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Abstract

A high-precision, magnetically levitated, five degree-of-freedom (5DOF) positioning stage is presented. Four independently
controlled iron-cored permanent magnet linear synchronous motors are used to translate the stage and rotate it about the two
horizontal axes. Six optical encoders with 10 µm resolution, mounted on linear guides, are used to measure displacements and
rotations. A detailed mathematical model is developed and nonlinear tracking controllers are designed for the 5DOF system using
feedback linearization, output regulation, and antiwindup compensation for step and sinusoidal references.
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I. INTRODUCTION

In recent years, there has been an increased interest in the development of magnetically levitated (maglev) contactless

positioning systems with many degrees-of-freedom (DOF) as an alternative to mechanically-driven high-precision positioning

systems. Traditional industrial positioning systems are composed of multiple mechanically-driven stages, some of which actuate

large, low-resolution movements, while others deliver small, high-resolution motion. Such systems have well-known drawbacks.

Friction, stiction, backlash, and hysteresis limit the positioning accuracy. Further, mechanical wear introduces impurities in the

form of dust particles into the manufacturing environment. Lastly, mechanical coupling transmits to the microstepper vibrations

from the surrounding environment. For those fabrication tasks requiring sub-micrometer accuracy (e.g., photolithography), such

vibrations are unacceptable because they significantly affect the performance of the process, so vibration tables are required.

Maglev positioning stages have the potential to eliminate the three problems mentioned above. Being contactless, their

positioning accuracy is only limited by the sensor resolution and the control design. They are not subject to mechanical wear

and therefore they do not introduce dust particles in the fabrication process. Finally, they are not mechanically coupled to the

surrounding environment and are capable, if appropriately controlled, to reject vibrations.

A landmark contribution to the development of high-precision magnetic levitation actuators was given by Kim and Trumper

in [1], see also [2]. They developed a 6DOF positioning system using air-cored permanent magnet linear synchronous motors

(PMLSMs) with a horizontal displacement range of 50 × 50 mm2, a vertical displacement range of 400 µm, and rotations in the

mrad range. The position noise was of the order of 5 nm horizontal and 70 nm vertical. The objective of stabilizing set-points

in three-space was achieved by means of linearization about equilibria and lead-lag compensators. Since then, other significant

contributions were made to the development of high-precision contactless positioning systems. Kim and co-workers [3], [4],

[5] developed a compact and lightweight device which employs six Lorentz-type linear air-cored actuators to control 6DOF

with a displacement range of 300 × 300 × 300 µm3, a rotation range of 3.5 × 3.5 × 3.5 mrad3, and a position noise of about

5 nm. The control specification was set-point stabilization and tracking, and the control design approach is based on feedback

linearization and lead-lag compensation. The tracking signals used in the experiments were designed to trace a circle on the

horizontal plane and a conical helix in three-space. Menq and co-workers [6], [7], [8], [9] developed three generations of 6DOF

devices. The latest prototype, presented in [9], employs three Lorentz-type two-axis linear actuators to achieve a displacement

range of 2 × 2 × 2 mm3, a rotation range of 70 × 70 × 70 mrad3, and a position noise of about 4nm horizontal and 20 nm

vertical. Feedback linearization and loop shaping were used for set-point stabilization and tracking of steps and sinusoids.

Research on maglev systems at the University of Toronto, in collaboration with Quanser, focuses on using combinations

of iron-cored PMLSMs to control multiple DOFs. While air-cored PMLSMs in [1] and [2] allow one to levitate the platen

above the stators, iron-cored PMLSMs can be used to levitate the platen below the stators. While in air-cored PMLSMs the

levitation force is entirely generated by the interaction between the magnetic field of the stator windings and that of the

permanent magnets on the mover, in iron-cored PMLSMs most of the levitation force is generated by the attraction between

the permanent magnets on the stators, mounted on the platen, and the iron backing of the motors. For this reason, iron-cored
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PMLSMs need less current for levitation. In [10], a detailed mathematical model of the forces produced by an iron-cored

PMLSM and a nonlinear control design to regulate air-gap and displacement are presented. In [11], these theoretical results are

validated on a 2DOF system employing one iron-cored PMLSM. In [11], a 3DOF system employing four PMLSMs to control

displacements is also briefly presented. In both setups, linear guides are used to constrain the motion to be purely translational.

Statement of contributions. This paper advances the research presented in [10] and [11] by demonstrating that four

independently controlled iron-cored PMLSMs can be used to actuate a platen with 5DOFs: three displacements, and pitch

and roll angles. The device presented in this paper is an evolution of the 3DOF device briefly described in [11]. Its range of

operation, 100 × 100 mm2 horizontal, 13 mm vertical, and rotation range of 6 × 28 mrad2, is very large as compared to

that of other positioning devices reviewed above. In particular, the use of iron-cored PMLSMs is the key feature that makes

it possible to obtain a large vertical displacement. The accuracy of our device is 10 µm for displacements and 20 µrad for

rotations. Our device is not contactless because it employs linear guides to sense the configuration of the platen, but it is a

proof-of-concept giving confidence that our approach can be used to build a next-generation, contactless positioning system

based on iron-cored PMLSMs.

