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Abstract

The problem of designing a state observer for non-
linear systems has been faced in several works in the
past decades and only recently researches focused on the
discrete~time ones. In the paper, the case of a noisy mea-
surement channel is addressed. By generalizing the clas-
sical least-squares method we compute the estimation law
off line by solving a functional optimization problem. Con-
vergence results of the estimation error are stated and the
approximate solution of the above problem is addressed by
means of a feedforward neural network. A min-max tech-
nique is proposed to determine the weight coefficients of
the “neural” observer so as to estimate the system state
to any given degree of accuracy, thus guaranteeing the
boundedness of the estimation error.

1. Some preliminary issues on

deterministic nonlinear state estimation
Let us consider the discrete-time dynamic system

Tip1 = flag,w), t=0,1,... (1)
1=0,1,... (2)

Yt = h»(h)\
m

where ; € R”,u; € R”, and y, € IR are the state,
control, and measurement vectors, respectively. The ini-
tial state xp is unknown. We assume that 2o € X and
u; € U, where X and U are compact sets.

Now, let us consider a sliding-window observer. This
means that, at a given stage ¢ and for a given tem-
poral window of length N stages, we have to recov-
ery &;_pn on the basis of the last N + 1 measurement
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vectors Yi_n,...,% and the last N control vectors,
Ui, .., U—1. For t = N N +1,... let us introduce
the following systems of nonlinear equations

F (se-. 7))

h (th—N) Yt-N
ho fU:t—-N(wt_N) Yt-N+1
ho fUt—l 0.0 f“‘"N(JTt_.N) Ye

.. 1 A
where “o” denotes composition, u;—}\, = col(ugmn, -, Us—1)

(similarly, in the following, we let y}_ 5 2 col (ye=n, -5 90),
. N
and, as in [1], f%(2;) = f (@i, w).
To state the estimation problem in a time-invariant
context, we need that, besides U, also X be time-

invariant. This is ensured by the following

Assumption 1. For any z € X and for any u € U,
flz,w) e X.

The following observability definition can now be
stated [1].

Definition. The system (1) and (2) is uniformly N + 1-
observable with respect to X and U If there exists an
integer N such that, for any uﬁj\, € UV | the mapping
F (mt_N,uij\,) C X — RPVHD g injective.

In order to test the above observability property, we
can use the following global univalence sufficient condi-
tions [2].
Theorem 1. Suppose that, for any ui_y € UV,
the mapping F (;ctAN,u;:}V) is differentiable with re-
spect to xi.n € X and define the Jacobian ma-
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. aF
trix D(ze_n,ui”}) 2 9 ¢ RPNV v EX.
Oz N
Then, for any stage 1 > N, the following two cases can

be addressed:

1) If there exists an integer N > n such that n = p(N+1)
and X is a rectangular set, then, for any u::,lv cUN, F
is globally univalent on X if D(z¢_n,ul”}) is either a
P-matrix or an N—-matrix, Va;-y € X, u::}\, eUN.

2) If an integer N > n such that n = p(N + 1) does not
exist, and X Is a convex set, then, for any uzj\, e Uy,

F is globally univalent on X if there exists a matrix A €

2l — A —
RPN+ guch that C(ay-n,uiZ}y) = AD(xt~N,u§_]1V)

has the following (row) Diagonal Dominance Property:

leii(@e-ny g T3 > D lei(@eon, TR, Yaen € X,
j1J #1

where ¢;; denotes gbe i-th row, j-th column element of

matrix C.

Let us now define the set ¥V 2 hX),Y C R.
The N + l-observability of (1),(2) implies the possi-
bility of solving the nonlinear system (3) uniquely for
any vector in YV x UN and for any stage ¢t > N.
This means the existence of the time-invariant mapping
zi-N = 7(Yi_ N u;:}\,) , which constitutes an order N +1
dead-beat observer for (1),(2). Clearly, in the general
nonlinear case, computing -y(y!_y,ul"}y) in analytical
form is a hard, almost impossible task. In [1], a New-
ton’s algorithm to solve (3) is described. Under suitable
assumptions, it is shown that this algorithm gives rise to
an asymptotic observer for (1),(2).

2. State estimation on the basis of noisy

measures
Let us consider the case in which an additive noise
affects the measurement channel. Then, (2) becomes

yt:h(l’t)—f—?]t, t:O,l, (4)

We assume the statistics of the random sequence {n;, t =
0.1,...} to be unknown. However, we also assume that
n € H C IR", where H is a known compact set. Let us
define the information vector

l,j‘\r 2 col (B N U=y Yty Wee Ny ey U )
t=N,N+1,...

where 7 £ &y_n,_1 denotes the optimal prediction
(see Problem 1 below). Of course, Z§ = &g ny_1 = I
denotes an a-prior: prediction.

