.

Lemma 6.3.1. Assume (
√
Q,A) is detectable. Then boundedness of Q(t) implies A is stable.

Proof. First note that according to the PBH test, detectability is equivalent to the following: For any µ

which is an eigenvalue of A with Reµ ≥ 0,

[ √
Q

A− µI

]

v = 0 if and only if v = 0. Now suppose Q(t) is

bounded but that A is unstable. There exists an eigenvalue µ of A with Reµ ≥ 0, and with corresponding
eigenvector v. Let v∗ denote the conjugate transpose of the vector v. Then

v∗Q(t)v =

∫ t

0
v∗eA

T sQeAsvds

=

∫ t

0
v∗eµ

∗sQeµsvds

=

∫ t

0
e2(Re µ)sdsv∗Qv .

The only way that v∗Q(t)v can be bounded is v∗Qv = 0. But then this gives

[ √
Q

A− µI

]

v = 0

for a nonzero v, which contradicts the assumption of detectability. This proves A is stable.

Combining the above discussion, we see that if Q ≥ 0 and (
√
Q,A) is detectable, then a solution P ≥ 0 to

the Lyapunov equation (6.11) exists if and only if A is stable. Now rewrite the algebraic Riccati equation
in the following form

(A−BR−1BTP )TP + P (A−BR−1BTP ) + PBR−1BTP +Q = 0 (6.13)

Putting F = A−BR−1BTP , (6.13) can be written as

F TP + PF + PBR−1BTP +Q = 0 (6.14)

This is almost in the form of the lemma, except that detectability would involve (
√

Q+ PBR−1BTP ,F ),
which is not the detectability assumption of Theorem 6.2.1. However, we make use of the following result
on detectability: For any K and R > 0, (

√
Q,A) is detectable if and only if (

√
Q+KRK,A − BK) is

detectable. So putting K = R−1BTP , we see that F = A− BK and
√

Q+ PBR−1BTP =
√
Q+KRK,

and we can conclude that (
√
Q,A) is detectable if and only if (

√

Q+ PBR−1BTP ,F ) is detectable. Hence
the existence of a positive semidefinite solution P to the algebraic Riccati equation, equivalently to (6.14),
guarantees F = A−BR−1BTP is stable.
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6.4 An Optimal Observer

From the results on observers in Chapter 5, we know that pole placement in state feedback control has a
dual problem of pole placement of observer error dynamics. Since linear quadratic optimal control produces
an optimal state feedback law, it is natural to ask if there is a corresponding optimal observer. To formulate
the problem precisely requires the introduction of stochastic processes and estimation theory. We shall
only discuss the construction of an “optimal” observer purely by analogy.

Consider a full order observer given by the equation

˙̂x = Ax̂+Bu+ L(y − Cx̂)

y = Cx .

The estimation error e = x − x̂ satisfies the equation ė = (A − LC)e. If we think in terms of an optimal
feedback law LT to place the poles of AT−CTLT , we would be in an analogous situation as linear quadratic
optimal control. If we proceed formally, we can identify AT as the counterpart of A in linear quadratic
optimal control, and CT as the counterpart of B. Although there is no obvious analogues of Q and R
matrices, let us take a matrix W ≥ 0 to correspond to Q, and a matrix V > 0 to correspond to R. Then
the feedback gain LT should correspond to

LT = V −1CP

or
L = PCTV −1 (6.15)

where P should satisfy the Riccati equation

AP + PAT − PCTV −1CP +W = 0 . (6.16)

The resulting observer, given by

˙̂x = Ax̂+Bu+ PCTV −1(y − Cx̂) (6.17)

where P satisfies (6.16) indeed has optimality properties. It is called the steady state Kalman filter. In
terms of the Kalman filter, the matrix W has the interpretation of the intensity of the additive white noise
w driving the system

ẋ = Ax+Bu+ w .

The matrix V has the interpretation of the intensity of the additive white sensor noise v in the observation
equation

y = Cx+ v .