We present a detailed mathematical model and introduce a nonlinear control strategy making the displacements and rotations

of the platen track step and sinusoidal reference signals. Our control strategy can be summarized as follows. The mathematical

model of the system is viewed as a nominal system affected by a perturbation term, which is shown to be negligible. The nominal

system is then feedback linearized; a linear output regulator is designed for the feedback-linearized plant, and antiwindup

compensation is used to limit the magnitude of the control inputs to within the saturation limits of the amplifiers driving the

PMLSMs.

Our controller can be easily adapted to track different classes of reference signals, and makes it possible to make the platen

accomplish sophisticated maneuvers. As an illustration, we make the platen follow an ellipse in three-space not parallel to the

horizontal plane, while preventing the platen from rotating. We also measure the set-point stabilization performance of our

control system with steps in each axis.

Comparison to other control approaches. The linearization-based control strategy of [1] and [2] limits the range of

operation of the device, the size of the step references, and the transient performance. Such shortcomings were experimentally

analyzed in [11] for the case of one iron-cored PMLSM. In contrast to that, our nonlinear control approach guarantees that

the closed-loop system tracks reference signals with large amplitude over the entire range of operation of the device. This

desirable feature is shared by the approaches in [3], [4], [5], [6], [7], [8], [9], also relying on feedback linearization, but

our control approach has two distinctive features. First, using an output regulator for the feedback linearized system, rather

than a lead-lag compensator, it yields robustness against pre-specified classes of input-matched disturbances (in this work,

constant and sinusoidal with given frequency). Second, antiwindup compensation avoids undesirable transient degradations in

the presence of actuator saturation. In turn, this improves the set-point stabilization performance when subjecting the system

to large step references (in this case, large actuator effort is required in the transient phase).

II. HARDWARE AND MODELING

Our positioning system consists of a set of four symmetrically placed iron-cored PMLSMs. A schematic exploded view of

the setup is shown in Fig. 1. Each PMLSM consists of a stator and a mover. The stators, housed in a heavy, stationary frame, are

longitudinally laminated and transversally slotted to accommodate a single layer of 3-phase winding. Each mover, consisting

of a set of four type N35 permanent magnets, is positioned beneath a corresponding stator and affixed to the aluminum platen.

The platen is positioned below the stationary frame and rests on sets of linear guides that allow it to move along two horizontal

axes, one vertical axis, as well as rotate about the two horizontal axes (pitch and roll). Fig. 2 shows the schematic diagram of a

stator/mover pair. As seen in Fig. 1, the sets of linear guides are layered such that the Y-axis guides rest on the Z-axis guides,

which rest on the X-axis guides. The θ and φ rotations shown in Fig. 1 are achievable since the four vertical guides, although

attached to a rigid platen, are independent and can be positioned at different heights, allowing the platen to tilt. While the

vertical (Y-axis) guides are symmetric with respect to each horizontal axis, they are not symmetric with respect to the vertical

axis through the center of mass of the platen (see Fig. 1) because they have a rectangular section. As a result, it is more

difficult to rotate about the X-axis than the Z-axis; for this reason, the device can achieve a larger rotation angle about the

Z-axis than about the X-axis. Currently, the rigidity of the supporting guides does not allow for rotations about the Y-axis. The

linear guides are passive units: they do not provide any actuation force to the platen. They are used to facilitate the placement

of sensors used to measure displacements and rotations, and to constrain the rotation about the vertical axis (yaw). They allow

us to focus our attention on the feasibility of our design and the control task, leaving the issue of contactless sensing for future

research. The 3DOF apparatus in [11] uses three optical encoders mounted on the linear guides to measure X-axis, Z-axis,

and Y-axis displacement. For the 5DOF system there are a total of six optical encoders mounted on the guides: two sensors

measuring horizontal displacements along the X-axis and Z-axis, and four sensors mounted on the four Y-axis guides that are

used to measure vertical displacement and also rotations about the X-axis and Z-axis. The linear guides also allow us to insert

stoppers to constrain the motion of the platen, which is useful for parameter estimation purposes. The system has an horizontal

displacement range of ±50 mm along the X-axis and Z-axis, a vertical range of 13 mm (minimum air-gap 18 mm, maximum
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Fig. 1. Exploded schematic view of the 5DOF maglev system. The stators of four iron-cored PMLSMs, shown on top, are mounted on a stationary frame.
The platen, shown in the middle, hosts the four movers and lies on three sets of orthogonally mounted linear guides, shown at the bottom. Linear guides
allow for XYZ-displacements and θ, φ rotations, and disallow rotations about the Y-axis. Linear guides will be removed in a future-generation prototype.
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Fig. 2. Schematic side-view representation of stator/mover pair i. The slotted stator houses 3-phase windings, while the mover hosts four permanent magnets.
The values and descriptions of geometric parameters t1, b0, hm, τ , and τp, as well as other physical parameters of the device, are found in Table I. The
variable gi represents the air-gap length for Motor i. The motor produces a force on the mover whose horizontal and vertical components, F i

