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Abstract

Reduction theorems provide a framework for stability analysis that consists in breaking down a complex problem into a
hierarchical list of subproblems that are simpler to address. This paper investigates the following reduction problem for time-
varying ordinary differential equations on Rn. Let Γ1 be a compact set and Γ2 be a closed set, both positively invariant and
such that Γ1 ⊂ Γ2 ⊂ Rn. Suppose that Γ1 is uniformly asymptotically stable relative to Γ2. Find conditions under which Γ1 is
uniformly asymptotically stable. We present a reduction theorem for uniform asymptotic stability that completely addresses
the local and global version of this problem, as well as two reduction theorems for uniform stability and either local or global
uniform attractivity. These theorems generalize well-known equilibrium stability results for cascade-connected systems as
well as previous reduction theorems for time-invariant systems. We also present Lyapunov characterizations of the stability
properties required in the reduction theorems that to date have not been investigated in the stability theory literature.
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1 Introduction

The reduction problem was originally posed by P.
Seibert in 1969 in the context of semidynamical sys-
tems [29,30]. In its most elementary formulation it con-
cerns a differential equation with locally-Lipschitz right-
hand side,

ẋ = f(x), x ∈ Rn, (1)

with no particular structure, and two nested subsets of
the state space, Γ1 ⊂ Γ2, that are both positively invari-
ant and have the property that Γ1 is asymptotically sta-
ble relative to Γ2. Loosely speaking, this means that so-
lutions generated by (1) starting from initial states that
are restricted to lie in Γ2 converge, and remain close, to
the set Γ1. Then, the problem consists in finding condi-
tions under which Γ1 is asymptotically stable, so in par-
ticular attractive for solutions starting away from the set
Γ2. In addition, several refinements may be of interest;
for instance, to admit arbitrarily large initial conditions,
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as well as versions addressing the properties of stability
and attractivity, in place of asymptotic stability.

Such problems are far from being of pure academic
interest. Their solution leads to the reduction theorems
on stability, which are technical statements that form a
framework of analysis and design of dynamical systems,
based on breaking down a complex problem into a pri-
oritized sequence of simpler sub-problems —one step at
a time. Instances of following such a natural methodol-
ogy in popular control methods such as backstepping [15]
and sliding-modes [37], as well as in stability theory for
cascaded systems,

ẋ1 = f1(x1, x2) (2a)

ẋ2 = f2(x2). (2b)
This class of systems well illustrates the essence of the
reduction problem. The basic (stability analysis) prob-
lem for the cascade (2) is to find conditions under which
asymptotic stability of {x1 = 0} for f1(x1, 0) and of
{x2 = 0} for f2(x2) leads to conclude that {x = 0}
is asymptotically stable for (1) with f := [f⊤

1 f⊤
2 ]⊤.

The extensive literature on cascaded systems originates,
for time-invariant systems, with work by Vidyasagar
in [38] focusing on local asymptotic stability of the zero
equilibrium, followed by research aimed at establish-
ing global results, e.g., [32,28,23,18,3,11,21,35]. Now, the
stability questions investigated in the literature on time-
invariant cascaded systems are, as a matter of fact, re-
duction problems such as asking under which conditions
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Γ1 = {(x1, x2) = (0, 0)} is asymptotically stable pro-
vided that so is Γ2 = {(x1, x2) : x2 = 0}.

Stability analysis of cascaded systems is also impor-
tant for control design; for instance, when one consid-
ers not only the control of a plant itself, but also of the
actuators [26]. The central idea consists in constructing
a controller that ensures that the systems trajectories
converge asymptotically to an invariant manifold having
the property that trajectories contained in it converge
to the origin (or a set for that matter).

This rationale however, is not bound to cascaded sys-
tems. For instance, it is also reminiscent of the well-
known result in [2] that a passive system is stabilizable
via static output feedback if it is zero-state detectable
(namely, if the state trajectories converge to the origin
provided that so does the output). This connection was
explored in [6]. Another clear example where the same
rationale holds is the Slotine & Li Controller [33], one
of the first tracking controllers for robot manipulators
ensuring global asymptotic stability. The operation and
stability properties of this controller can be naturally
understood using the reduction viewpoint, and this is
illustrated in Section 5.1.

The motivations to study the reduction problem go
well beyond reinterpreting otherwise well established ar-
guments for cascaded or passive systems, where only two
sets, Γ1 ⊂ Γ2, are involved. Indeed, some control prob-
lems may be conveniently broken down into a prioritized
sequence of more than two elementary sub-problems,
which are then solved separately. That is, in general, the
control specification of asymptotically stabilize a subset
Γ of the state space may be solved by breaking it down in
sub-tasks and defining a suitable collection of nested sub-
sets Γ1 ⊂ · · · ⊂ Γl ⊂ Γl+1:=Rn (a hierarchy of control
specifications), with Γ1 = Γ. Then, by asymptotically
stabilizing Γi relative to Γi+1, for i = 1, . . . , l. The re-
duction theorems allow to recursively deduce the asymp-
totic stability of Γ. Following such premise, in [7] was in-
troduced the hierarchical control framework, which has
direct implications on backstepping control.

Literature on the reduction problem. In [31], Seibert
and Florio proved reduction theorems for stability and
asymptotic stability of compact sets for time-invariant
semidynamical systems. See also work by B.S. Kalitin
and co-workers [10,12]. In [7], the results of [31] were
generalized to closed, non-compact sets under a uniform
boundedness assumption on solutions. That paper also
presents a new reduction theorem for attractivity. The
recent work [20] presents reduction theorems for sta-
bility, attractivity, and asymptotic stability of compact
sets in hybrid dynamical systems. All the results just
mentioned concern time-invariant systems. For time-
varying systems, in [13] Kalitin and Chabour proved
some reduction theorems for uniform stability and uni-
form asymptotic stability of the origin, and used them
to establish such properties using positive-semidefinite
Lyapunov functions. Yet, aside from [13], which is lim-
ited to stability of the origin, the general reduction

problem on stability of closed sets for time-varying
systems remains substantially open. This is what we
address here.

Contributions of this paper. This paper presents a
complete solution to the reduction problem for the time-
varying differential equation

ẋ = f(t, x), (3)

where f : R×Rn → Rn satisfies a uniform Lipschitz con-
tinuity assumption (the Basic Assumption presented in
Section 2). The set Γ1 ⊂ Rn in the reduction is assumed
to be compact, while Γ2 ⊂ Rn is assumed be closed. We
present three reduction theorems for uniform stability
(Theorem 14), uniform attractivity (Theorem 16), and
uniform asymptotic stability (Theorem 18). Both local
and global versions of these properties are characterized.

Crucial for the development of this paper is the elu-
cidation of the relationship between different notions of
uniform stability and attractivity of compact sets for
time-varying systems under the assumption of uniform
Lipschitz continuity. In particular, we establish that uni-
form attractivity is equivalent to uniform asymptotic
stability, see Proposition 9.

All the reduction theorems in the literature reviewed
above rely on notions of stability and attractivity near
a set that are absent in the literature on Lyapunov sta-
bility and, with the exception of Theorem 1 in [13], have
not been given Lyapunov characterizations. This pa-
per presents three Lyapunov characterizations of these
properties. The first is a generalization of Theorem 1
in [13] (see Proposition 25), the second gives a Lyapunov
characterization of a notion of uniform attractivity (see
Proposition 27), and the third gives a characterization
of a notion of uniform attractivity near a set (see Corol-
lary 29).

Thus, together, the reduction theorems and the Lya-
punov characterizations presented in this paper consti-
tute a set of tools allowing one to assess the uniform
asymptotic stability of compact sets using a modular
approach that simplifies the analysis. This fact is illus-
trated in Section 5 through a number of examples. In
particular, we provide a formal stability analysis of the
Slotine & Li controller for fully-actuated robots [33] that
follows faithfully the original intuitive arguments behind
the controller design.

Comparison with existing literature. The papers most
relevant to our work are [31,7,13]. The reduction theo-
rems for uniform stability and uniform (global) asymp-
totic stability presented in this paper recover the results
of [31], which are restricted to time-invariant systems.
The reduction theorem for attractivity, on the other
hand, has no counterpart in [31].

The reduction theorems in [7] involve closed and
non-compact sets and rely on an hypothesis that solu-
tions enjoy a uniform boundedness property. Nonethe-
less, extending the applicability of these theorems to
time-varying systems is by no means straightforward.
For instance, one might consider augmenting the state

2



x with t and correspondingly, system (3) with the
equation ṫ = 1. Then, a reduction problem for the non-
compact sets {(x, t) : x ∈ Γi} ⊂ Rn × R, i = 1, 2, in
the augmented state space would follow naturally. This
approach, however, fails because the solutions of the
system with state (x, t) are unbounded (because t is)
and this violates the hypotheses in [7]. Furthermore,
even if the results of [7] were applicable to the system
with extended state, they would not guarantee unifor-
mity of various stability properties with respect to the
initial time, and an unnecessarily conservative Lipschitz
assumption with respect to t would be automatically
imposed.