By the results of the control Riccati equation, we can immediately conclude that if (C,A) is detectable
and (A,

√
W ) is stabilizable, the Kalman filter matrix A− PCTV −1C is stable, and the poles of the error

dynamics will be “optimally” placed. Naturally, we can use the steady state Kalman filter in combination
with linear quadratic optimal control to design an output feedback controller based on the separation
principle. The resulting controller

u = −R−1BTPcx̂ (6.18)

where Pc satisfies the control algebraic Riccati equation (6.8), is called the linear-quadratic-Gaussian (LQG)
controller. It has certain optimality properties, the detailed exposition of which is beyond the scope of this
course.
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Chapter 7

Output Regulation

In this chapter we extend the pole placement, observer-based output feedback design to solve tracking
problems. By tracking we mean that the output is commanded to track asymptotically a desired reference
trajectory. We will examine several variants of the problem. The simplest case is when there is full state
information and there are no disturbances affecting the system. The next case is when there is partial
state information, but the system is observable, and there are no disturbances. Applying the separation
principle, we can solve this problem using observer-based output feedback design. Also, we study a special
case when the reference trajectory to be tracked is a non-zero constant. Finally, the case when there are
disturbances will be addressed in the next chapter.

First, we look at several examples as motivation and to illustrate two issues that will be faced in designing
tracking controllers.

Example 7.0.1.

Suppose we want a small mobile robot to track a curve on the floor. We model the robot as a “kinematic
unicycle”, which is the simplest vehicle model that captures the no-sideslip constraint of wheeled vehicles.
If the curve is a circle whose radius is not too small, intuition suggests that it should be feasible to design
steering and velocity inputs to achieve the circular path exactly. If the initial condition of the robot is
not aligned with the circle, then one would design a feedback controller that makes the robot approach
the circular path asymptotically. Suppose instead that the path is a circle, combined with a straight line
path that emanates from the circle at a right angle. If we require the robot to follow this path with unit
speed, then because no vehicle can turn a right corner instantaneously, this path is infeasible. While exact
tracking is not possible, one may be able to find a controller that keeps the trajectory of the robot as
near as possible to the desired path. In summary, there are two issues in designing a tracking controller:
feasibility of exact tracking of the desired output and asymptotic convergence to the desired output.

Example 7.0.2.

Consider the linear system

ẋ =

[
0 −1
1 0

]

x+

[
0
1

]

u ,

and suppose we want this system to track a desired trajectory xd = (e−t, 0) which starts at initial condition
(1, 0) and ends at the origin. The first question to ask is: can the system track the desired trajectory
assuming that the initial condition is x(0) = (1, 0)? Second: can we design an asymptotic controller
that tracks the desired trajectory even if the initial condition is not (1, 0)? It is not difficult to see that
the system cannot achieve exact tracking of the desired trajectory because the closed loop system can
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never point to the left along the positive x1 axis for any control value. We would like to mathematically
formalize this observation to obtain checkable conditions on the feasibility of exact tracking. Once it is
determined that exact tracking can be achieved, we want a systematic procedure to design asymptotic
tracking controllers.

One case in which exact tracking is trivial is SISO systems in controllable canonical form. Consider the
system in Section 3.5. If we set

u = α0x1 + α1x2 + · · ·+ αn−1xn + v

where v ∈ R is a new input, then the system is converted to a chain of integrators with input v and output

y. In order to achieve exact tracking of a desired output yd(t) we simply require that v = y
(n)
d (t), i.e. v is

the nth time derivative of the desired output signal. Also initial conditions must match exactly; namely,

xi(0) = y
(i−1)
d (0), i = 1, . . . , n.

7.1 Output Regulation with Full State Information

Consider the linear system

ẋ = Ax+Bu

y = Cx . (7.1)

Let yd denote the desired signal for the output y(t) to track asymptotically. We assume yd 6= 0 and we
assume it is generated as the output of an exosystem given by

ẇ = Sw

yd = Cdw .

The vector w ∈ R
q is the state of the exosystem. The tracking error is

e = y − yd = Cx− Cdw .

The control objective is to design a feedback law u(t) = F1x+ F2w such that

(AS) (A+BF1) is stable, and

(R) e(t)→ 0 as t→∞.