Let us now define as Xy the set from which the ran-
dom vector zy takes its value. We also label as A}, Y3,
and I,N the sets from which the vectors x;, ¥ and ItN
take their values, respectively. Clearly, we have

N AV for t=0
A :{ F(X2, U), for t2>1 (5)

Y, 2 h(Xy, H)  for >0 (6)

TN 2 X0 v X Yiey % -+ x Yy x (U)N-1 (7)

where X?_ 5 denotes the sets the optimal predictions
Z]_n belong to, Vt > N.

As an exact recovery of the state vector is now impos-
sible, by following a traditional least-squares approach,
for t = N,N +1,..., we define the following sliding—
window estimation error:

t

To=pllé-ne =2y | + Z v = k() [1? (8)
i=t—N

1 1s a positive scalar that expresses our beliefs in the ratio
between the prediction error and the measurement errors,
L.e., the errors in the observation model and noises (such
beliefs could be expressed more thoroughly by suitable
weight matrices without additional conceptual difficulties
in the reasoning reported later on). Then, we can state
the following

Problem 1. At any stage t = N, N + 1,..., find the
optimal estimation function &{_y; = a$_y,(I{V), that
minimizes the cost (8) under the constraints

.if;+1’t:f(i’“,ui), Z:t‘—N,,t‘*l (9)

The minimizations are linked sequentially by the optimal
predictions

Ti_n = f(ﬁ"?—N—l,t—lrufﬂN—*l))
t=N+1,N+2,...;2¢€ Xy

d
In the next section, the estimator’s convergence issue

will be addressed.

3. A condition for the convergence of the

state estimator that solves Problem 1
We need now the following assumptions:

A1)Xg (see (5)), H, and U are compact sets.

A2)Problem 1 has a unique global solution, i.e., for any
t=N,N+1,... and any IV € I}V (see (7)), there
is a unique optimal estimate &;_y, = af_y (I}¥)

Let us now define the sets of the optimal estimates
: . A
‘Bg—N,t as ‘Xto—N,t = a?—-N,t(ItN)?t = NzN + 1; We
need the following other assumptions:
A3)For any # € Xy and for any v € U, f(z,u) € Xo
(i.e., Xy is a controlled-invariant set with respect to
).

A4)YThere exists a compact set X
- +o0 - -
NoUUZo Xwe) € X

such that
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Finally, define A as the closed convex hull of X and
introduce the further assumptions:

A5)The functions f and h are C? functions on X.

A6)There exists an integer N such that, for any «!7}, €

UN | the mapping F(-,ul"}): & — RPN g
such that rank (F) =n,Vz e X.

Now, we can define the Jacobian matrix

A OF
D(a-n, W) = e RPNV gy e X
8l‘t—N
Let us now iIntroduce some notations and use-
ful quantities. Given a generic symmetric posi-
tive definite matrix A, let us denote by Apin(A4)
and  Amax(A4) the minimum and maximum eigenval-
ues of A, respectively. Given a generic matrix B,
A A
|Bllmax = |IB]l = Amax(BTB) and ||B|lmin =

VAmin (BT B). Let us denote kf and kp the Lipschitz
constants of f and A on A x U and X, respectiizely

Moreover, define AL max ID(ze—n, Wi 0N,
xt_NEX,u::}\,EU

A . _ =

5= min Dz, W) fmin, & = AJkg

. t—1 1N
.L,,_NEX,ut_NEU

and k = (/k}+...+k%,,, where k; > 0 are suit-

dh Oh
/ - " <
7 () %;_Nf(xt_mn_
8h o fut-w o fut-n
R )- (2t n)ll
(2t n)—

able scalars such that H

b i

< kallel_y—zi_pll,
dho flt-1o... .

< Rvallet -
Va, y,al v € X;Vully, € UN . The k; do exist as

we are addressing compositions of C* functions. Then, we
can state the following result.

]\, 7
U2y —ay, 871 (Ty_n TN

(oo o friox
” a«’f/’r—-N
o fUi—N

2wl

Theorem 2. [3] Suppose that Assumptions Al) to A6)

are verified. Denote by e,_n E Ti_N — i’;’_N’t the es-
timation errors at stages t — Nt — N + 1,.... Consider
the largest closed ball N(r.) with radius r. and center
in the origin such that ey € N(r.), and define the scalar
max
H

o max el
T=Nyooy t

choice of u, for which the inequalities

™ 2 o [|col(mi-n, - - If there exists a
(L—kyp) 1® + (34 k7 — dkyp)8”
+(38% — 2k 8% - 8kTkK r)p +6° >0 (10)
(ky = ) < 6° (11)
are satisfied, the second—order equation
DR € + by plp + 8 — (s + 6% + 4ERpryJ¢
+2RTRESE + hpk(p+ 6%)ry = 0 (12)
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has the two real positive roots €~ and €+, with £~ < €1,
Then, if the choice of p yields also the fulfilment of the
Inequality

pE 2 (6% = KERREY ) ot (6% = 2k3RRPr, ) 20 (13)

we have

Jim lefl <g7, Ve <g? (14)
[}

4. An approximate solution of the
estimation Problem 1” by feedforward
neural networks

We propose to assign the estimation functions
ay—n (I N the structure of a feedforward neural network.
Let 7( ) R™ — R™ he a generic continuous function
that we want to approximate. Let us assume that the
approximating neural function contains only one hidden
layer composed of v neural units, and that the output
layer is composed of linear activation units. This means
that such a function takes on the form

