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Abstract 
The  problem of designing a state observer for non- 

1inea.r systems has been faced in several works in the 
past decades and  only recently researches focused on the 
discrete-time ones. In the paper, the case of a noisy mea- 
surement channel is addressed. By generalizing the clas- 
sical least-squares method we compute the estimation law 
off line by solving a functional optimization problem. Con- 
vergence results of the estimation error are stated and the 
approximat,e solution of the above problem is addressed by 
nieans of a feedforward iieural network. A min-max tech- 
nique is proposed to cletermiiie the weight coefficients of 
t.he "iieural" observer so as to  estimate the system state 
t,o aiiy given degree of xcuracy ,  thus guaranteeing the 
Iiouiidediiess of the estimation error. 

1. Some preliminary issues on 
deterministic nonlinear state estiniatioii 

Let us consider the discrete-t,ime dynamic system 

X t + l  = f ( . L ' * , . ( 6 t ) ,  t = 0, 1, .  . . (1) 
yt = h( . t ) ,  t = 0 , 1 , .  . . (2) 

where z t  E IR" , ut E IR"" and yt E ntp are the state, 
cont,rol, ancl measurement, vectors, respectively. The  ini- 
tial stake xo is unknown. We assume that xo E X and 
t i t  E Ti I where X and U are compact sets. 

Now, let us coiisider a d i d i n y - ~ i n d o w  observer. This 
iiieaiis trlia.t, at a given stage t and for a given t,em- 
pora.1 window of length N stages, we have to recov- 
ery .rt-x 011 t,lie basis of the last N + 1 measurement 
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vectors y t - ~ ,  . . . , yt and the last N control vectors, 
 ut-^, . . . , ut-1 . For t = NI N + 1, . . . , let us introduce 
the following systems of nonlinear equations 

where "0" denot,es composition, u:zh 2 c o l ( u t - ~ ,  . . . , ut-1) 

(similarly, in the following, we let y:-N = col ( y t - ~ ,  . . . , yt)), 

and, as in [I], f U t ( 1 ~ ' i )  = f ( ~ i , u i ) .  
To state the estimation problem in a time-invariant 

context, we need tha t ,  besides U ,  also X be time- 
invariant. This is ensured by the following 

Assumption 1. For any x E X and for any U E U ,  

A 

n 

f ( x ,  U )  E X . 

The following observa.bility definition can now be 
st,atecl [I]. 

Definition. The system (1) and  (2) is uniformly N + 1- 
observable with respect to X and U if there exists an 
integer N such that,  for any U::,, E U N ,  the mapping 
F (Zt--NIU:--fy) : x 7 IRP(*'+') is injective. 

In order t o  test the above observability property, we 
can use the following global univalence sufficient condi- 
tions [ 2 ] .  

Theorem 1. Suppose that,  for any U:;; E U N ,  
the mapping F ( c ~ - N , u ~ ~ ~ )  is differentiable with re- 
spect to x1-N E ,y and define the Jacobian ma- 
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E IRp(Nf l )x" ,  x t - N  E x . A d F  
trix ~ ( z t - N , u : ~ h )  = - 
Then, for any stage t >_ N , the following two cases can 
be  a,dclressed: 

1 )  If there exists ai1 integer N 2 n such that n, = p ( N + I )  
and S is a. recta,ngula,r set ,  then, for any U::& E U N  , F 
is globa,llji univa.lent 011 X if D ( x t - N ,  u ~ I L )  is either a 
~ - r n a , t r i s  or a,ii i ~ m a t r i x ,  v 3:t-N E X ,  ui~h E uN . 
2) If am integer. ,V 2 12 such that n = p ( N  + 1) does not 
exist, arit.1 S is a convex set, then, for any u ~ I L  E U N ,  
F is globally univalent 017 X if there exists a matrix A E 

has the following (row) Diagona,l Dominaiice Property: 

d x t - N  

t -1  A t -1  such that C ( z t - N ,  = A D ( z t - N ,  R'" x 1' ( N + 1 ) 

I C i l ( . l : t - - N l 2 6 : 2 ~ ) 1  > / C i j ( X t - N , ' ~ ~ : J & ) l ,  V Z t - N  E x i  
j . j#i 

where c . .  denotes the 1-th row, j - th  column element of 
' 3  

niatrix C r .  
Let. us now define the set Y = h ( X ) ,  Y c IRp. 