H
and F i

V
, have

the expressions in (1) and (2).

air-gap 31 mm), and rotations about the X-axis and Z-axis of approximately ±3 mrad and ±14 mrad, respectively. Aside from

the limitations on the rotations imposed by the rigidity of the linear guides, the maximum rotation angles are also limited at

small and large air-gaps where we risk hitting the stoppers. The 5DOF apparatus has a translational resolution of 10 µm and

a rotational resolution of approximately 20 µrad.

The 5DOF system uses four custom-built power supplies, developed by Quanser, each containing three linear amplifiers with

voltage level of 28 V, delivering 5 A continuous and 7 A peak current. Each power supply controls the three-phase currents of

a single PMLSM so that the four PMLSMs can be independently controlled. The experiment is connected to a PC by means

of two Quanser Q8 data acquisition boards. The controller is implemented in Simulink and run in real-time with a sampling

rate of 1kHz through the Quanser WINCON real-time environment. We refer the interested reader to [11] for more details

concerning the interface between computer and experiment.

Consider the stator/mover pair of Motor i, depicted in Fig. 2. The horizontal force (F i
H ) and vertical force (F i

V ) exerted on

the mover by the stator are given by

F i
H(gi, iq) = −KhLh(gi)iq (1)

F i
V (gi, iq, id) = −Kv1Lv1(gi) + Kv2Lv2(gi)id −

Kv3Lv3(gi)(i
2
d + i2q), (2)
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where
Kv1 = LApmτ

4µ0

Lv1(gi) = λ̃(g)B2
pmy1(gi)

Kv2 = 3
√

2LApmWkw1

p2 Lv2(gi) =
λ̃(g)Bpmy1(gi) coth( π

τ
(hm+g))

Kc(gi)

Kv3 =
18LApmW 2k2

w1
µ0

τp2 Lv3(gi) =
λ̃(gi) coth2( π

τ
(hm+g))

K2
c (gi)

,

(3)

and

Kh =
12
√

2Wkw1pmLAσmµ0 sinh(π
τ
hm) sin(

πτp

2τ
)

πp
,

Lh(gi) =
λ̃(gi)

Kc(gi) sinh(π
τ
(hm + gi))

,

Kc(gi) =
t1

t1 − gγ1(gi)
,

γ1(gi) =
4

π





b0

2gi

arctan

(

b0

2gi

)

− ln

√

1 +

(

b0

2gi

)2


 ,

λ̃(gi) = 1 − b2
0

4t1(gi + b0
2 + hm

µrec
)
.

(4)

We refer the reader to [10] for the derivation of the expressions in (1)-(4). In the force expressions (1), (2), id and iq represent

the direct and quadrature currents applied to the three-phase winding of the stator, while gi is the vertical air-gap, i.e., the

distance between the mover and stator (see Fig. 2). Notice that the horizontal force F i
H is independent of the horizontal

displacement of the mover and thus, in particular, the model neglects the cogging force due to the slots in the stator. In [12,

Section V-C] it was shown experimentally that the cogging force of our PMLSMs is negligible for air-gaps larger than 15

mm, and since the air-gap range of the 5DOF device is 18 to 33 mm, the absence of the cogging force in F i
H is justified. The

physical parameters in the above equations are given in Table I.

TABLE I
PHYSICAL PARAMETERS FOR THE 5DOF MAGLEV SYSTEM.

Parameter Symbol Value

Hardware dimensions - 1.2m×1.2m×0.3m

Motor pair separation - 400 mm

Stator slot width b0 12.7 mm

Stator slot pitch t1 19.05 mm

Turns per phase W 900

Coil pitch wc 57.15 mm

Stator pole pairs p 3 per motor

Stator slots z1 18 per motor

PM height hm 5 mm

PM length LA 50 mm

Number of PM’s pm 4 per motor

Pole pitch τ 57.15 mm

PM width τp 28.58 mm

PM coercivity Hc 875400 A/m

X-axis mover mass Mx 10.6 kg

Z-axis mover mass Mz 8.6 kg

Y-axis mover mass My 6.9 kg

Radius to movers r 39.7 cm

X-axis inertia Ix 0.5268 kgm2/rad

Z-axis inertia Iz 0.5268 kgm2/rad

In order to model the motion of the platen, we note that its center of mass (CM) coincides with its geometric center, and

define the state vector (x1, . . . , x10) as in Table II. The state x1, the vertical displacement of the center of mass of the platen,

corresponds to the average air-gap of the four PMLSMs, which we have denoted g1, . . . , g4. Therefore, letting r denote the

distance from the center of the platen to the center of the movers, we have

g1 = x1 − r sinx7, g2 = x1 + r sin x9,
g3 = x1 + r sinx7, g4 = x1 − r sin x9.