Finally, the paper [13] investigates uniform stability
and uniform attractivity of equilibria, rather than com-
pact sets as we do in this paper, and does not present
reduction theorems for attractivity. The proofs of three
results in this paper (Theorem 14, Proposition 25, and
Lemma 31) follow the lines of analogous proofs found
in [13] and are therefore omitted. The interested reader
may find these proofs in the extended version of this pa-
per [19]. Detailed comparisons with the work in [13] are
found in Remarks 15, 19, and 26.

Organization. In Section 2 we present definitions of
relative stability properties and other stability notions.
Section 3 provides a precise formulation of the reduction
problem. In Section 4 we present our reduction theorems
for uniform stability, uniform attractivity, and uniform
asymptotic stability; then, some useful implications of
these theorems; and finally, Lyapunov characterizations
of the key stability properties used in the reduction the-
orems. In Section 5 we provide examples illustrating
the use and rationale of reduction theory, and in Sec-
tion 6 we prove the three reduction theorems. The pa-
per is wrapped up with concluding remarks in Section 7,
and completed with a technical appendix containing the
proof of Proposition 9.

Notation.We denote by 0k, k ∈ N, the vector of zeros
in Rk, and for x ∈ Rk, we denote by ∥x∥:=(x⊤x)1/2, its
Euclidean norm.We denote by S1 the set of real numbers
modulo 2π. If Γ ⊂ Rn is a closed set, we denote by
∥x∥Γ:= infy∈Γ ∥x−y∥ the point-to-set distance of x ∈ Rn

to Γ. If A,B ⊂ Rn, we define d(A,B):= supx∈A{∥x∥B}.
If δ > 0, we let Bδ(Γ):={x ∈ Rn : ∥x∥Γ < δ}. For a set
K, ∂K denotes the boundary of K, int(K) its interior,
and K its closure. For t0 ∈ R, we denote R≥t0 :={t ∈ R :
t ≥ t0}. A function α : [0, r) → R, with r > 0, belongs
to class K if it is continuous, strictly increasing, and
α(0) = 0. A function α : R≥0 → R≥0 belongs to class
K∞ if it belongs to class K and α(s) → ∞ as s → ∞.

2 Preliminaries

We investigate the time-varying differential equa-
tion with state space 3 Rn. With an abuse of no-

3 The main results of this paper continue to hold if the
state space is a smooth complete Riemannian manifold, see
Remark 22.

tation, we denote by x(t, t0, x0) the solution of (3)
satisfying x(t0, t0, x0) = x0, where t0 is the initial
time and x0 is the initial state. The pair (t0, x0) is
called the initial data of the solution. We denote
by T+

t0,x0
the right maximal interval of existence of

the solution with initial data (t0, x0), i.e., the maxi-
mal interval contained in R≥t0 on which the solution
x(t, t0, x0) is defined. If I ⊂ R and U ⊂ Rn, we de-
fine x(I, t0, U):={x(t, t0, x0) ∈ Rn : t ∈ I, x0 ∈ U}.
This set is well-defined as long as I ⊂ T+

t0,x0
for all

(t0, x0) ∈ R× U .

We require the time-varying vector field f in (3) to
possess a basic continuity property, stated in the next
assumption.

Basic Assumption. The function f : R×Rn → Rn is
piecewise continuous with respect to its first argument
and satisfies the following Lipschitz continuity property
with respect to its second argument. For any compact set
K ⊂ Rn, there exists a constant L > 0 such that for each
x1, x2 ∈ K and for each t ∈ R, ∥f(t, x1) − f(t, x2)∥ ≤
L∥x1 − x2∥. △

Remark 1. The Lipschitz continuity requirement in the
Basic Assumption cannot be relaxed as it is a funda-
mental ingredient in the proofs of Proposition 9 and the
main results in Theorems 14, 16, and 18. As a matter
of fact, Lipschitz continuity is often imposed in the lit-
erature on stability of nonlinear time-varying systems.
To illustrate, the Basic Assumption appears in the pa-
per [13] reviewed in the introduction. Further, the pa-
per [17] presents a converse Lyapunov theorem for uni-
form global asymptotic stability of compact sets relying
on the assumption that the function f(t, x) has the form
f(t, x) = f1(x, f2(t)), where f1 : Rn × D → Rn is C1,
D ⊂ Rk is a bounded open set, and f2 : R → D is a
piecewise continuous function whose image is contained
in a compact subset of D. This is a special case of the
Basic Assumption. △

Definition 2 (positive invariance). A set Γ ⊂ Rn is
positively invariant for (3) if x(T+

t0,x0
, t0, x0) ⊂ Γ for all

t0 ∈ R and all x0 ∈ Γ. In other words, for any initial
data (t0, x0) ∈ R × Γ, the solution remains in Γ for all
t ≥ t0 for which the solution is defined. △

Next, we present some notions of uniform stability
and uniform attractivity of compact sets. Table 1 sum-
marizes all stability-related acronyms used in this paper.

Definition 3 (uniform stability and attractivity of com-
pact sets). Consider system (3) and let Γ ⊂ Rn be a
compact set.

• Γ is uniformly stable (US) if for each ε > 0 there exists
δ > 0 such that x(R≥t0 , t0, Bδ(Γ)) ⊂ Bε(Γ) for all
t0 ∈ R.

• Γ is uniformly globally stable (UGS) if Γ is US
and for each δ > 0 there exists ε > 0 such that
x(R≥t0 , t0, Bδ(Γ)) ⊂ Bε(Γ) for all t0 ∈ R.

• Γ is uniformly attractive (UA) if there exists r > 0
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Table 1
List of stability-related acronyms used in the paper.

Acronym Meaning Where

US uniformly stable Defn. 3

UGS uniformly globally stable Defn. 3

UA uniformly attractive Defn. 3

UGA uniformly globally attractive Defn. 3

UAS uniformly asymptotically stable Defn. 3

UGAS uniformly globally asymptotically stable Defn. 3

t0-US t0-uniformly stable Defn. 5

t0-UA t0-uniformly attractive Defn. 5

t0-UGA t0-uniformly globally attractive Defn. 5

t0-UAS t0-uniformly asymptotically stable Defn. 5

t0-UGAS t0-uniformly globally asymptotically stable Defn. 5

LUS-Γ locally uniformly stable near Γ Defn. 10

such that for each ε > 0 there exists T > 0 such that
x(R≥t0+T , t0, Br(Γ)) ⊂ Bε(Γ) for all t0 ∈ R.

• Γ is uniformly globally attractive (UGA) if theUA prop-
erty holds for all r > 0.

• Γ is uniformly asymptotically stable (UAS) if it is US
and UA.

• Γ is uniformly globally asymptotically stable (UGAS)
if it is UGS and UGA.

△

Remark 4. All properties in Definition 3 are analogous
to familiar definitions concerning equilibria found, e.g.,
in [14, Section 4.5], and the definition that a compact
set Γ is UGAS is equivalent to the one found, e.g., in [17].
We remark that the definition implies that T+

t0,x0
= R≥t0

for each x0 ∈ Bδ(Γ) and each t0 ∈ R. This is justified
because if a solution remains in the bounded set Bε(Γ),
then its right-maximal interval of existence is R≥t0 . △

Next, we present some notions of stability and attrac-
tivity of closed, but not necessarily compact sets. The
notion of t0-UA used in this paper is taken from [27].

Definition 5 (t0-uniform stability and t0-uniform at-
tractivity of closed sets). Consider system (3), and let
Γ ⊂ Rn be a closed set.

• Γ is t0-uniformly stable (t0-US) if for each ε > 0 there
exists an open set U ⊂ Rn such that Γ ⊂ U , and for
each x0 ∈ U , for each t0 ∈ R, and each t ∈ T+

t0,x0
, it

holds that x(t, t0, x0) ∈ Bε(Γ).
• The basin of t0-uniform attraction of Γ is the set B(Γ)

of initial states for which solutions converge to Γ uni-
formly with respect to t0:

B(Γ) := {x0 ∈ Rn : (∀ε > 0)(∃T > 0)(∀t0 ∈ R)
t0 + T ∈ T+

t0,x0
and

x(R≥t0+T ∩ T+
t0,x0

, t0, x0) ⊂ Bε(Γ)
}
.

• Γ is t0-uniformly attractive (t0-UA) if Γ ⊂ int(B(Γ)).
• Γ is t0-uniformly globally attractive (t0-UGA) ifB(Γ) =
Rn.

• Γ is t0-uniformly asymptotically stable (t0-UAS) if Γ

is t0-US and t0-UA.
• Γ is t0-uniformly globally asymptotically stable (t0-
UGAS) if Γ is t0-US and t0-UGA.

△
Remark 6. (On US) US is defined for compact sets only
(See Def. 3), but an identical definition may be formu-
lated for closed and unbounded sets. In such case US
implies t0-US, but not vice versa; only for compact sets
these properties are equivalent —see item (i) of Proposi-
tion 9 below. More precisely, for the US property, given
ε > 0 one requires the existence of a neighborhood of
initial states of the form Bδ(Γ) whose associated solu-
tions remain in Bε(Γ) for arbitrary initial times. For the
t0-US property, the neighborhood of initial states is only
required to be an open set U containing Γ. When Γ is
compact, there is no loss of generality in assuming that
U has the form Bδ(Γ), which is the reason why US and
t0-US are equivalent properties for compact sets. On the
other hand, if Γ is unbounded then Γ may be t0-US with-
out being US. This is illustrated in Figure 1, in which it
is showed that solutions starting close to U , or even to Γ
but laying out of U , may leave the band Bε(Γ). Unlike
Definition 3, Definition 5 allows for finite escape times
in the property of t0-US, and this is because the set Γ is
no longer assumed to be compact.