The N + l-observability of (1),(2) implies the possi- 
hility of' solviiig t,he iionlinear system (3) uniquely for 
any vector in Y"+' x U N  and for any stage t 2 N .  
This iiieaiis the existence of the tiine-invariant mapping 
x f - ~  = Y ( Y ~ - ~ ,  1 T L ~ I + ) ,  which constitutes an  order N + 1 
c1ea.d-beat observer for (1) , (2) .  Clearly, in the general 
noii1inea.r case, computing Y ( Y : - ~ ,  U::;) in analytical 
forin is 'a ha.rt1, almost impossible task. In [I], a New- 
t,on's algorit,liin t,o solve ( 3 )  is described. Under suitable 

uiiiptmioiis, it, is shown t1ia.t this algorithm gives rise to  
an asyinpt,otic observer for (1) , (2) .  

A 

2. State estimation on the basis of noisy 

Let, us consider t,he case in which an  additive noise 
111 e as u r e s 

a.ffect,s the mea.sureinent channel. Then, (2) beconies 

yt = h ( z t ) + v t ,  t = 0 , 1 ,  . . .  (4) 

We assuine t,he stat,istics of the random sequence { v i ,  t = 
0,  1, . . .} t80 be unknown. However, we also assuine that 
'If E H c R,' , wliere H is a known compact set. Let us 
clrfiiie t8 he i nfor in a t,ioii vec t,or 

AY A -0 1, = col ( 'l:t-i\? ~ yl- A', . . , , y t ,  Llt-N, . . . , '?It- 1) , 
t = N ,  rv + 1, . . . 

A where St"-,\, = .x,"-,\~,~-~ denotes the optiinal predic,t,ion 
(see Problem 1 below). Of course, 5: = i " , n , - l  = Zo 
deiiot,es an a - p i o n  predict,ion. 

Let, tis now define as S o  t81ie set from which t,lie ran- 
cloiii vect,or zo t,akes it,s value. We also h b e l  as St ,  Yt, 
ancl z;V t,Iie sets from wIiic1i t,lip vectors zt , yt a.iid I;" 
t,ake t81ieir i d u e s ,  respect,ively. Clearly, we have 

Sf = ( 5 )  
for t = 0 c f ( S t - l ,  ' U) , for t 2 1 

(7) N 4 yo 1, - 1 t - ~  x Y t - N  x . . ' x x 

where X:-N denotes the sets the optimal predictions 

As an  exact recovery of the state vector is now impos- 
sible, by following a traditional least-squares approach, 
for t = N, N + 1, . . . , we define the following sliding- 
window estimation error: 

E O  t - N  belong to, V t  2 N .  

t 

J t  = p 1 1  &-N, t  - z t - ~  11' -I- 1 1  Y i  - h(2it)  [ I 2  (8) 
i=t-N 

,CL is a. positive scalar tha t  expresses our beliefs in the ratio 
between the prediction error and the measurement errors, 
i.e., the errors in the observation model and noises (such 
beliefs could be expressed more thoroughly by suitable 
weight matrices without additional conceptual difficulties 
in the reasoning reported later on). Then ,  we can state 
the following 

Problem 1. At  any stage t = N , N  + 1,.  . . , find the 

minimizes the cost (8) under the constraints 
optimal estimation function Xi,O-N,t - - u,O-,,,(I?), that  

(9) &,+l, t  = f (?i t ,  U i )  , i = t - N ,  . . . , t - 1 

The miiiimizations are linked sequentially by the optimal 
pretlic tions 

.c;-;iv = f ( ~ ~ - , - , , , - , , , ~ t - N - l ) ,  

t = N + l , N + 2 ,  . . . ;  2 o E X o  

0 
In the next section, the estimator's convergence issue 

will be addressed. 