(5)
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TABLE II
STATE VARIABLES AND THEIR PHYSICAL MEANING FOR THE 5DOF MAGLEV SYSTEM.

State variable Units Description

x1 m Vertical displacement of CM

x2 m/s Vertical velocity of CM

x3 m X-axis displacement of CM

x4 m/s X-axis velocity of CM

x5 m Z-axis displacement of CM

x6 m/s Z-axis velocity of CM

x7 rad Rotation angle about the X-axis (φ)

x8 rad/s Angular velocity about the X-axis

x9 rad Rotation angle about the Z-axis (θ)

x10 rad/s Angular velocity about the Z-axis

We combine the horizontal forces as follows. We impose that the quadrature currents for Motors 2 and 4 (lying along the

X-axis) be equal, and we denote ux the resulting quadrature current. Similarly, we impose that the quadrature currents for

Motors 1 and 3 (lying along the Z-axis) be equal to a current uz . We then let the direct currents id be redefined as inputs

uy1, . . . , uy4 for Motors 1 to 4, respectively. We thus have six control inputs, ux, uz , uy1, . . . , uy4. The force diagram of the

5DOF system is depicted in Fig. 1.

In order to derive a model for the translational dynamics of the platen (subsystem with states x1, . . . , x6), we must account

for the fact that, due to the configuration of the linear guides, the components that move along the X, Y, and Z-axes have

different masses. Accordingly, let Mx denote the mass of all components mounted on top of the X-axis linear guide (including

the guide itself). Similarly, let My and Mz denote the masses of all components mounted on top of the Y-axis and Z-axes

linear guides, respectively (including the guides themselves). Referring to Fig. 1, the X-axis guides carry the largest mass,

while the Y-axis guides carry the least mass, so Mx > Mz > My . Using the expressions for the forces produced by one

PMLSM in (1) and (2) and the force diagram in Fig. 1, we obtain the following model of the translational dynamics

ẍ1 = G − Cv1Lv1(g3) − Cv1Lv1(g1) − Cv1Lv1(g2)−
Cv1Lv1(g4) + Cv2Lv2(g3)uy3 + Cv2Lv2(g1)uy1+
Cv2Lv2(g2)uy2 + Cv2Lv2(g4)uy4−
(Cv3Lv3(g3) + Cv3Lv3(g1))u

2
z−

Cv3Lv3(g3)u
2
y3 − Cv3Lv3(g1)u

2
y1−

(Cv3Lv3(g2) + Cv3Lv3(g4))u
2
x−

Cv3Lv3(g2)u
2
y2 − Cv3Lv3(g4)u

2
y4

ẍ3 = −Cx

(

Lh(g2) + Lh(g4)
)

ux,
ẍ5 = −Cz

(

Lh(g3) + Lh(g1)
)

uz,

(6)

where G denotes the acceleration due to gravity, Cvi = Kvi/My , i = 1, 2, 3, Cx = Kh/Mx, and Cz = Kh/Mz .

The (φ, θ) rotations are controlled by exerting different normal forces at opposite ends of the apparatus using Motor pairs

1/3 and 2/4, thus applying a torque about the horizontal axes. Letting Ix and Iz denote the moments of inertia about the X-axis

and Z-axis (by symmetry, Ix = Iz), and krot = rMy/Ix, and referring to Fig. 1, we obtain the model of the rotation dynamics

ẍ7 = krot

(

− Cv1Lv1(g3) + Cv2Lv2(g3)uy3−
Cv3Lv3(g3)u

2
y3 + Cv1Lv1(g1)−

Cv2Lv2(g1)uy1 + Cv3Lv3(g1)u
2
y1−

(Cv3Lv3(g3) − Cv3Lv3(g1))u
2
z

)

− ksφx7

ẍ9 = krot

(

− Cv1Lv1(g2) + Cv2Lv2(g2)uy2−
Cv3Lv3(g2)u

2
y2 + Cv1Lv1(g4)−

Cv2Lv2(g4)uy4 + Cv3Lv3(g4)u
2
y4−

(Cv3Lv3(g2) − Cv3Lv3(g4))u
2
x

)

− ksθx9.

(7)

The output of the system is y =
[

x1 x3 x5 x7 x9

]⊤
. The constants ksφ and ksθ in (7) represent torsional spring forces

opposing the X-axis rotation and Z-axis rotation, respectively, modeling the effect of the Y-axis linear guides opposing rotations

of the platen.