Γ

Bε(Γ)

U

Fig. 1. The set Γ is t0-US but not US.

△
Remark 7 (On UA and t0-UA). The notions of UA and
t0-UA (and their global counterparts) are both uniform
with respect to the initial time t0, but differ in their re-
quirements on initial states. For the UA property, all so-
lutions with initial states in a neighborhood Br(Γ) get
to an arbitrarily small neighborhood Bε(Γ) of Γ in some
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time T > 0 which depends on ε and is independent of
t0. For the t0-UA property, the time T depends on x0

and ε, and is independent of t0. Even when Γ is com-
pact, UA and t0-UA are non-equivalent properties. In
particular, UA implies t0-UA, but not vice versa. If sys-
tem (3) is time-invariant, i.e., f does not depend on t,
the t0-UA property in Definition 5 coincides with the
notion of semi-attractivity in [1], and in this case B(Γ)
defined above coincides with the basin of attraction of
Γ in [1]. Our definition of basin of t0-uniform attrac-
tion does not require the set Γ to be attractive. For in-
stance, in our setting the origin of a saddle point given
by the ODE ẋ1 = −x1, ẋ2 = x2, has a well-defined
basin of attraction given by the x1-axis. While our defi-
nition agrees with ones commonly found in the literature
(e.g., [9,14,27]), some references require Γ to be attrac-
tive, or even asymptotically stable (e.g, [8,39]). In the
latter cases, the basin of attraction is necessarily open,
while B(Γ) is not.

Definition 8 (uniform boundedness of solutions). Let
x0 ∈ Rn. The solutions with initial state x0 are t0-
uniformly bounded if there exists a constant c > 0 such
that x(R≥t0 , t0, x0) ⊂ Bc(0) for all t0 ∈ R. The set of ini-
tial states giving rise to t0-uniformly bounded solutions
is defined as

BS := {x0 ∈ Rn : (∃c > 0)(∀t0 ∈ R)
x(R≥t0 , t0, x0) ⊂ Bc(0)

}
. (4)

△
The next result clarifies the relationships between the

concepts of stability and attractivity in Definitions 3
and 5.

Proposition 9. Consider the differential equation (3),
in which the function f : R × Rn → Rn satisfies the
Basic Assumption. Let Γ ⊂ Rn be a compact, positively-
invariant set. Then:

(i) Γ is US if and only if Γ is t0-US;
(ii) Γ is UAS if and only if Γ is UA;
(iii) Γ is UGAS if and only if Γ is UGA and all solutions

are t0-uniformly bounded, i.e., BS = Rn;
(iv) Γ is UAS if and only if Γ is t0-UAS;
(v) Γ is UGAS if and only if Γ is t0-UGAS and all solu-

tions are t0-uniformly bounded, i.e., BS = Rn.

The proof is provided in Appendix A.

We conclude this section with definitions of local uni-
form stability, local t0-uniform attractivity, and relative
stability and attractivity. These are adaptations of no-
tions found in [31,7,20] to the time-varying setting. Un-
like the stability notions reviewed earlier, the notions in
the next definitions are not widespread in the stability
theory literature, but they turn out to be important for
the formulation and solution of the reduction problem
investigated in this paper.

Definition 10 (local uniform stability of Γ2 near Γ1).
Let Γ1 ⊂ Γ2 be two closed subsets of Rn, with Γ1 com-
pact. The set Γ2 is locally uniformly stable near Γ1 (LUS-
Γ1) for (3) if there exists r > 0 such that for each ε > 0

there exists δ > 0 such that for any t0 ∈ R and any
x0 ∈ Bδ(Γ1) the following implication holds:

(∀t ∈ T+
t0,x0

) (x([t0, t], t0, x0) ⊂ Br(Γ1)

=⇒ x([t0, t], t0, x0) ⊂ Bε(Γ2)) . (5)

△
In other words, the set Γ2 is LUS-Γ1 if solutions start-

ing sufficiently close to Γ1 remain arbitrarily close to Γ2

so long as they are contained Br(Γ1). Roughly speak-
ing, the definition allows solutions starting close to Γ1

to move away from Γ2 only after they have exited the
neighborhood Br(Γ1). We refer the reader to Figure 1
in [20] and the discussion therein for a depiction of this
property.

Definition 11 (t0-uniform attractivity near a set). Con-
sider system (3). The closed set Γ2 ⊂ Rn is t0-uniformly
attractive near Γ1 (t0-UA near Γ1) if there exists r > 0
such that Br(Γ1) ⊂ B(Γ2). △

Definition 12 (relative properties). Consider sys-
tem (3), and let Γ1 ⊂ Γ2 be two closed subsets of Rn,
with Γ1 compact.

• Γ1 is US relative to Γ2 for (3) if for each ε > 0 there ex-
ists δ > 0 such that x(R≥t0 , t0, Bδ(Γ1)∩Γ2) ⊂ Bε(Γ1)
for all t0 ∈ R.

• Γ1 is UGS relative to Γ2 if Γ1 is US relative to Γ2

and for each δ > 0 there exists ε > 0 such that
x(R≥t0 , t0, Bδ(Γ1) ∩ Γ2) ⊂ Bε(Γ1).

• Γ1 is UA relative to Γ2 if there exists r > 0 such
that for each ε > 0 there exists T > 0 such that
x(R≥t0+T , t0, Br(Γ1) ∩ Γ2) ⊂ Bε(Γ1) for all t0 ∈ R.

• Γ1 is UGA 4 relative to Γ2 if r > 0 can be chosen
arbitrarily large in the definition of UA relative to Γ2.

• Γ1 is, respectively, UAS relative to Γ2 or UGAS relative
to Γ2, if Γ1 is US (resp., UGS) and UA (resp., UGA)
relative to Γ2.

△

3 Problem formulation and motivation

Consider the system (3) under the Basic Assumption
and let Γ1 ⊂ Γ2 be two closed, positively-invariant sets,
with Γ1 compact. Suppose that Γ1 is P relative to Γ2,
where P corresponds to any of the following properties:
US, t0-UA, t0-UGA, UAS, or UGAS. In its general form,
the reduction problem consists in finding conditions un-
der which the property P holds in Rn. As it turns out,
however, this problem is meaningful only if it is assumed
that Γ1 is UAS or UGAS relative to Γ2. The reason is that
the properties of uniform stability of Γ1 relative to Γ2

and t0-uniform attractivity of Γ1 relative to Γ2 are frag-
ile, in the sense that, in general, they may fail to hold in
the whole Rn, even if Γ2 possesses strong stability prop-
erties. This was first pointed out in [31,4] in the time-
invariant setting and, for the purpose of motivation, it
is illustrated below with two examples.

4 Similarly, one may define the notion that Γ1 is t0-UA or
t0-UGA relative to Γ2, but it is not used in this paper.

5



Example 1. (Uniform stability of Γ1 relative to Γ2 is
a fragile property). Consider the cascade-connected sys-
tem with state (x1, x2) ∈ R× R,

ẋ1 = x2f(t)

ẋ2 = −x3
2,

where f : R → R is a continuous bounded function such
that f(t) ≥ 1 for all t ∈ R. Let Γ1 = {02} and Γ2 =
{(x1, x2) : x2 = 0}. The set Γ2 is positively invariant
because x2 = 0 is an equilibrium of the subsystem with
state x2. On Γ2, the subsystem with state x1 reduces to
ẋ1 = 0, and therefore Γ1 is US relative to Γ2.

Since the equilibrium x2 = 0 is globally asymptot-
ically stable for the differential equation ẋ2 = −x3

2,
and since the system has no finite escape times, the
set Γ2 is t0-UGAS (in fact, UGAS). Yet, Γ1 is unstable.
To see why this is the case, pick ϵ > 0 and t0 ∈ R,
and let (x1(t), x2(t)) be the solution with initial state
x(t0) = [0 ϵ]⊤. Then x2(t) → 0 at a rate of t−1/2, and
using the fact that x2(t) > 0, we deduce that

x1(t) =

∫ t

t0

x2(τ)f(τ)dτ ≥
∫ t

t0

x2(τ)dτ → ∞ as t → ∞.

Since ϵ > 0 is arbitrary, the origin is unstable.