The first requirement is that the closed loop system be stable when w = 0. The second requirement is that
regulation of the output is achieved. A controller that satisfies the above objectives is called a regulator.
In this section we make the following two assumptions:

• (A,B) is stabilizable.

• Both x and w are measurable.
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7.1.1 Exact Tracking

First we consider the question of feasibility of the exact tracking problem. This problem can be stated
as follows. Given the system (7.1) and a desired output yd(t) find a control u(t) and an initial condition
x(0) such that e(t) = 0, ∀t ≥ 0. We are interesting in studying this problem for theoretical interest and
not practical motivations. This problem can be seen as a necessary first step in solving the asymptotic
tracking problem.

Lemma 7.1.1. Suppose there exists u = F 2w, where F 2 ∈ R
m×q, and a map Π : Rq → R

n such that

ΠS = AΠ+BF 2 (7.2)

CΠ = Cd . (7.3)

If x(0) = Πw(0), then e(t) = 0 for all t ≥ 0.

Proof. Suppose there exists u = F 2w and Π such that (7.2)-(7.3) hold. Then define z = x−Πw. We have

ż = ẋ−Πẇ

= Ax+BF 2w −ΠSw

= Ax−AΠw +AΠw +BF 2w −ΠSw

= Az by (7.2) .

Since z(0) = 0 by assumption, the unique solution of ż = Az is z(t) = 0, for all t ≥ 0. That is, x = Πw for
all t ≥ 0. Then, using (7.3) we obtain

e(t) = Cx(t)− Cdw(t) = CΠz(t) + CΠw(t)− Cdw(t) = 0 .

The equations (7.2)-(7.3) are known as the regulator or FBI equations (after B. Francis, C. Byrnes, and
A. Isidori).

Based on the proof of Lemma 7.1.1 we define the tracking subspace T ⊂ R
q+n

T = {(x,w) | x−Πw = 0}.

If the regulator equations hold, then the tracking subspace is invariant under the closed loop dynamics.
That is, T is Acl-invariant where

Acl =

[
A BF 2

0 S

]

.

Lemma 7.1.1 shows that the regulator equations and proper choice of initial conditions are sufficient for
exact tracking. To what extent are the regulator equations also necessary for exact tracking? For this we
require some extra conditions.

Lemma 7.1.2. Assume that (C,A) is observable and eig(S) ∩ eig(A) = ∅. Also assume that (S,w(0)) is
controllable. Suppose that there exists an initial condition x(0) and a control u = F 2w, where F 2 ∈ R

m×q,
such that the closed-loop system satisfies e(t) = 0 for all t ≥ 0. Then there exists a map Π : Rq → Rn such
that (7.2)-(7.3) hold. Moreover x(0) = Πw(0).

Proof. Since eig(S) ∩ eig(A) = ∅, by Sylvester’s Theorem (Gantmacher, Theory of Matrices, vol. 1, p.
225) there exists a unique solution Π of (7.2). Define z(t) = x(t)−Πw(t). Using (7.2), we obtain ż = Az.
Now consider

e(t) = Cz(t) + (CΠ− Cd)w(t) = 0 , ∀t ≥ 0 .
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Since eig(S) ∩ eig(A) = ∅, we know Cz(t) = 0 and (CΠ − Cd)w(t) = 0, for all t ≥ 0. Since (C,A) is
observable, the first equation CeAtz(0) = 0 yields z(0) = 0, or x(0) = Πw(0), as desired. Next consider

(CΠ− Cd)e
Stw(0) = 0 , ∀t ≥ 0 .

By controllability of (S,w(0)), we obtain CΠ = Cd, which gives (7.3).

Example 7.1.1.

Consider again the example 7.0.2. We want to determine if the reference signal yd(t) = [ e−t 0 ]T is feasible.
First we observe that the signal is generated by an exosystem

ẇ = −w , w(0) = 1 , yd =

[
1
0

]

w = Cdw .

Next we check the regulator equations:

[
Π1

Π2

]

(−1) =
[
0 −1
1 0

] [
Π1

Π2

]

+

[
0
1

]

f2 .

[
1 0
0 1

] [
Π1

Π2

]

=

[
1
0

]

.