3. A condition for the convergence of the 
state estimator that solves Problem 1 

We need now the followiiig assumptions: 

A 1 ) S o  (see (5)), H ,  and 1T are compact sets. 

A2)Problein 1 has a unique global solution, i.e., for any 
t = N ,  N + 1, .  . . and any 1: E Z," (see ( 7 ) ) ,  there 
is a unique optimal estimate gi.,"-N,t = u ; - ~ , ~ ( I ~ ) .  

Let us now define the sets of the optimal estimates 
n 2 0  t-,v,t as X,O-N,t - - U ; - N , ~ ( Q ' ) ,  t = N , N  + I , . .  .. We 

need the following other assumptions: 

il3)For any s E X O  and for any '(1 E U ,  f(z, U )  E XO 
( i . e . )  S o  is a coiit.rolled-iiiva.riant set with respect t o  
1 T ) .  

A4)There exists a compact set X such tha t  
s o  u(u;;; s;-,v,t) 5 s 
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Finally, define X as the closed convex hull of X and 
introduce the further assumptions: 

A5)The functions f a i d  h are C2 functions on X. 
&$)There exists an  integer N such that,  for any U::; E 

lTN , the mapping F(., U:$) : X -- Rp(Nfl) is 
such tha t  raiik (F) = n,  'dx E X . 

Nom7, we can define the Jacobian matrix 

Let, 11s now introduce some notations and use- 
ful qua,ntmities. Given a generic symmetric posi- 
tive clefinitme ma.trix A ,  let, us denote by X,,, ( A )  
a,iicl X,,,,, ( A )  t,he iiiiiiiiiiuiii and maxiinuiii eigenval- 
ues of A,  respectively. Given a generic matrix B, 

d m ) .  Let us denote I c f  and Ich the LiIischitz 
const,ant,s of f a.nd h on h' x U and X ,  respectively. 

n a 
I I B l l m a x  = IjBll = JLJmJ and llBllm1n = 

V x - N  , ~ y - ~  E .Y; ' v ' u ~ ~ ~ ~  E U N  . The I C ;  do exist as 
we a.re addressing compositions of (3' functions. Then, we 
call statbe t,he following result. 

Theorem 2.  [3] Suppose t11a.t ilssuriiptions A I )  to A6) 
are verified. Denote by et-,v = x t - ~  - zt -N, t  the es- 
timation errors a t  stages t - N , t  - N + 1, .  . .. Consider 
the largest closed ball N ( r e )  with radius T ,  arid center 
in the orig.in such that e(> E N ( T , ) ,  and defirie the scalar 

n .O 

n 
'1.v = niax I l c o l ( q t - ~ ,  . . . , qt)ll . If there exists a 

n i -  v . .  . . .n t  E HN+I  , .. 
choice of p .  for which the Jiiequalities 

ha,s the two real positive roots E -  and c + ,  with E -  < E+ . 
Then, if the choice of p yields also the fulfilment of the 
inequaiity 

U 

4. An approxiinate solution of the 
estiination Problem 1" by feedforward 

neural networks 
We propose to assign the estimation functions 

cL f - , \ r , t ( lF )  the structure of a feedforward neural network. 
Let -{(X):R~'~ - Rnz lie a generic continuous function 
tha t  we want to approximate. Let us assume that the 
approximating neural function contains only one hidden 
layer composed of v neural units, and tha t  the output 
layer is composed of linear a.ctivation units. This means 
that such a function takes on the form 

y(I')(z, 20) = col [ y. 31") (2, w), j = 1,.  . . , .'I (15) 

where 

p = l  

where g is a sigmoidal activation function and wp = 
col [ w l p ( l ) ,  . . . , wnIp( l ) ]  (clearly, w is the vector of all the 
weights parameters). Then, we have the following 

Property 1. Given any function y(z) E C[Rn1,IRnZ] 
and any compa.ct set X c Etn1 , for any E E R, E > 0 ,  
there exists an integer v and a weight vector w such that 

(17) 

U 

Property 1 has been derived directly from the results 
reported, for instance, in [4], according to which contin- 
uous functions can be approximated, to any degree of 
accuracy, on a given compact set by feedforward neural 
iietworlts based on sigmoidal functions, provided tha t  the 
number v of neural units is sufficiently large. 