In conclusion, Γ1 is US relative to Γ2 and Γ2 is t0-
UGAS, but Γ1 is not US in R2 because t 7→ x2(t) is not
integrable. In [24, Theorem 1, condition (10)] it is shown
that the integrability of t 7→ x2(t) plays a crucial role in
the UGS property. △
Example 2. (t0-Uniform attractivity of Γ1 relative
to Γ2 is a fragile property). This example is adapted
from [6]. Consider the time-varying system

ẋ1 = x2(x1 − 1)− x1(x
2
1 + x2

2 − 1)− x2x3 sin(t)
2 (6a)

ẋ2 = −x1(x1 − 1)− x2(x
2
1 + x2

2 − 1) + x1x3 sin(t)
2

(6b)

ẋ3 = −x3
3, (6c)

and let Γ1 = {(x1, x2, x3) = (1, 0, 0)} and Γ2 =
{(x1, x2, x3) : x3 = 0}. As in the previous example,
Γ2 is positively invariant and t0-UGAS. We claim that
Γ1 is t0-UA relative to Γ2. To see why this is the case,
let (r, θ) ∈ R>0 × S1 be polar coordinates for the
(x1, x2) plane, excluding the origin, so that x1 = r cos θ,
x2 = r sin θ. In (r, θ, x3) coordinates, the above time-
varying system reads as

ṙ = −r(r2 − 1) (7a)

θ̇ = 1− r cos(θ) + x3 sin(t)
2 (7b)

ẋ3 = −x3
3. (7c)

In (r, θ, x3) coordinates, the sets Γ1, Γ2 are given

by, respectively, Γ̃1 = {(r, θ, x3) = (1, 0, 0)} and

Γ̃2 = {(r, θ, x3) : x3 = 0}. The dynamics on Γ̃2 are
described by the time-invariant system

ṙ = −r(r2 − 1) (8a)

θ̇ = 1− r cos(θ). (8b)

For each t0 ∈ R, if r(t0) ̸= 0 then the solution r(t) → 1
uniformly with respect to t0, and if θ(t0) ̸= π, then

θ(t) → (0mod 2π). This proves that Γ1 is t0-UA relative
to Γ2. On the other hand, Γ1 is not US relative to Γ2

because the unit circle is a homoclinic orbit of system (8)
(see the left-hand side of Figure 2) which implies that
there are initial states in Γ2 arbitrarily close to Γ1 leading
to solutions following the whole circle before converging
to Γ1.
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Fig. 2. On the left-hand side, the phase portrait of system (8)
in (x1, x2) = (r cos(θ), r sin(θ)) coordinates, representing the
dynamics on Γ2. The set Γ1, an equilibrium, is t0-UA relative
to Γ2, but unstable. On the right-hand side, an orbit of the
time-varying system (6) converging to Γ2, but not to Γ1.

Consider initial data (t0, x0) where t0 ∈ R is arbitrary
and x0 ∈ R3 is a vector whose third component is posi-
tive and whose first two components lie on the unit circle,
i.e., in (r, θ, x3) coordinates, r(t0) = 1, x3(t0) > 0. The
corresponding solution (r(t), θ(t), x3(t)) has the prop-
erty that r(t) ≡ 1, and x3(t) tends to zero with rate
t−1/2. Thus, Equation (7b) may be rewritten as

θ̇ = 1− cos(θ) + µ(t),

where µ(t) ≥ 0 converges to 0 with rate t−1/2. The so-
lution θ(t) satisfies

θ(t) = θ(t0) +

∫ t

t0

1− cos(θ(τ))dτ +

∫ t

t0

µ(τ)dτ

≥ θ(t0) +

∫ t

t0

µ(τ)dτ → ∞ as t → ∞.

Thus, in (x1, x2, x3) coordinates, the solution does not
converge to Γ1, and in fact it converges to the unit circle
on Γ2, see the right-hand side of Figure 2. This proves
that Γ1 is not t0-UA.

In conclusion, Γ1 is t0-UA relative to Γ2 and Γ2 is t0-
UGAS, but Γ1 is not t0-UA in R3. △

We are now ready to precisely state the reduction
problem.

Reduction Problem. Suppose that Γ1 is UAS or UGAS
relative to Γ2. Find conditions under which a property
P∈ {US, t0-UA, t0-UGA, UAS, UGAS} holds in Rn. △

Remark 13. Note that in the list of properties P of in-
terest, we did not include uniform attractivity (UA). The
reason is that, by Proposition 9, uniform attractivity of
compact sets is equivalent to uniform asymptotic stabil-
ity, therefore there is no need to state a separate reduc-
tion problem for uniform attractivity. The t0-uniform
attractivity property (t0-UA), on the other hand, is com-
plementary to uniform stability (US) in that, together,
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these two properties are equivalent to uniform asymp-
totic stability (see Proposition 9, parts (i) and (iv)). An
analogous remark holds for the global version of these
properties. △

4 The reduction theorems

First, we present three reduction theorems for the
properties of uniform stability, t0-uniform attractivity,
uniform attractivity, and their global counterparts for
time-varying systems. Then, we present useful conse-
quences of these theorems. For clarity of exposition, the
proofs of the main statements are provided in Section 6.

4.1 Main statements for time-varying systems

Our first theorem generalizes [13, Lemmas 1 and 2]
on stability of the origin to the setting in this paper.

Theorem 14 (Reduction theorem for uniform stabil-
ity). Consider the time-varying system (3) under the
Basic Assumption. Let Γ1 be a compact set and Γ2 be a
closed set, both positively invariant and such that Γ1 ⊂
Γ2 ⊂ Rn. Then Γ1 is US if

(i) Γ1 is UAS relative to Γ2, and
(ii) Γ2 is LUS-Γ1.

Remark 15. The proof of Theorem 14 follows similar
lines as the proofs of [13, Lemmas 1 and 2]. In turn,
the proofs in [13] extend to the time-varying setting an
argument established by Seibert and Florio in [31]. Thus,
even though Theorem 14 is original and has interest of
its own (below, in the proof of necessity of Theorem 18,
it is shown that assumption (ii) is a necessary condition
for Γ1 to be US), the proof is omitted. △
Theorem 16 (Reduction theorem for t0-uniform
(global) attractivity). Consider the time-varying sys-
tem (3) under the Basic Assumption. Let Γ1 be a com-
pact set and Γ2 be a closed set, both positively invariant
and such that Γ1 ⊂ Γ2 ⊂ Rn. Assume that

(i) Γ1 is UAS relative to Γ2,
(ii) Γ2 is t0-UA near Γ1, and
(iii) there exists δ > 0 such that the set

Kδ:=
⋃
t0∈R

x(R≥t0 , t0, Bδ(Γ1))

is compact and such that Kδ ∩ Γ2 ⊂ B(Γ1).

Then, Γ1 is t0-UA and Bδ(Γ1) ⊂ B(Γ1).

Moreover, if

(i)’ Γ1 is UGAS relative to Γ2, and
(ii)’ Γ2 is t0-UGA,

then all initial states giving rise to t0-uniformly bounded
solutions are contained in the basin of t0-uniform attrac-
tion of Γ, i.e., BS ⊂ B(Γ1). In particular, if all solutions
of (3) are t0-uniformly bounded, i.e., BS = Rn, then Γ1

is t0-UGA.

Theorem 16 is proved in Section 6.1.

Remark 17. Assumption (ii) is a necessary condition
for Γ1 to be t0-UA. Indeed, since Γ1 ⊂ Γ2, B(Γ1) ⊂
B(Γ2). If Γ1 is t0-UA, then by definition Γ1 ⊂ intB(Γ1) ⊂

intB(Γ2). Since Γ1 is compact, the latter inclusion im-
plies that there exists r > 0 such that Br(Γ1) ⊂ B(Γ2),
and thus Γ2 is t0-UA near Γ1. Similarly, Assumption (ii)’
is necessary for Γ1 to be t0-UGA. Assumption (iii) is hard
to check in general, but the first part of Theorem 16,
which asserts that Γ1 is t0-UA, is useful to establish other
statements, such as the first one in Theorem 18 below.

Theorem 18 (Reduction theorem for uniform (global)
asymptotic stability). Consider the time-varying sys-
tem (3) under the Basic Assumption. Let Γ1 be a compact
set and Γ2 be a closed set, both positively invariant and
such that Γ1 ⊂ Γ2 ⊂ Rn. Then Γ1 is UAS if and only if

(i) Γ1 is UAS relative to Γ2,
(ii) Γ2 is LUS-Γ1, and
(iii) Γ2 is t0-UA near Γ1.

Moreover, Γ1 is UGAS if and only if

(i)’ Γ1 is UGAS relative to Γ2,
(ii) Γ2 is LUS-Γ1,

(iii)’ Γ2 is t0-UGA, and
(iv) all solutions are t0-uniformly bounded, i.e., BS =

Rn.

Finally, if assumptions (i)’, (ii), and (iii)’ hold, then Γ1

is UAS and all initial states giving rise to t0-uniformly
bounded solutions are contained in the basin of t0-uniform
attraction of Γ, i.e., BS ⊂ B(Γ1).

Theorem 18 is proved in Section 6.2.