Simplifying, we obtain the equations

Π1 = Π2

−Π2 = Π1 + f2

Π1 = 1

Π2 = 0 ,

for which there is no solution. Finally, we can verify that (C,A) is observable and (S,w(0)) is controllable.
From Lemma 7.1.2 we conclude that the exact tracking problem is infeasible, as expected.

7.1.2 Asymptotic Tracking

The regulator equations tell us a relationship between x and w, namely x = Πw and a feedforward (open-
loop) control u = F 2w for exacting tracking of the desired output. What if x(0) 6= Πw(0)? To deal with
a mismatch in initial conditions we need a feedback correction term in the control. The modified control
for asymptotic tracking is:

u = F 2w + F1(x−Πw) , F1x+ F2w . (7.4)

Let C+ denote the closed right-half complex plane.

Lemma 7.1.3. Suppose that eig(S) ∈ C
+ and A = A+BF1 is Hurwitz. A regulator u = F 2w+F1(x−Πw)

exists if and only if there exist maps Π : Rq → R
n and F 2 : R

q → R
m satifying (7.2)-(7.3).
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Proof. (⇐=) Suppose there exist (Π, F 2) satisfying the regulator equations. Define z = x−Πw.

ż = ẋ−Πẇ

= Az + [AΠ+BF 2 −ΠS]w

= Az .

Since A is Hurwitz, z(t)→ 0. Then

y(t) = Cx = Cx− CΠw + CΠw

= Cz + yd .

Hence, y(t)− yd(t) = Cz → 0 as t→∞.

(=⇒) Since eig(S)∩eig(A = ∅, by Sylvester’s Theorem (Gantmacher, Theory of Matrices, vol. 1, p. 225),
there exists a unique solution Π satisfying

ΠS −AΠ = BF2 .

Letting F 2 = F2+F1Π, we obtain (7.2). As shown above, ż = Az. Hence z(t)→ 0 as t→∞. Also as above,
e(t) = Cz + (CΠ− Cd)w. By assumption e(t) → 0 and since z(t) → 0, it must be that (CΠ − Cd)w → 0
for all initial conditions w(0). Since eig(S) ∈ C

+, w(t) 6→ 0. Hence, CΠ = Cd.

Example 7.1.2.

Consider again the example 7.0.2, but with a less ambitious tracking problem. Suppose that y = x1 and
yd(t) = e−t. The exosystem is

ẇ = −w , w(0) = 1 , yd = w .

[
Π1

Π2

]

(−1) =
[
0 −1
1 0

] [
Π1

Π2

]

+

[
0
1

]

f2 .

[
1 0

]
[
Π1

Π2

]

= 1 .

We obtain Π1 = 1, Π2 = 1, and f2 = −2. For exact tracking we use u = −2w, and the initial conditions
are x1(0) = Π1w(0) = 1 and x2(0) = Π2w(0) = 1.

Next we design an asymptotic controller. Let u = −2w + F1(x − Πw), where F1 ∈ R
1×2. Since (A,B) is

controllable we can design F1 such that A+ BF1 has any desired closed-loop eigenvalues. If we want the
eigenvalues to be −1, −1 then F1 = [0− 2].

7.2 Special Case - Constant Reference Signals

While the tracking problem has been solved for much more general classes of reference inputs, in this
section we focus on constant step reference inputs. This is an important special case, since the most
common tracking problem is that of set point tracking. For convenience, we use yd(t) = yd to denote
the constant desired reference trajectory. Also, for simplicity, we shall assume that the number of inputs
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is equal to the number of outputs. Since yd 6= 0, the steady state value of x(t) cannot be 0. Also the
exosystem is ẇ = 0, with w(0) = 1, so the regulator equations are

0 = AΠ+BF 2

CΠ = yd .