)

) (&, w) = col [ (v )(x w),j=1,. (15)
where

p=1

wm(z w;$+w0p(1)] + wo; (2 )} (16)

where g i1s a sigmoidal activation function and w, =
col [wip(1), ..., wn,p(1)] (clearly, w is the vector of all the
weights parameters). Then, we have the following '

Property 1. Given any function y(z) € C[IR™,R"?]
and any compact set X C R" | for any ¢ € R, ¢ > 0,
there exists an integer v and a weight vector w such that

(17)

O
Property 1 has been derived directly from the results
reported, for instance, in [4], according to which contin-
uous functions can be approximated, to any degree of
accuracy, on a given compact set by feedforward neural
networks based on sigmoidal functions, provided that the
number v of neural units is sufficiently large.
Now, as we will have to explicit Property 1, we assume
that the neural estimation functions take the form (15),
that is

H‘y(x) - 7(”)(0;,10)” <e, VeeX

&I’!~)\,(Itzvawt—N)z t:N’N+1"" (18)

LNt —

where IV is the argument z, n; = dim(IN), ny = n,
and w;_pn are the weight vectors to be determined. To
determine w,_ n, an approach should be followed guaran-
teeing that the error, due to the substitution of the estima-
tion function a;—n(I{') with the approximate function



a"*=N(IN ,wi-n), can be made uniformly bounded by a

given positive scalar £. As is consistent with intuition, we
need this guarantee in order to obtain convergence results
for the approximate estimates similar to the ones stated
in Theorem 2 (see Theorem 3 below).

First, we need to state Problem 1 in an equivalent
stationary form (see [5] for more details).

Problem 1°. Find the optimal estimation function
&y =a° (1)), that minimizes the cost (8) VI , under
the constraints

i’i-{-l,t:f(j}itau’i)v Z:t—N) t—l (19)

t)

The minimizations are linked sequentially by the optimal
predictions

¥ _n = F_ N 1 o1 we-N=-1)
t=N+1LN+2,..;20€X

]
The initial predictions take values in the rather large
set X', Clearly this may be conservative in the light of the
minimax procedure described below (at the price of rather
involved technical conditions, a more accurate result can
be found n [5}).
In order to guarantee the aforementioned uniform
bound £ to the approximation error, the following min—
max problem is stated.

Problem 2. Find the number v* of neural units such
that

N—~1)

min nmax lla® (Zo, yd, rd

w ‘T”CIE‘\"yé\’EYN‘H,7‘é\7_1€RN

—a ) (Fo, g, 7 w)|| < € (20)

As to the number v* of neural units, rather a naive
trial-and-error procedure for determining them is the fol-
lowing: increase v until the term on the left—hand side of
(20) is less than or equal to €.

Now, denote by k, the Lipshitz constant of the opti-
mal estimation function ® and let ¢ 2 (L4+kakys)e. Then,
the following theorem can be proved.

Theorem 3. [5} Suppose that Assumptions Al) to A6)

are verified. Denote by €;_n = BN — L4, the esti-
mation error at stage t — N. Consider the largest closed
ball N(».) with radius ». and center in the origin such
that ¢, € N(v,). If there exists a choice of i, for which
the inequalities

(1= k)2 % + [(3 + kS — dk)8? + 4k2RR(k, — 5)5] P
+ (36% = 2k 6% = 8K, — 20k3ERS%) 4 6° > 0

(hp—1)p< &

are satisfied, the second-order equation
(2/6?776#2) £+ [kfﬂ(ﬂ +6%)7 = (1 + 8°)° + AkFER iy
+ (10@%151?:#(/1 +6%)+ +4k§/’ci~m2) e} é
+2k?l¥:l¥:3r§ + kfl::(,u +6%)?r,
25~ o —
+ [Zklc(/u +6%)% + 2k kkp® + 10k kkp(p + 62)] £
+ [LOKRR (1 + 6%) + 4k3RR ) ey
+ [+ 8P+ kpp(p+6%)]e=0
has the two real positive roots é" and é"', with é" < é"’ .

Then, if the choice of pu yields also the fulfilment of the
inequality

W42 (62— ke RR(2 — ky)e — KREEY] 4
+ (6 — 2H3HE? 7, — 4k s kRS €) > 0
we have

el <€7, Vie<ét (21)
O
To sum up, thanks to Theorem 3, for a given level of
measurement noise, and a bound on the initial estimation
error, it is possible to check whether an upper bound &
on the approximation error due to the use of the neural
approximator do exist, such that the conditions stated in
the theorem are fulfilled. In the affirmative, the minimax
learning method can be performed, thus giving rise to an
approximate nonlinear state estimator characterized by a
bounded estimation error.

lim |
t—+o0
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