Remark 19. Lemma 3 in [13] establishes sufficiency in
the special case of Theorem 18 in which Γ1 is the origin.
The lemma in question, however, does not establish ne-
cessity of the various assumptions and it does not char-
acterize the basin of attraction of the origin, as Theo-
rem 18 does for the set Γ1. Moreover, the proof of suffi-
ciency of Theorem 18 presented in Section 6.2 is differ-
ent than the proof of [13, Lemma 3] because we leverage
the reduction theorem for t0-uniform attractivity, The-
orem 16, which is not present in [13]. △

Remark 20. Theorems 14, 16, and 18 may be used
recursively to analyze the stability of chains of nested
closed positively invariant sets Γ1 ⊂ · · · ⊂ Γk ⊂ Rn in
which Γ1 is compact. This was done in the context of
the hierarchical control problem in [7, Proposition 14]
and then applied to backstepping. See also [20, Theorem
4.9]. Furthermore, the results of this paper can be di-
rectly used to extend the method proposed in [7] to the
context of time-varying systems with minimal modifica-
tions. △

Remark 21. Theorems 14, 16, and 18 establish uniform
stability and attractivity properties in Rn. If X ⊂ Rn is
a positively invariant set such that Γ1 ⊂ Γ2 ⊂ X , and if
the assumptions of these theorems hold for initial states
restricted to lie in X , then the results of the theorems
hold relative to X . In Section 5.2, we illustrate this fact
with an example. △

Remark 22. The observation made in Remark 21 is im-
portant as it implies that Theorems 14, 16, and 18 apply
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to time-varying systems whose state spaces are smooth
complete Riemannian manifolds X , not necessarily dif-
feomorphic to Rn (see for instance the kinematic unicy-
cle example in Section 5.3). The reason that our results
can be applied to such state spaces is this. The Nash iso-
metric embedding theorem [22, Theorem 3] guarantees
the existence of a C1 embedding of X in a Euclidean
space Rn of suitable dimension, in such a way that the
Riemannian metric ofX is the restriction toX of the Eu-
clidean metric of Rn. By smoothly extending the vector
field f(t, x) from X to Rn (which can be done globally in
virtue of [16, Lemma 8.6]), one obtains a time-varying
differential equation on Rn for which X ⊂ Rn is a posi-
tively invariant set. Thus, Theorems 14, 16, and 18 apply
and all the statements in this section continue to hold if
the state space of the differential equation is a smooth
complete Riemannian manifold. △
4.2 Consequences of the reduction theorems

Next, we present some useful consequences of the
reduction theorems. The first statement, which is a
straightforward consequence of the reduction theorem
for UGAS (Theorem 18), replaces assumption (ii) in that
theorem (Γ2 is LUS-Γ1) with the assumption that Γ2

is t0-US. Even though the latter is more conservative,
it is generally easier to verify than assumption (ii) in
Theorem 18.

Proposition 23. Consider the time-varying system (3)
under the Basic Assumption. Let Γ1 be a compact set and
Γ2 be a closed set, both positively invariant and such that
Γ1 ⊂ Γ2 ⊂ Rn. If

(i) Γ1 is UAS relative to Γ2, and
(ii) Γ2 is t0-UAS,

then Γ1 is UAS. Moreover, Γ1 is UGAS if

(iii) Γ1 is UGAS relative to Γ2,
(iv) Γ2 is t0-UGAS,
(v) all solutions are t0-uniformly bounded, i.e., BS =

Rn.

Finally, if assumptions (iii) and (iv) hold, then Γ1 is UAS
and all initial states giving rise to t0-uniformly bounded
solutions are contained in the basin of t0-uniform attrac-
tion of Γ, i.e., BS ⊂ B(Γ1).

PROOF. Assumption (ii) implies that Γ2 is t0-US and
t0-UA, while if Γ2 is t0-UA then it is also t0-UA near Γ1.
Therefore, conditions (i) and (iii) of Theorem 18 hold.
That is, in order to prove the first statement, that Γ1 is
UAS, it suffices to establish the implication

(Γ2 is t0-US) =⇒ (Γ2 is LUS-Γ1). (9)

Furthermore, assumption (iv) implies that Γ2 is t0-US
and t0-UGA. Therefore, the remaining statements in the
proposition also follow directly from Theorem 18, pro-
vided that the implication (9) holds. Thus, to show that
this is the case, assume Γ2 is t0-US. Then for each ε > 0,
there exists an open set U ⊂ Rn such that Γ2 ⊂ U
and for each (t0, x0) ∈ R × U and each t ∈ T+

t0,x0
,

x(t, t0, x0) ∈ Bε(Γ2). By the compactness of Γ1 and

the fact that Γ1 ⊂ Γ2, there exists δ > 0 such that
Bδ(Γ1) ⊂ U . Then we have

(∀x0 ∈ Bδ(Γ1))(∀t0 ∈ R)(∀t ∈ T+
t0,x0

)

x([t0, t], t0, x0) ⊂ Bε(Γ2).
(10)

Comparing with (5) in the definition of local uniform
stability, we see that (10) implies (5) for arbitrary r > 0,
and thus Γ2 is LUS-Γ1.

From Proposition 23 we recover a well-known re-
sult concerning the stability of equilibria for cascade-
connected systems (see [32, Theorem 1.1] for the time-
invariant case, and Lemma 2 in [25] for the time-varying
case).

Corollary 24 (Cascade-connected systems). Consider
the cascade-connected system

ẋ1 = f1(t, x1, x2)

ẋ2 = f2(t, x2)
(11)

where f1 : R × Rn × Rm → Rn and f2 : R × Rm →
Rm satisfy the Basic Assumption and f1(·, 0n, 0m) ≡ 0n,
f2(·, 0m) ≡ 0m. Then the equilibrium (x1, x2) = (0n, 0m)
is UGAS for (11) if and only if

(i) the equilibrium x1 = 0n is UGAS for
ẋ1 = f1(t, x1, 0m),

(ii) the equilibrium x2 = 0m is UGAS for
ẋ2 = f2(t, x2), and

(iii) all solutions of (11) are t0-uniformly bounded, i.e.,
BS = Rn × Rm.

On the other hand, if only assumptions (i) and (ii) hold
and the set BS of t0-uniformly bounded solutions is only
a subset of Rn × Rm, then the equilibrium (x1, x2) =
(0n, 0m) is UAS and the set BS is contained in the basin
of t0-uniform attraction of the equilibrium (0n, 0m), i.e.,
BS ⊂ B(0n, 0m).

The proof of sufficiency of Corollary 24 follows di-
rectly from Proposition 23 by setting Γ1 := {(0n, 0m) ∈
Rn × Rm} and Γ2 := {(x1, x2) ∈ Rn × Rm : x2 = 0m}.
Then, assumption (i) implies that Γ1 is UGAS relative
to Γ2, while assumption (ii) implies that Γ2 is t0-UGAS.
The proof of necessity is straightforward and is omitted.

4.3 Lyapunov characterizations

The reduction theorems in Section 4, as well as Propo-
sition 23, rely on assumptions that are somewhat un-
usual in the literature on stability theory:

• that Γ2 is LUS-Γ1. This is used in Theorems 14 and 18;
• that Γ2 is either t0-UA near Γ1 or t0-UGA. This is used
in Theorems 16 and 18;

• and, that Γ2 is either t0-UAS or t0-UGAS. This is used
in Proposition 23.

In this section we give Lyapunov characterizations of the
properties listed above. Even though these characteriza-
tions are more conservative in general, they may result
easier to verify in concrete cases. An example that illus-
trates this assertion is given in Section 5.1.
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Proposition 25 (Lyapunov characterization of LUS-Γ1

property). Consider the time-varying system (3) under
the Basic Assumption. Let Γ1 be a compact set and Γ2

be a closed set, both positively invariant and such that
Γ1 ⊂ Γ2 ⊂ Rn. Suppose there exist r, s > 0 and a C1

nonnegative function V : R×Br(Γ1) → R such that

α(∥x∥Γ2) ≤ V (t, x) ≤ β(∥x∥Γ1) (12)

∂tV (t, x) + ∂xV (t, x)f(t, x) ≤ 0, (13)

for all (t, x) ∈ R × Br(Γ1), where α : [0, s) → R and
β : [0, r) → R are two class K functions. Then, Γ2 is
LUS-Γ1.

Remark 26. The proof of Proposition 25 is reminiscent
of that in [13, Theorem 1], addressing the particular case
in which Γ1 is an equilibrium, and is omitted. △

Next, we provide a Lyapunov characterization of the
t0-UA, t0-UGA, and t0-UGAS properties for closed, but
not necessarily compact sets.

Proposition 27 (Lyapunov characterization of t0-UA,
t0-UGA, and t0-UGAS properties). Consider the time-
varying system (3) under the Basic Assumption. Let Γ ⊂
Rn be a closed, positively-invariant set, and U ⊂ Rn be
an open set such that Γ ∩ U ̸= ∅. Let V : R× U → R be
a C1 nonnegative function such that

W1(x) ≤V (t, x) ≤ W2(x) (14)

∂tV (t, x) + ∂xV (t, x)f(t, x) ≤ −W3(x), (15)

for all (t, x) ∈ R × U , where W1,W2,W3 : U → R are
continuous nonnegative functions such that W−1

1 (0) =
W−1

2 (0) = W−1
3 (0) = Γ∩U . Let U⋆ ⊂ U be defined as 5

U⋆:=
{
x0 ∈ U : (∀t0 ∈ R)x(T+

t0,x0
, t0, x0) ⊂ U

}
. Then,

the following implications hold:

(a) All initial states in U⋆ giving rise to solutions that
are t0-uniformly bounded are contained in the basin
of t0-uniform attraction of Γ, i.e.,

BS ∩ U⋆ ⊂ B(Γ).
(b) If U = Rn and Γ ⊂ int(BS), then Γ is t0-UA.
(c) If U = Rn and all solutions are t0-uniformly

bounded, i.e., U = BS = Rn, then Γ is t0-UGA.
(d) If U = BS = Rn, and there exist r > 0 and a class

K function α1 : [0, r) → R such that α1(∥x∥Γ) ≤
W1(x) for all x ∈ Br(Γ), then Γ is t0-UGAS.