Rearranging this equation we have

[
A B
C 0

] [
Π

F 2

]

=

[
0
yd

]

. (7.5)

By assumption of equal number of inputs and outputs,

[
A B
C 0

]

is a square matrix. Since we would like

to track any set point changes, yd is arbitrary. Equation (7.5) can be solved uniquely for

[
Π

F 2

]

if and

only if
[

A B
C 0

]

is nonsingular. (7.6)

Let us give an interpretation to condition (7.6). Suppose the input to (7.1) is given by eλtθ. For zero initial
conditions, the solution x(t) is given by eλtξ. Substituting into (7.1), we get the following equation

λξ = Aξ +Bθ . (7.7)

Suppose this input results in no output. Then we must also have

Cξ = 0 . (7.8)

In the single-input single-output case (i.e., θ is a scalar), this gives the condition

C(λI −A)−1B = 0 . (7.9)

Such a λ is therefore a zero of the transfer function

G(s) = C(sI −A)−1B

. For the multivariable case, we can combine equations (7.7) and (7.8) into

[
(A− λI) B

C 0

] [
ξ
θ

]

= 0 . (7.10)

(7.10) can be solved for nonzero

[
ξ
θ

]

if and only if

[
(A− λI) B

C 0

]

is not full rank . (7.11)

By analogy with the single-input single-output case, we call such a λ a transmission zero of the system.

From this discussion, we see that condition (7.6) corresponds to having no transmission zero at the origin.
We can now state the conditions for solvability of the tracking problem:

1. (A,B) stabilizable

2. The system (7.1) has no transmission zeros at 0 .
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If, in addition, (A,B) is in fact controllable, then the rate of convergence to 0 of the tracking error can be
pre-assigned.

Example 7.2.1.

Let

A =





0 1 0
0 0 1
0 24 −10



 B =





0
0
1



 C =
[
1 0 0

]

The characteristic polynomial of the plant is given by

det(sI −A) = s3 + 10s2 − 24s = s(s2 + 10s − 24) = s(s+ 12)(s − 2)

The transfer function is given by

G(s) =
1

s(s+ 12)(s − 2)

so that there are no transmission zeros at 0. To solve for the steady state values Π and F 2, we set







0 1 0 0
0 0 1 0
0 24 −10 1
1 0 0 0







[
Π

F 2

]

=







0
0
0
yd






.

Successively from the equation for each row, we see that Π2 = 0, Π3 = 0, F 2 = 0, and Π1 = yd. Note that
(A,B) is controllable. Suppose we choose the closed loop poles to be at −1, −1± i. This corresponds to
the desired characteristic polynomial

r(s) = (s2 + 2s + 2)(s + 1) = s3 + 3s2 + 4s+ 2 .

Since (A,B) is in controllable canonical form, we immediately obtain

F1 =
[
−2 −28 7

]
.

The asymptotic tracking controller is

u =
[
−2 −28 7

]





x1 − yd
x2
x3



 (7.12)

= 2(x1 − yd)− 28x2 + 7x3 . (7.13)

To determine the transfer function from the reference input yd(t) to the output y(t), first note that

A+BF1 =





0 1 0
0 0 1
0 24 −10



+





0 0 0
0 0 0
−2 −28 7





=





0 1 0
0 0 1
−2 −4 −3



 . (7.14)

Writing

u = F1(x−





1
0
0



 yd)
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we can write the closed loop system as

ẋ = (A+BF1)x−BF1





1
0
0



 yd

= (A+BF1)x+





0
0
2



 yd (7.15)

Noting that (7.15) is again in controllable canonical form, we can immediately write down the transfer
function from yd to y as

y(s) = C(sI −A−BF1)
−1





0
0
2



 yd(s)

=
[
1 0 0

]





1
s
s2





s3 + 3s2 + 4s+ 2
2yd(s)

=
2

s3 + 3s2 + 4s + 2
yd(s) . (7.16)

Since yd(s) =
yd
s

and the closed loop system is stable, the steady state value of y can be determined from
the final value theorem of Laplace transforms

lim
t→∞

y(t) = lim
s→0

2

s3 + 3s2 + 4s+ 2
yd

= yd

so that asymptotic tracking is indeed achieved. In this example, no additional feedforward control is needed
since there is a pole at the origin for the open loop plant. From classical control theory, we know that for
such (type-1) systems, asymptotic step tracking is guaranteed using unity feedback as long as the closed
loop system is stable. The state space formulation gives exactly this structure.

Example 7.2.2.

As another example, consider the linear system (7.1), but with

A =





0 1 0
0 0 1
−2 1 2



 B =





0
0
1



 C =
[
1 0 0

]
.