The model (6), (7) is not control-affine since the controls enter nonlinearly in ẋ2, ẋ8, and ẋ10. A number of parameters

in (6), (7) are either unknown or are not known with sufficient accuracy. We estimated them using an adaptation of the

parameter estimation technique presented in [11]. The details are omitted due to space limitations.
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III. NONLINEAR CONTROLLER DESIGN

In this section, we design a controller to track steps and sinusoidal reference signals with a given frequency ω0. Before

we can proceed with controller design, we eliminate the overactuation of the system and we show that the model can be

significantly simplified by omitting terms of negligible magnitude.

Referring to the full 5DOF model in (6), (7), the horizontal dynamics (subsystem with states x3, . . . , x6) have two control

variables, ux and uz for two DOFs. The vertical and rotational dynamics (states x1, x2, x7, . . . , x10) provide the remaining

three DOFs with a total of four control variables: uy1, . . . , uy4. Thus, the subsystem comprising the vertical and rotational

dynamics is overactuated. To eliminate overactuation we define new control inputs (vy, vφ, vθ) as follows,

uy1 = (vy + vφ)/2, uy2 = (vy − vθ)/2,
uy3 = (vy − vφ)/2, uy4 = (vy + vθ)/2,

(8)

where now, roughly speaking, vy , vφ, and vθ are mostly responsible for the vertical translation, the X-axis rotation, and the

Z-axis rotation, respectively. Applying the above input transformation to system (6), (7), we get a 5DOF model with inputs

(vy, vφ, vθ, ux, uz) of the form

ẍ1 = a1(x1, x7, x9, ux, uz) + a2(x1, x7)vφ+
a3(x1, x7, x9)vy + a4(x1, x7)vφvy+
a5(x1, x7)v

2
φ + a6(x1, x7, x9)v

2
y+

a7(x1, x9)vθ + a8(x1, x9)vyvθ + a9(x1, x9)v
2
θ

ẍ3 = −Cx

(

Lh(g2) + Lh(g4)
)

ux

ẍ5 = −Cz

(

Lh(g3) + Lh(g1)
)

uz

ẍ7 = b1(x1, x7, uz) + b2(x1, x7)vφ + b3(x1, x7)vy+
b4(x1, x7)vφvy + b5(x1, x7)v

2
φ + b6(x1, x7)v

2
y

ẍ9 = c1(x1, x9, ux) + c2(x1, x9)vθ + c3(x1, x9)vy+
c4(x1, x9)vyvθ + c5(x1, x9)v

2
θ + c6(x1, x9)v

2
y

y = [ x1 x3 x5 x7 x9 ]⊤,

(9)

where the functions ai, bj , ck, i = 1, . . . 9, j = 1, . . . , 6, k = 1, . . . , 6 are straightforwardly defined using the expressions for

g1, . . . , g4 in (5), the model (6), (7), and the input transformation (8). We now have a total of five inputs to control five DOFs.

From now on, we will simply write a1, . . . , a9, b1, . . . , b6, and c1, . . . , c6, omitting the arguments of these functions for ease

of notation.

Numerical evaluation of the functions ai, bj , ck reveals that certain terms in (9) are much smaller in magnitude than others

over the operating range. This is illustrated for the functions ai in Fig. 3. Fig. 3(a) depicts the result of maximizing the

functions a2, . . . , a9 with respect to the rotation angles x7 and x9 while setting ux = uz = 0,

max
x7 ∈ [−0.003, 0.003]
x9 ∈ [−0.014, 0.014]

ux = uz = 0

|ai|, i = 2, . . . , 9, (10)

over an air-gap range of 20 mm to 30 mm. Fig. 3(b) zooms in on the curves with the smallest magnitudes in Fig. 3(a) to

give a better perspective on their relative magnitudes. The function a1 is not shown since its magnitude is on the order of

103, which is much larger than the other functions shown. Analogous considerations for the functions bj and ck lead to the

conclusion that the vertical dynamics and rotational dynamics are dominated by certain functions: a1, a2, a3, a7 dominate the

vertical dynamics, b1, b2, b3 dominate the X-axis rotation dynamics, and c1, c2, c3 dominate the Z-axis rotation dynamics; the

functions a4, a5, a6, a8, a9, b4, b5, b6, c4, c5, and c6 are so much smaller in magnitude that they appear to be negligible. This

consideration leads us to replace the model (9) with the simplified model













ẍ1
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ẍ5
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ẍ9




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





=


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







a1

hx(x1, x9)ux
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b1
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











+













a3 a2 a7

0 0 0
0 0 0
b3 b2 0
c3 0 c2

















vy

vφ

vθ



 , (11)

where
hx(x1, x9) = −Cx

(

Lh(g2) + Lh(g4)
)