Remark 28. The inequalities (14) and (15) are remi-
niscent of the ones imposed for uniform asymptotic sta-
bility of equilibria in [14, Theorems 4.8, 4.9]. Proposi-
tion 27, however, deals with closed and not necessarily
compact sets. If Γ were compact and U were a neigh-
bourhood of Γ, inequalities (14) and (15) would imply
the existence of class K functions α1, α2, α3 such that

α1(∥x∥Γ) ≤ V (t, x) ≤ α2(∥x∥Γ) (16)

∂tV (t, x) + ∂xV (t, x)f(t, x) ≤ −α3(∥x∥Γ), (17)

and these are exactly the bounds used in the proofs
of [14, Theorems 4.8, 4.9]. The inequalities in (16)-(17)
are also used more generally in Lyapunov characteri-
zations of the UGAS property for compact sets (see,

5 The set U⋆ may be empty. If U = Rn, then U⋆ = Rn.

e.g., [17]). When Γ is not compact, however, inequali-
ties (14)-(15) no longer imply, but are obviously implied
by (16)-(17), so (14)-(15) are less restrictive. As a result,
in contrast with the results in [14,17], parts (b) and (c)
of Proposition 27 only establish local and global uniform
attractivity of Γ, which does not imply uniform stability
when Γ is unbounded. △

PROOF. Part (a). Letting x0 ∈ BS∩U⋆ be arbitrarily
fixed, we want to show that x0 ∈ B(Γ), that is
(∀ε > 0)(∃T > 0)(∀t0 ∈ R)
t0 + T ∈ T+

t0,x0
and x(R≥t0+T ∩ T+

t0,x0
, t0, x0) ⊂ Bε(Γ).

(18)

If x0 ∈ Γ, then x0 ∈ B(Γ) because Γ is positively in-
variant. Suppose x0 ∈ U⋆ \ Γ. Since x0 ∈ BS, by defini-
tion there exists c > 0 such that x(R≥t0 , t0, x0) ⊂ Bc(0)
for all t0 ∈ R, which implies that T+

t0,x0
= R≥t0 for all

t0 ∈ R. Letting K:=Bc(0), a compact set and using the
fact that x0 ∈ BS ∩ U⋆, we have

(∀t0 ∈ R) x(R≥t0 , t0, x0) ⊂ K ∩ U. (19)

Since x0 ∈ U⋆ \ Γ, ∥x0∥Γ > 0. Let ε ∈ (0, ∥x0∥Γ) and
define

δ1:= min
x∈K,∥x∥Γ≥ε/2

W1(x), δ̂2:= min
x∈K,W2(x)≥δ1

W1(x),

δ2:=min{δ̂2,W2(x0)}.
Since x0 ∈ K and ∥x0∥Γ > ε, the set {x ∈ K : ∥x∥Γ ≥
ε/2} is nonempty. It is also compact because K is. Since
W1 is continuous and nonnegative, δ1 is well-defined and
δ1 > 0 becauseW1 > 0 on the set {x ∈ K : ∥x∥Γ ≥ ε/2}.
Since W1(x) ≤ W2(x), we have {x ∈ K : W1(x) ≥
δ1} ⊂ {x ∈ K : W2(x) ≥ δ1}. Noticing that x0 ∈ {x ∈
K : W1(x) ≥ δ1}, the set {x ∈ K : W2(x) ≥ δ1} is

nonempty and compact, so δ̂2 is well-defined. Further,

δ̂2 > 0 because W2(x) ≥ δ1 implies that x ̸∈ Γ and thus
W1(x) > 0. Finally, since x0 ̸∈ Γ, W2(x0) > 0, so δ2 > 0
as well. Next, let

k:= min
x∈K,W2(x)≥δ2/2

W3(x). (20)

Since x0 ∈ K and, by the definition of δ2, W2(x0) ≥
δ2, the set {x ∈ K : W2(x) ≥ δ2/2} is nonempty and
compact so k is well defined and k > 0 because W3 is
positive on this set. In view of the definition of δ1 and
δ2, we have{

x ∈ K : W1(x) ≤ δ1
}
⊂ Bε/2(Γ) ⊂ Bε(Γ), (21){

x ∈ K : W1(x) ≤ δ2
}
⊂

{
x ∈ K : W2(x) ≤ δ1

}
. (22)

We claim that

(∃T > 0)(∀t0 ∈ R) W1(x(t0 + T, t0, x0)) ≤ δ2. (23)

By way of contradiction, suppose that

(∀T > 0)(∃t0 ∈ R) W1(x(t0 + T, t0, x0)) > δ2. (24)

By (15) and (19), for any t0 ∈ R the function t 7→
V (t, x(t, t0, x0)) is nonincreasing. Then using (14), (24)
implies that x([t0, t0 + T ], t0, x0) ⊂ K ∩ {x ∈ Rn :
W2(x) ≥ δ2/2}.
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Let T :=(W2(x0)− δ2)/k ≥ 0, and let t0 ∈ R be such
that (24) holds. Using (15), (19), and the definition of k
in (20), we have
V (t0 + T, x(t0 + T, t0, x0)) ≤ V (t0, x0)− kT

≤ W2(x0)− kT = δ2.
By the first inequality in (14),W1(x(t0+T, t0, x0)) ≤ δ2,
contradicting (24). Thus (23) holds. Henceforth, fix T ≥
0 such that (23) holds. Since W1(x(t0 + T, t0, x0)) ≤ δ2,
by (19) and (22) we have that W2(x(t0 + T, t0, x0)) ≤
δ1 for any t0 ∈ R. Since for any t0 ∈ R the function
t 7→ V (t, x(t, t0, x0)) is nonincreasing, and since V (t0 +
T, x(t0 + T, t0, x0)) ≤ W2(x(t0 + T, t0, x0)) ≤ δ1, we
have that V (t, x(t, t0, x0)) ≤ δ1 for all t0 ∈ R and all
t ≥ t0 + T . Using the first inequality in (14), we deduce
that W1(x(t, t0, x0)) ≤ δ1 for all t0 ∈ R and all t ≥
t0+T . By (19) and (21), we conclude that for all t0 ∈ R,
x(R≥t0+T , t0, x0) ⊂ Bε(Γ), and thus (18) holds. We have
thus shown that for each x0 ∈ BS∩U⋆, x0 ∈ B(Γ). This
concludes the proof of part (a).

Part (b). If U = Rn and Γ ⊂ int(BS), then U⋆ = Rn,
and by part (a), Γ ⊂ int(BS) ⊂ int(B(Γ)), which implies
that Γ is t0-UA.

Part (c). If U = BS = Rn then U⋆ = Rn, and by
part (a), B(Γ) = Rn, which implies that Γ is t0-UGA.

Part (d). Now suppose that U = BS = Rn so that,
by part (c), Γ is t0-UGA, and there exist r > 0 and a
class K function α1 : [0, r) → R such that α1(∥x∥Γ) ≤
W1(x) for all x ∈ Br(Γ). We need to show that Γ is
t0-US. Let ε > 0 be arbitrary, without loss of gener-
ality ε ∈ (0, r). Define the open set W:={x ∈ Rn :
W2(x) < α1(ε)}. For any initial data (t0, x0) ∈ R ×W,
we have W2(x0) < α1(ε), and by (14) and (15) we have
that W1(x(t, t0, x0)) < α1(ε) for all t ∈ T+

t0,x0
. Since

W1(x) ≥ α1(∥x∥Γ), ∥x(t, t0, x0)∥Γ < ε for all t ∈ T+
t0,x0

.
This proves that Γ is t0-US. In conclusion, we have shown
that Γ is both t0-UGA and t0-US, which implies that Γ
is t0-UGAS. This concludes the proof of the proposition.

Part (a) of Proposition 27 yields the next Lyapunov
characterization of the property that a set Γ2 is t0-UA
near Γ1, used in Theorems 16 and 18.

Corollary 29 (Lyapunov characterization of the prop-
erty that Γ2 is t0-UA near Γ1). Consider the time-varying
system (3) under the Basic Assumption. Let Γ1 be a com-
pact set and Γ2 be a closed set, both positively invariant
and such that Γ1 ⊂ Γ2 ⊂ Rn. Suppose that Γ1 is US,
and for some open set U ⊂ Rn such that Γ1 ⊂ U , there
exists a C1 nonnegative function V : R × U → R sat-
isfying (14) and (15), where W1,W2,W3 : U → R are
continuous nonnegative functions such that W−1

1 (0) =
W−1

2 (0) = W−1
3 (0) = Γ ∩ U . Then Γ2 is t0-UA near Γ1.