The open loop characteristic polynomial is given by

det(sI −A) = s3 − 2s2 − s+ 2 = (s− 1)(s + 1)(s − 2)

Again to solve for the steady state values of Π and F 2, put







0 1 0 0
0 0 1 0
−2 1 2 1
1 0 0 0







[
Π

F 2

]

=







0
0
0
1






yd

First, second, and 4th rows give respectively Π2 = 0, Π3 = 0, Π1 = yd, while the 3rd row gives F 2 = 2yd.
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Suppose we would like to place the closed loop poles at −2, −1 ± i, so that the desired characteristic
polynomial is

r(s) = (s2 + 2s + 2)(s + 2) = s3 + 4s2 + 6s+ 4 .

This results in
F1 =

[
−2 −7 −6

]
.

The control law is given by

u = F 2w + F1(x−Πw)

= 4yd − 2x1 − 7x2 − 6x3 .

The transfer function from yd to y is easily evaluated to be

y(s) =
4

s3 + 4s2 + 6s + 4
yd(s) .

7.3 Output Regulation with Partial State Information

The extension to observer-based output regulation is straightforward using the separation principle. Whether
one uses the full-order or reduced-order observer, the observer estimation error x(t) − x̂(t) satisfies a ho-
mogeneous stable equation. By replacing the control law (7.4) with

u = F1x̂+ F2w (7.17)

we are guaranteed a solution of the tracking problem with a controller which is based on output feeback
combined with a feedforward term.

To illustrate the procedure, we re-visit Example 7.2.2, using a reduced-order observer to estimate x2 and
x3 and employing the feedback law (7.17). The decomposed system equations are given by

[
ẋ2
ẋ3

]

=

[
0 1
1 2

] [
x2
x3

]

+

[
0
1

]

u+

[
0
−2

]

y

ẋ1 =
[
1 0

]
[
x2
x3

]

.

Hence the reduced-order observer is given by

[
˙̂x2
˙̂x3

]

=

[
0 1
1 2

] [
x̂2
x̂3

]

+

[
0
1

]

u+

[
0
−2

]

y +

[
l1
l2

]

(ẏ −
[
1 0

]
[
x̂2
x̂3

]

) . (7.18)

The system matrix for the observer is given by

H =

[
−l1 1
1− l2 2

]

,

where l1 and l2 are to be chosen to place the poles of the observer. Its characteristic polynomial is given
by

det(sI −H) = s2 + (l1 − 2)s + (l2 − 1− 2l1)

Let us choose the observer poles to be at −4,−4. The desired observer characteristic polynomial is given
by

ro(s) = s2 + 8s + 16
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On matching coefficients, we see that l1 = 10 and l2 = 37. Thus the reduced-order observer is given by

[
˙̂x2
˙̂x3

]

=

[
−10 1
−36 2

] [
x̂2
x̂3

]

+

[
0
1

]

u+

[
0
−2

]

y +

[
10
37

]

ẏ (7.19)

We shall use (7.19) for derivation of the controller and so we shall not perform the transformation to
remove ẏ. The control law is given by

u = F 2w + F1(x̂−Πw)

= 4yd − 2x̂1 − 7x̂2 − 6x̂3

= 4yd − 2y − 7x̂2 − 6x̂3 . (7.20)

Substituting the control law into (7.19), we find

[
˙̂x2
˙̂x3

]

=

[
−10 1
−36 2

] [
x̂2
x̂3

]

+

[
0
1

]

(4yd − 2y −
[
7
6

] [
x̂2
x̂3

]

) +

[
0
−2

]

y +

[
10
37

]

ẏ

=

[
−10 1
−43 −4

] [
x̂2
x̂3

]

+

[
0
1

]

4yd +

[
0
−4

]

y +

[
10
37

]

ẏ . (7.21)

Using (7.21), we can determine the transfer functions from y and yd to

[
x̂2
x̂3

]

as

[
x̂2(s)
x̂3(s)

]

=

[
s+ 10 −1
43 s+ 4

]−1([
0
1

]

4yd +

([
0
−4

]

+

[
10s
37s

])

y

)

.