,

hz(x1, x7) = −Cz

(

Lh(g3) + Lh(g1)
)

,

with gi defined in (5). Besides the numerical considerations above, a theoretical justification for this model simplification is
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Fig. 3. Magnitude of ai, i = 2, . . . , 9 functions over a range of air-gaps and maximized with respect to rotation angles x7 and x9. It can be seen that the
functions a2, a3, and a7 dominate in magnitude a4, a5, a6, a8, and a9.

found in [13]. Consider the nominal system (11) and the following feedback linearizing transformation,





vy

vφ

vθ



 =





a3 a2 a7

b3 b2 0
c3 0 c2





−1 



wy − a1

wφ − b1

wθ − c1



 ,

[

ux

uz

]

=







− wx

Cx

(

Lh(g2) + Lh(g4)
)

− wz

Cz

(

Lh(g3) + Lh(g1)
)






,

(12)

where wy, . . . , wθ are new control inputs. The state-dependent matrix in (12) can be numerically shown to be invertible in

the range of operation of the system and the denominators in the expressions for ux and uz in (12) are non-zero within the

operating range. The closed-loop system is comprised of five decoupled double-integrators; the input is (wy, wx, wz, wφ, wθ)
and the output is y,

ẍ1 = wy ẍ3 = wx ẍ5 = wz ẍ7 = wφ ẍ9 = wθ

y = [x1 x3 x5 x7 x9]
⊤.

(13)

We now apply the output regulation theory of [14], [15], [16] to (13). The control objective is to stabilize set-point references,

track sinusoidal references with fixed frequency ω0, or a combination of the two. Since (13) comprises five decoupled linear

systems, each with two poles at the origin, it would be sufficient, in principle, to use internal models with poles at ±iω0.

In order to provide robustness against constant input disturbances, we also include a pole at the origin. The output regulator

incorporates five copies of the following internal model with poles at ±iω0 and 0,

ξ̇s = Φξs + Nes, ws = Γξs, s ∈ {’y’, ’x’, ’z’, ’φ’, ’θ’}, (14)

where

Φ =





0 1 0
0 0 1
0 −ω2

0 0



 , N =





0
0
1



 , Γ = [ 1 0 0 ], (15)

and ey = x1 − xref
1 , ex = x3 − xref

3 , ez = x5 − xref
5 , eφ = x7 − xref

7 , eθ = x9 − xref
9 denote the tracking errors. The regulator

design is completed by letting

ws = Ks[es ės ξs]
⊤ + Γξs, s ∈ {’y’, ’x’, ’z’, ’φ’, ’θ’}. (16)

The state feedback controller gains Ky,Kx,Kz,Kφ,Kθ are chosen to stabilize the closed-loop system when the reference

signals xref
1 , . . . , xref

5 are set to zero. The derivative signals ėy, . . . , ėθ are estimated from the measured ey, . . . , eθ by means of

linear filters, as in [11]. We also include saturation and antiwindup compensators for the horizontal X-axis and Z-axis regulators

since large step references for the horizontal translations result in large translational accelerations. These large accelerations

demand a larger sustained current from the power supplies, which are only capable of providing 5 A of sustained current and

7 A peak current. Thus, when large horizontal steps are commanded, the amplifiers’ supply of direct current, which generates

the PMLSM normal forces, drops significantly. Letting sat7(u) denote the saturation function with saturation limits at ±7, the
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antiwindup modifications for the X and Z-axes internal models are defined as

ξ̇s = Φξs + Nes + Es

(

sat7(us) − us

)

, ws = Γξs, s ∈ {’x’, ’z’}, (17)

where Ex and Ez are antiwindup compensator gains that are manually tuned to give the desired antiwindup performance

(stability and minimal overshoot) for aggressive internal model regulator design (fast transients, minimal steady-state error).

The final controller is given by (8), (12), (14), (16), and (17).

IV. EXPERIMENTAL RESULTS

As mentioned in Section II, the range of rotation about the X-axis is smaller than that about the Z-axis due to the asymmetry

of the vertical guides. Moreover, the torsional spring constant associated with X-axis rotation is large, which means larger

currents are required to perform rotations. Therefore, we will implement a regulator for the X-axis rotation to regulate that

angle to zero and only show experimental results for set-point stabilization and sinusoidal tracking for the Z-axis rotation,

which has a much larger range of operation and smaller torsional spring constant. We stress that experimental results for the

Z-axis rotation give similar results to those associated with the X-axis rotation, the main differences being a degradation in

performance and reduced range of X-axis rotations. We also stress that once the linear guides are removed from the apparatus,

the adverse effect of linear guides on rotations will disappear and there should be no difference between X-axis and Z-axis

rotations.