PROOF. Since Γ1 is compact and contained in the
open set U , there exists ε > 0 such that Bε(Γ1) ⊂ U .
Since Γ1 is US, there exists δ > 0 such that

(∀t0 ∈ R) x(R≥t0 , t0, Bδ(Γ1)) ⊂ Bε(Γ1) ⊂ U, (25)

which implies that Bδ(Γ1) ⊂ U⋆, with U⋆ defined in the
statement of Proposition 27. Moreover, since Γ1 is com-
pact the set Bε(Γ1) is bounded, and thus property (25)
implies that Bδ(Γ1) ⊂ BS. We have thus established
that Bδ(Γ1) ⊂ BS ∩ U⋆. By part (a) of Proposition 27,
Bδ(Γ1) ⊂ BS ∩ U⋆ ⊂ B(Γ2), and thus Γ2 is t0-UA near
Γ1.

5 Examples

In this section we present three examples demonstrat-
ing the utility of the theoretical results in Section 4. In
the first example we revisit the Slotine & Li controller
mentioned in the introduction, considering (for simplic-
ity) the special case of one degree-of-freedom mechan-
ical systems, and we propose a reduction viewpoint to
understand its operation. In particular, we show that its
uniform global tracking properties can be derived using
Propositions 25, 27, and Theorem 18. The second ex-
ample illustrates the reduction theorem for t0-uniform
attractivity (Theorem 16). Finally, in the third example
we use Proposition 23 to derive a global path following
controller for a kinematic unicycle meeting a position
tracking requirement on the path.

5.1 The Slotine & Li controller
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Fig. 3. Trajectories generated by the Slotine-and-Li con-
troller represented on the plane

Consider the following Lagrangian control system
d(q)q̈ + c(q)q̇2 + g(q) = u,

where, for simplicity of exposition, we assume that q ∈
R. The function q 7→ d(q) denotes the system’s iner-
tia and it is bounded, smooth and bounded away from
zero uniformly for all q ∈ R, i.e., 0 < dm ≤ d(·) ≤ dM ;
the function q 7→ c(q) is uniformly bounded and satis-
fies 2c(q) := d′(q); the function q 7→ g(q) denotes forces
stemming from potential energy and it is also uniformly
bounded. Consider the problem of making the general-
ized positions and velocities q and q̇ follow some given
desired smooth bounded reference trajectories qd(t) and
q̇d(t). This problem was solved (for systems with q ∈ Rn,
n ≥ 1) in [33], where the now well-known Slotine & Li
controller was proposed. This is defined as follows. Let
λ, kd > 0 be two design parameters and let

u = d(q)q̈r + c(q)q̇q̇r + g(q)− kds (26a)
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s := q̇ − q̇r (26b)

q̇r := q̇d(t)− λq̃, q̃ := q − qd(t). (26c)

Then, the closed-loop nonlinear time-varying system is
given by

d
(
q̃ + qd(t)

)
ṡ+ c(q̃ + qd(t))

(
s+ q̇d(t) + λq̃

)
s+ kds = 0

(27a)

˙̃q = −λq̃ + s. (27b)

It is well known that for the system (27) the origin,
{(q̃, s) = (0, 0)}, is uniformly globally asymptotically
stable; this may be established via various methods,
including Lyapunov’s first [36]. We revisit the analy-
sis of this system because the rationale that leads to
the design of this controller in [34] captures well the
essence of the reduction theorems. Indeed, the controller
is designed in a manner to steer the trajectory q̇(t) to
the artificially-defined reference q̇r generated by (26c).
Given that q̇ = q̇r is equivalent to s = 0, the con-
troller is designed to steer the trajectories towards the
set Γ2 := {(q̃, s) : s = 0} (see Figure 3 for an illustra-
tion with λ = 1 and kd = 3) on which the dynamics is

reduced to ˙̃q = −λq̃. More precisely, the function

V (t, q̃, s) :=
1

2
d
(
q̃ + qd(t)

)
s2, (28)

satisfies
1

2
dms2 ≤ V (t, q̃, s) ≤ dM (s2 + q̃2) (29a)

V̇ (t, q̃, s) ≤ −kds
2 (29b)

in view of the assumption that 0 < dm ≤ d(·) ≤ dM and

ḋ(q) = 2c(q)q̇. From these inequalities, it follows that
s → 0 for any kd > 0. That is, the trajectories tend to
the set Γ2 on which they satisfy ˙̃q = −λq̃, so q̃ → 0 for
any λ > 0. It is important to stress that, although in-
tuitive, this argument tacitly relies on the set Γ2 being
reached in finite time, which is not the case for this con-
troller; the trajectories only tend asymptotically to Γ2. A
formal argument may be made using Theorem 18 even
if the convergence to Γ2 is only asymptotic. To this end,
letting Γ1:={(q̃, s) = (0, 0)} and Γ2:={(q̃, s) : s = 0},
the following remarks are in order:

• The set Γ1 is UGAS relative to Γ2. This follows from
the fact that, for the system (27b) with s = 0, {q̃ = 0}
is UGAS.

• All solutions of (27) are t0-uniformly bounded. This
follows from (29) and from the fact that (27b) con-
stitutes an exponentially stable linear time-invariant
system with uniformly bounded input s(t).

• The set Γ2 is LUS-Γ1. This follows from Proposition
25. Clearly, Γ1 ⊂ Γ2 ⊂ R2. Also, Γ2 is positively in-
variant since s = 0 is a solution of (27a). Finally,
(12) and (13) hold in view of (29) with α(∥x∥Γ2

) =
(1/2)dms2, β(∥x∥Γ1

) = dM (s2 + q̃2). The property is
also illustrated in the zoomed plot in Figure 3: solu-
tions that start in a neighbourhood of the origin 6 ,

6 Strictly speaking, in Figure 3 Γ1 is represented as the point
{(q̃, ˙̃q) = (0, 0)} which is equivalent to {(q̃, s) = (0, 0)}

Bδ(Γ1), remain in a neighbourhood of Γ2, Bε(Γ2), the
gray band.

• The set Γ2 is t0-UGA. This follows from part (c) of
Proposition 27, in view of the t0-uniformly bounded-
ness of all solutions, with V as in (28), U = R, and
Γ = Γ2. The property is illustrated in Figure 3, where
all solutions converge to Γ2, the line on the plane
{ ˙̃q = −q̃}.

• By Theorem 18, we conclude that Γ1 is UGAS.
• One can also use part (d) of Proposition 27 with V as
in (28), Γ = Γ2, U = R2, and α1(∥x∥Γ2) = (1/2)dms2

to arrive at the conclusion that Γ2 is t0-UGAS, then
use Proposition 23 to conclude that Γ1 is UGAS.

Even though the Slotine-Li controller does not make tra-
jectories s(t) converge to zero in finite time, the reduc-
tion argument presented above captures the intuition
behind the operation of the controller presented at the
beginning of this discussion, namely the idea that the
controller makes solutions approach the line s = 0, that
on this line solutions converge exponentially to the ori-
gin, and that these two properties imply that solutions
converge to the origin.

5.2 Illustration of reduction theorem for t0-uniform at-
tractivity
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Fig. 4. A few solutions for the example in Section 5.2. The
equilibrium Γ1 is almost globally t0-UA but unstable.

Consider the time-varying system

ẋ1 = x2(x1 − 1)− x1(x
2
1 + x2

2 − 1) (30a)

ẋ2 = −x1(x1 − 1)− x2(x
2
1 + x2

2 − 1) (30b)

ẋ3 = −x3
3 + (x1 − 1)2 + x2

2f(t), (30c)

where f(t) is a continuous bounded function. This
system satisfies the Basic Assumption. Letting Γ2 =
{(x1, x2, x3) : x1 = 1, x2 = 0} and Γ1 = {(x1, x2, x3) =
(1, 0, 0)}, we claim that Γ1 is t0-UA with basin of at-
traction given by the whole state space minus a set of
measure zero (i.e., it is almost globally t0-UA). On Γ2

the dynamics are described by the differential equation
ẋ3 = −x3

3, whose origin represents the set Γ1, and there-
fore Γ1 is UGAS relative to Γ2. In Example 2 we showed
that the equilibrium (x1, x2) = (1, 0) of the subsystem

ẋ1 = x2(x1 − 1)− x1(x
2
1 + x2

2 − 1) (31a)

ẋ2 = −x1(x1 − 1)− x2(x
2
1 + x2

2 − 1) (31b)

is t0-UA with basin of attraction given by R2 \ {(0, 0)}.
In particular, all its solutions are bounded, and in
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fact t0-uniformly bounded because this system is time-
invariant. Since the control system ẋ3 = −x3

3 + u is
input-to-state stable, all solutions of the subsystem

ẋ3 = −x3
3 + (x1 − 1)2 + x2

2f(t),
are also t0-uniformly bounded because the pair
(x1(t), x2(t)) and the function f(t) are bounded. The
considerations above show that all solutions of sys-
tem (30) are t0-uniformly bounded, i.e., BS = R3.
Letting X :=R3 \ {(x1, x2, x3) : x1 = x2 = 0}, X has
full measure in R3, and is positively invariant because
its complement, the set {(x1, x2, x3) : x1 = x2 = 0},
is invariant. Since, for system (31), B({(1, 0)}) =
R2 \ {(0, 0)}, we have that, for system (30), B(Γ2) = X ,
i.e., Γ2 is t0-UGA relative to X . To summarize, we have
determined that (a) Γ1 is UGAS relative to Γ2, (b) Γ2 is
t0-UGA relative to X , and (c) BS = X . By Theorem 16,
Γ1 is t0-UGA relative to X or, what is the same, Γ1 is
almost globally t0-UA, as claimed. A few solutions of the
system with f(t) = sin(t)2 and t0 = 0 are depicted in
Figure 4. Note that Γ1 is unstable, and indeed Figure 4
shows an initial state very close to Γ1 giving rise to an
orbit with a large excursion away from Γ1.