Now, as we will have to explicit Property 1, we assume 
t,ha,t the neural estimation functions take the form (15), 
that is 

k.t-N,t  = al'-'(I;, W t - N ) ,  t = N, N + 1 , .  . . (18) 

where I," is the argument z, nl = dim($'), n:, = n ,  
aiid ' [ U t - N  are the weight vectors Lo be determined. To 
determine w*-N,  an  approach should be followed guaran- 
t8eeiiig that the error, due to the substitution of the estima- 
tion function Cit-N,t( ly)  with the approximate function 
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rZV*-N(Iy, t u t - N ) ,  can be made uniformly bounded by a 
given positfive scalar c. As is consistent with intuition, we 
need t,his gmrantee  in order t o  obtain convergence results 
for the approximate estimates similar t o  the ones stated 
in Theorem 2 (see Theorem 3 below). 

First,, we need to  stlate Problem 1 in an equivalent 
st,at,ioiiary form (see [5] for more details). 

Probleiu 1’. Find the optimal estimation function 
.L:-N,t = a o ( I p ) ,  that niinimizes the cost (8) V IF , under 
the constraints 

Tlie minimizations are linked sequentially by the optimal 
pret lictions 

0 

The  initial predictions take values in the rather large 
set. ,Y. Clearly this may be conservative in the light of the 
minii1ia.x procedure described below (at the price of rather 
involved t,echnical condit,ions, a more accurate result can 
be found in [SI). 

In order t o  gua.rant,ee the aforementioned uniform 
bouncl ? t,o t81ie approxiimtion error, the following min- 
ma,x problem is st,a,t,ecl. 

Probleiii 2. Find the nuinher v* of neural units such 
that 

As t,o the number I / *  of neural units, rather a naive 
t.ria1--ancl-rrror procedure for determining them is the fol- 
lowing: increase I /  until t8he‘terin on the left-hand side of 
(20) is less t81ian or equal t,o F . 

Now, denot,e by b, the Lipshitz constant of the opti- 
mal est8iniat8ion function and let E = ( l + k , k f ) E .  Then, 
the following t,lieorein c a n  be proved. 

n 

Tlieoreiii 3. [5] Suppose that Assumptions AI)  to A6) 
a,rp verified. De~iote by e t - N  = Z t - N  - x t - N , t  the esti- 
riia,tioii error at stage t - N .  Consider the largest closed 
bal l  ni(r,) with ra.dius re and center in the origin such 
t h a t  co E iV(~ ;e )  . I f  there exists a choice o f  p ,  for which 
t 11 e in eq 11 a li t ies 

a 

( 1  - k,)’/? + [ ( 3  + “L; - 4kf )6 ’  + 4 b 3 t i ( k f  - 5)4 p 2  

are satisfied, the second-order equation 

/12 + 2 [62 - k f r c i ( 2  - bf)E - k?rc i i+]  p 

we have 

0 

To sum up,  thanks to Theorem 3,  for a given level of 
measurement noise, and a bound on the  initial estimation 
error, it  is possible to check whether a n  upper bound E 
on the approximation error clue to the use of the neural 
approxiinator do exist, such tha t  the conditioiis stated in 
the theorem are fulfilled. In the affirmative, the minimax 
learning method can be performed, thus giving rise to  an 
approximate nonlinear state estimator characterized by a 
bounded estimat,ion error. 
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