A. Set-Point Stabilization

Recall that the controller given by (12), (14), (16), and (17) simultaneously achieves set-point stabilization and sinusoidal

tracking for the nominal system (11). We begin by performing various set-point stabilization experiments. The values chosen

for Ky,Kx,Kz,Kφ,Kθ were generated using LQR design with manual tuning of the weight matrices. We choose performance

specifications for the 3DOF translations (XYZ) to match the specifications given for the 3DOF system in [11], so that we

can compare the 5DOF system performance with the 3DOF system in [11]. The performance goals of the set-point tracking

controller are as follows:

(1) The tracking controller should be able to stabilize set-points within the operating range of [20 mm, 30 mm] for the

Y-axis translation, [-30 mm, 30 mm] for the X and Z-axis translations, and [-10 mrad, 10 mrad] for the Z-axis rotation. The

controller must stabilize steps as large as 5 mm for the Y-axis, 30 mm for the X and Z-axis, and 10 mrad for the Z-axis

rotation.

(2) The overshoot (%OS) should ideally be less than 30% for steps within the limits mentioned above.

(3) For translation set-points within the specified limits, let ts denote the time it takes for the tracking error to go and stay

below 0.1 mm, and tenc denote the time it takes for the tracking error to reach encoder resolution of 10 µm. We want ts < 3
sec and tenc < 10 sec.

(4) For Z-axis rotational set-points within the specified limits, let ts denote the time it takes for the tracking error to go and

stay below 0.1 mrad and tenc the time it takes to reach encoder resolution of 20 µrad. We want ts < 3 sec and tenc < 10 sec.

We begin by performing set-point stabilization for the 3DOF translational subsystem (states x1, . . . , x6). The rotation

controls are disabled (vφ = vθ = 0) to ensure that all four motors produce equal normal forces to lift the platen evenly. To

determine the regulator gains, we tune LQR weight matrices and the resulting closed-loop poles of the (ey, ėy, ξy) subsystem

are [−173.2,−2.61 ± i 5.48,−2.16 ± i 1.77] and the closed loop poles of the (ex, ėx, ξx) and (ez, ėz, ξz) subsystems are

[−38.73,−3.2± i 5.89,−2.69± i 2.23]. The manually tuned antiwindup compensator gains are Ex = Ez = 7×10−5[1 1 1]⊤.

The air-gap x1 and absolute air-gap error |x1 − xref
1 | are shown in Fig. 4. The transient performance is well within

specifications, even when the system is subjected to a large step reference of 7 mm. The results for horizontal displacements

x3 and x5 are entirely analogous and are omitted due to space limitations. The controller gains can be tuned to reduce the

settling time at the expense of increased overshoot. To reduce the overshoot for step references we can choose to accept a

longer settling time or reduce the step size. This trade-off between overshoot and settling time was also observed in [11]. The

performance of the translational subsystem matches the results obtained in [11] for the 3DOF translational system and meets

all performance specifications.

Next, we control the rotation about the Z-axis. We restrict the horizontal motion of the platen in hardware so that the platen

can only move along the vertical Y-axis and rotate. Since we cannot fix the center of mass of the platen without also restricting

rotations, we use the Y-axis regulator to maintain a constant air-gap of 25 mm. Throughout these tests there is negligible

deviation from the desired air-gap. After tuning the rotation regulator gains using LQR, the closed-loop poles of the (eθ, ėθ, ξθ)
subsystem are [−200,−2.81±i 5.58,−2.19±i 1.82]. A series of step commands are issued to the Z-axis rotation (angle θ), and

the results are shown in Fig. 5. Although we are able to achieve steady-state errors of under 0.1 mrad in under 3 seconds (ts)

for 5 mrad steps, we are not able to achieve this same performance for 10 mrad steps. The unmodeled effects of the vertical

guides on the rotational dynamics and the large step sizes are the main reasons why we fail to meet this particular performance

specification. However, the steady-state error for 10 mrad steps does reach 0.1 mrad in under 5 seconds so the performance is

considered acceptable. For all steps up to 10 mrad the steady-state error reaches encoder resolution in under 10 seconds (tenc),
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Fig. 5. Z-axis rotation response and error for 1DOF set-point stabilization. In response to a 10 mrad step, the system has an maximum overshoot of 2.2
mrad, or 22%, and the absolute tracking error settles below 0.1 mrad in less than 5 sec, and to encoder resolution of 20 µrad in less than 10 sec, but it
occasionally fluctuates about 20 µrad. This fluctuation is likely due to the adverse effect of the Y-axis guides on rotational dynamics.

but occasionally fluctuates about the rotational encoder resolution. This is likely due to the unmodeled effects of the vertical

guides on the rotational dynamics. Removal of the supporting guides will eliminate the undesired effects of the vertical guides

and likely improve the performance of the rotational dynamics. Higher resolution encoders should also significantly improve

the steady-state error. Similar set-point stabilization experiments for the X-axis rotation (results omitted) exhibit a degraded

performance and a smaller range of operation compared to the Z-axis rotation, which is due to the increased effects of the

vertical guides opposing rotations (see discussion in Section II). As with translational set-point stabilization, there is a trade-off

between overshoot and settling time; by tuning our controller gains we can choose to minimize one or the other.