Finally, substituting into (7.20), we obtain

u = −
[
7
6

] [
s+ 10 −1
43 s+ 4

]−1([
0
1

]

4yd +

([
0
−4

]

+

[
10s
37s

])

y

)

+ 4yd − 2y

=
s2 + 8s+ 16

s2 + 14s + 83
4yd −

2s2 + 4s− 102

s2 + 14s + 83
y − 292s2 + 179s

s2 + 14s + 83
y

= −294s2 + 183s − 102

s2 + 14s + 83
y +

s2 + 8s+ 16

s2 + 14s + 83
4yd . (7.22)

If we express (7.22) in the form
u(s) = −F (s)y(s) + C(s)yd(s)

the closed loop transfer function from yd to y is given by

y(s) =
G(s)

1 +G(s)F (s)
C(s)yd(s) .

Substituting, we finally get

y(s) =
4(s2 + 8s+ 16)

s5 + 12s4 + 54s3 + 116s2 + 128s + 64
yd(s)

=
4(s2 + 8s+ 16)

(s+ 4)2(s+ 2)(s2 + 2s+ 2)
yd(s) . (7.23)

In the final transfer function (7.23), the observer poles are in fact cancelled, leaving

y(s) =
4

(s+ 2)(s2 + 2s+ 2)
yd(s) . (7.24)
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Chapter 8

Output Regulation with Disturbances

In this chapter we extend the output regulation methodology of the previous chapter to the case when the
system is affected by an unmeasurable disturbance signal whose frequency content is known. It will be
seen that the regulator equations again play a central role in solving this problem.

Disturbance signals are sometimes modelled as unmeasurable white noise inputs with certain statistical
properties. See Section 6.4 on Kalman filter design. On the other hand, much may be know about a
disturbance signal, even it is not directly measurable. A more realistic assumption is that the frequency
content of the disturbance signal is known. There are many applications of this situation. For example:

• Landing a helicopter on a rolling ship.

• Rejecting engine vibration in autopilot actuators.

• Velocity tracking for UTIAS rovers subject to uneven weight distribution in the wheels due to the
batteries.

• Control of a lift bridge in the presence of wind disturbances and a constant disturbance due to
uncentered center of mass of the bridge span.

8.1 Problem Statement

Consider the linear system

ẋ = Ax+Bu+Dw

y = Cx+ Cww . (8.1)

The term Dw represents an unmeasurable disturbance signal which is generated by an exosystem whose
dynamics are known. The output y represents the measurements of both the system and exosystem states.
Let yd(t) 6= 0 denote the desired signal to track asymptotically. We assume that both the disturbance and
yd are generated by an exosystem given by

ẇ = Sw

yd = Edw

where w ∈ R
q. The tracking error is

e = Ex− Edw .
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The control objective is to design a dynamic feedback of the form

ξ̇ = Gξ +Hy (8.2)

u = Fξ (8.3)

such that

(AS) If w(t) = 0, then the closed-loop system

[
ẋ

ξ̇

]

=

[
A BF
HC G

] [
x
ξ

]

,

is asymptotically stable.

(R) For all initial conditions (x(0), ξ(0), w(0)), the closed-loop system satisfies e(t)→ 0 as t→∞.

A controller that satisfies the above objectives is called a regulator. In this section we assume neither x
nor w are fully measurable. In addition, we require:

• (A,B) is stabilizable.

• (Cc, Ac) is detectable, where

Ac =

[
A D
0 S

]

, Cc =
[
C Cw

]
. (8.4)

The detectability assumption says that both x and w can be recovered from the measurement y. The
strategy for designing the regulator (8.2)-(8.3) will be to build an observer for x and w based on y.

8.2 Disturbance Decoupling

Before proceeding we discuss a simpler problem called disturbance decoupling. Suppose that we do not
know the frequency content of the disturbance signal, so we do not have an exosystem model for it. We
want to design a feedback control u = Fx such that the disturbance does not appear in the output of the
system. Consider the closed-loop system

ẋ = (A+BF )x+Dw , y = Cx .