The results of all set-point stabilization experiments are summarized in Table III.

B. Sinusoidal Tracking

We apply sinusoidal reference signals with a frequency ω0 = 1.5π rad/s; this frequency was chosen to match the frequency

used in [11] so that the results of the 5DOF system can be compared to the 3DOF results in [11]. Using the same controller
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TABLE III
SET-POINT STABILIZATION RESULTS.

DOF %OS ts tenc

Y-ax. translation <30% <3 sec <10 sec

X-ax. translation <30% <3 sec <10 sec

Z-ax. translation <30% <3 sec <10 sec

Z-ax. rot. (5 mrad steps) <30% <3 sec <10 sec

Z-ax. rot. (10 mrad steps) <30% 3 to 5 sec <10 sec

gains developed for set-point stabilization, the following reference commands are used to actuate the Y-X/Z-axis translations,

xref
1 (t) = 0.005 sin(1.5πt − π/2) + 0.025,

xref
3 (t) = 0.03 sin(1.5πt − π/2),

xref
5 (t) = 0.03 sin(1.5πt)

xref
7 (t) = 0,

xref
9 (t) = 0.

The curve t 7→ (xref
1 (t), xref

3 (t), xref
5 (t)) is an ellipse in the XYZ space. Fig. 6 shows the system response in XYZ coordinates

and the path generated by the reference trajectory.
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Fig. 6. 3DOF sinusoidal tracking results shown in 3-D XYZ coordinates.

It is clear from the sinusoidal tracking results that the controller is able to track the given sinusoidal references. To gauge

how well the controller performs we can measure the average steady-state position errors (|xref
1 (t)−x1(t)|, |xref

3 (t)−x3(t)|, and

|xref
5 (t)−x5(t)|) over a 60 second trial for each axis. The average position errors for the Y, X, and Z-axis are xerr

1 = 33.04µm,

xerr
3 = 78.33µm, and xerr

5 = 68.25µm. These results show a reduction in the steady-state tracking errors compared to the 3DOF

sinusoidal tracking results in [11].

Next, we test the tracking performance when the three translations and the Z-axis rotation are simultaneously subjected to

sinusoidal references,
xref

1 (t) = 0.005 sin(1.5πt − π/2) + 0.025,
xref

3 (t) = 0.03 sin(1.5πt − π/2),
xref

5 (t) = 0.03 sin(1.5πt),
xref

7 (t) = 0,
xref

9 (t) = 0.01 sin(1.5πt).

Fig. 7 shows the response of the air-gap displacement x1, and Fig. 8 shows the response of the Z-axis rotation angle. The

responses for the horizontal displacements x3 and x5 are entirely analogous to the x1 response, and are omitted due to

space limitations. The average errors measured over 60 seconds are xerr
1 = 47.03µm, xerr

3 = 77.98µm, xerr
5 = 76.85µm, and
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xerr
9 = 123.9µrad.
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Fig. 7. Y-axis response and error for 4DOF sinusoidal tracking. The average absolute tracking error is 47.03 µm.
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Fig. 8. Z-axis rotation response and error for 4DOF sinusoidal tracking. The average absolute tracking error is 123.9 µrad.

With the system tracking sinusoids in 4DOF, the average tracking errors for the horizontal translations and the Z-axis rotation

are within 5% of the previously measured values. The vertical tracking error, however, worsens significantly (although it is

still by far the lowest average error). This can be attributed to the addition of a rotation, which is highly coupled with the

vertical translation. Again, removal of the vertical guides may play a significant role in reducing the tracking error. Finally,

the stability of the closed-loop system, while tracking sinusoidal references covering the operating range, further validates the

model simplification (11).

V. CONCLUSIONS

In this paper, the problem of controlling translations and rotations (pitch and roll) of a magnetically levitated positioning

system using iron-cored PMLSMs has been addressed. The internal model regulator controller design successfully stabilizes

set-point references and tracks sinusoidal references of a given frequency for XYZ translations and rotations about the X-axis

and Z-axis. The results indicate that it is possible to remove the linear guide system supporting the platen and achieve fully

contactless levitation with 5 degrees-of-freedom. It is noted that we have not addressed the issue of controlling the yaw of

the platen. Controlling the yaw (or at least constraining this rotation) is necessary in order to ensure the current apparatus

can operate without supporting linear guides. Control of the yaw rotation as well as the implementation of contactless sensing

equipment for output measurement will be the subject of future research.
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