The solution is

y(t) = Ce(A+BF )tx(0) +

∫ t

0
Ce(A+BF )(t−τ)Dw(τ)dτ .

The requirement that y is unaffected by w implies that for all signals w,

C

∫ t

0
e(A+BF )(t−τ)Dw(τ)dτ = 0 . (8.5)

Let Q̃c be the controllability matrix of (A+BF,D). Then condition (8.5) is equivalent to CR(Q̃c) = 0, or

R(Q̃c) ⊂ N (C) . (8.6)

Thus, the controller must be designed to guarantee the geometric condition (8.6) holds. SeeW.M. Wonham,
Linear Multivariable Control: A Geometric Approach for the details.
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8.3 Disturbance Rejection

Now we return to our output regulation problem with disturbance rejection. The main result is the
following.

Theorem 8.3.1. Suppose that eig(S) ∈ C
+, (A,B) is stabilizable, and (Cc, Ac) is detectable. A regulator

of the form (8.2)-(8.3) exists if and only if there exist maps Π : Rq → R
n and F 2 : R

q → R
m satisfying

ΠS = AΠ+BF 2 +D (8.7)

EΠ = Ed . (8.8)

The main idea is to construct an observer for the composite state (x,w). To this end, define η = (x,w) ∈
R
n+q. The composite system is

η̇ = Acη +Bcu , y = Ccη

where

Bc =

[
B
0

]

.

An observer for the composite system is

˙̂η = Acη̂ +Bcu+ L(y − ŷ) , ŷ = Ccη̂ . (8.9)

The estimator error δη = η − η̂ has dynamics δ̇η = (Ac − LCc)δη. Since (Cc, Ac) is detectable we can
choose L such that Ac − LCc is Hurwitz. We will construct a feedback

u = F η̂ = F1x̂+ F2ŵ
△
= F 2ŵ + F1(x̂−Πŵ). (8.10)

Since (A,B) is stabilizable we can choose F1 such that A
△
= A+BF1 is Hurwitz.

Proof. (⇐=) Suppose (Π, F 2) is a solution of (8.7)-(8.8). Consider the controller described by (8.9)-(8.10).
We will show this controller is a regulator with ξ = η̂. First check the the asymptotic stability requirement.
Suppose w(t) = 0. Then the dynamics of the closed-loop system are given by

[
ẋ

δ̇η

]

=

[
A −BF
0 (Ac − LCc)

] [
x
δη

]

.

Since the system matrix is Hurwitz we have x(t)→ 0 as desired.

Next we consider the regulation requirement. Define z = x−Πw. We have

ż = Ax+B(F1x̂+ F2ŵ) +Dw −ΠSw

= Az + [AΠ+BF2 +D −ΠS]w −BF1δx−BF2δw

= Az −BF1δx−BF2δw .

Combining with the dynamics of δη we have the composite dynamics

[
ż

δ̇η

]

=

[
A −BF
0 (Ac − LCc)

] [
z
δη

]

.

Hence z(t)→ 0. Next we have

e(t) = Ex− Edw = Ez + (EΠ −Ed)w = Ez .

Hence, e(t)→ 0 as desired.
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(=⇒) Suppose we have a regulator of the form (8.2)-(8.3). When w(t) = 0, the closed-loop dynamics are

[
ẋ

ξ̇

]

=

[
A BF
HC G

] [
x
ξ

]

.

By assumption, the closed-loop dynamics are asymptotically stable. Now consider the Sylvester equation

[
Π
Σ

]

S =

[
A BF
HC G

] [
Π
Σ

]

+

[
D
HCw

]

. (8.11)

Because the eigenvalues of S and of the closed-loop system matrix are disjoint, by Sylvester’s theorem there
exists a unique solution for (Π,Σ). In particular, setting F 2 = FΣ, we obtain (8.7). Next, let z1 = x−Πw
and z2 = ξ − Σw. Then using (8.11) we obtain

ż =

[
A BF
HC G

]

z

so z(t)→ 0. Finally, we get e(t) = Ez(t)+ (EΠ−Ed)w(t). By assumption e(t)→ 0. Also, z(t)→ 0. Since
eig(S) ⊂ C

+, for all w(0), w(t)→ 0. This implies EΠ = Ed, as desired.
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