It is interesting to compare system (30) to system (6)
in Example 2, both time-varying perturbations of the
second-order dynamics in (31) for which the equilibrium
(x1, x2) = (1, 0) is almost globally t0-UA. While the per-
turbation in Example 2 destroys the t0-UA property out-
side of the (x1, x2)-plane, the perturbation in (30) pre-
serves it.

5.3 Circular path following for a kinematic unicycle

This example illustrates the use of reduction theo-
rems in the context of hierarchies of control specifica-
tions that were mentioned in the introduction. Consider
the kinematic unicycle

ẋ1 = u1 cos(θ) (32a)

ẋ2 = u1 sin(θ) (32b)

θ̇ = u2, (32c)

where x ∈ R2 are the Cartesian coordinates of the uni-
cycle in the plane, θ ∈ S1 is the unicycle heading, and
(u1, u2) ∈ R × R, the linear and angular speeds of the
unicycle, are the control inputs. We denote by χ:=(x, θ)
the state of the unicycle, and by X :=R2 × S1 its state
space. For a vector x ∈ R2, we denote by angle(x) the
angle that the vector makes with the positive x1 axis.
Let Cr:={x ∈ R2 : x⊤x = r2} denote the circle of radius
r > 0 centred at the origin, and consider the following
list of control specifications:

(a) For each initial position x(0) ∈ Cr and initial head-
ing θ(0) = angle(x(0)) + π/2 (i.e., heading tangent
to Cr with counterclockwise orientation), x(t) must
remain on Cr for all t ≥ 0 and follow Cr counter-
clockwise.

(b) For all other initial states, the unicycle position,
x(t), must asymptotically converge to Cr.

(c) For each initial state in some neighborhood of the
reference signal
χd(t) =

(
r cos(αd(t)), r sin(αd(t)), αd(t) + π/2

)
,

where αd : R → S1 is a given C1 function such that
α̇d ≥ 0, the unicycle’s state must asymptotically
converge to χd(t).

In essence, for any initial state we want the unicycle
to approach and follow the circle Cr counterclockwise,
rendering the circle invariant for the position dynamics.
Moreover, we want to ensure that, on Cr, the motion of
the unicycle matches a prescribed reference signal. This
latter specification is only required to be met locally.

A controller meeting specifications (a) and (b) was
presented in [5]. Using Proposition 23, we now enhance
the controller in [5] to meet also specification (c). Define
the set

Γ = {χ = (x1, x2, θ) ∈ X : x⊤x = r2,

θ = angle(x) + π/2}
= {χ = (x1, x2, θ) ∈ X : x1 = r sin(θ),

x2 = −r cos(θ)}.
The set Γ consists of the points in X corresponding to
the unicycle’s position being on Cr and its heading being
tangent to Cr with counterclockwise orientation. It is
clear that in order to meet specifications (a) and (b), we
need to render Γ UGAS. The controller in [5, Proposition
III.1] does just that. For any v ∈ R, the smooth feedback

u1 = v (33a)

u2 =
u1

r
+ r (x1 cos(θ) + x2 sin(θ)) , (33b)

renders Γ UGAS. One can replace v ∈ R by any smooth
real-valued function without affecting the result. In or-
der to meet specification (c), we assign v in the feed-
back (33a) so as to incorporate an additional stabiliza-
tion mechanism. Define θd(t):=αd(t) + π/2, and note
that, having met specifications (a) and (b), specifica-
tion (c) corresponds to making θ → θd(t) for suitable ini-
tial states. This control objective can be attained with-
out affecting the UGAS property of Γ, as follows. On
Γ, the feedback (33) reduces to (u1, u2) = (v, v/r), and

therefore the evolution of θ(t) is governed by θ̇ = v/r.

Letting v = r
[
θ̇d(t)− sin(θ − θd(t))

]
, i.e., letting

u1 = r
[
θ̇d − sin(θ − θd(t))

]
, (34a)

u2 =
u1

r
+ r [x1 cos(θ) + x2 sin(θ)] , (34b)

we obtain that θ(t) → θd(t) for almost all initial states
on Γ. However, this does not yet imply that specifica-
tion (c) is met, since initial states outside of Γ must
also be considered, but Proposition 23 yields the de-
sired result. In order to formulate a reduction prob-
lem, we define the error state χ̃ ∈ X as χ̃:=(x̃, θ̃), with

x̃:=(x1 − r sin(θ), x2 + r cos(θ)) and θ̃ = θ − θd(t). The
closed-loop system in error coordinates reads as

˙̃x1 = −r2
[
x̃1 cos(θ̃ + θd(t))

+ x̃2 sin(θ̃ + θd(t)) cos(θ̃ + θd(t))
]

(35a)

˙̃x2 = −r2
[
x̃2 sin(θ̃ + θd(t))
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+ x̃1 sin(θ̃ + θd(t)) cos(θ̃ + θd(t))
]

(35b)

˙̃
θ = − sin(θ̃) + r

[
x̃1 cos(θ̃ + θd(t)) + x̃2 sin(θ̃ + θd(t))

]
.

(35c)

The system above satisfies the Basic Assumption (see
Remark 1), and in χ̃-coordinates the set Γ becomes

Γ2 = {χ̃ ∈ X : x̃ = 0},
and meeting specification (c) corresponds to stabilizing
the equilibrium Γ1 = {0 ∈ X}. Clearly, Γ1 is compact,
Γ2 is closed, and Γ1 ⊂ Γ2. By [5, Proposition III.1],
the feedback (34) renders Γ2 UGAS, and to meet spec-
ification (c), we need to show that Γ1 is UAS. On Γ2,
the dynamics are described by the differential equation
˙̃
θ = − sin(θ̃). The equilibrium θ̃ = 0 is asymptotically
stable for the above differential equation, which means
that Γ1 is UAS relative to Γ2. By Proposition 23, Γ1

is UAS. In conclusion, the feedback (34) simultaneously
renders Γ2 UGAS and Γ1 UAS, thereby meeting speci-
fications (a)-(c). Figure 5 shows simulation results for
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Fig. 5. Unicycle path following with simultaneous trajectory
tracking. On the left-hand side, behaviour of the unicycle
on the plane for three different initial conditions, including
one of the circle. On the right-hand side, the corresponding
norm of the tracking error for each solution.

r = 1 and αd(t) = t + sin(t). As expected, all solu-
tions converge to the circle, and move counterclockwise
around it. The corresponding tracking errors (specifica-
tion (c)) converge to zero. One of the displayed solutions
(the one in magenta) corresponds to the unicycle being
initialized on the circle, with heading tangent to it. In
accordance with specification (a), the unicycle remains
on the circle even though its initial tracking error is not
zero. In accordance with specification (c), the unicycle
adjusts its linear speed to synchronize with the reference
signal without leaving the circle.

Finally, we remark that the closed-loop system (35)
does not have a cascade-connected structure, because
the x̃ dynamics depends on θ̃. Therefore, in this example
one cannot use the cascade systems theory of [24,25] nor
Corollary 24 on p. 8 paper.

6 Proofs of Theorems 16 and 18

The proof of Theorem 16 relies on the following two
lemmas whose proofs are omitted. The proof of the first
lemma is standard, while the proof of the second one
follows the same lines as for [13, Lemma 1].

Lemma 30. Assume the differential equation (3) sat-
isfies the Basic Assumption. Then for each compact set
K ⊂ Rn, each ε > 0, and each T > 0, there exists δ > 0
such that for any initial data (t0, x0) ∈ R×K such that
x([t0, t0 + T ], t0, x0) ⊂ K, the property ∥x(t, t0, x0) −
x(t, t0, x1)∥ < ε holds for all x1 ∈ Bδ(x0) and for all
t ∈ [t0, t0 + T ].

Lemma 31. Consider the time-varying system (3) un-
der the Basic Assumption. Let Γ1 be a compact set and
Γ2 be a closed set, both positively invariant and such that
Γ1 ⊂ Γ2 ⊂ Rn. If Γ1 is UA relative to Γ2, then the thresh-
old property ([31]) holds:

(∀ε > 0)(∃δ, η > 0)(∀x0 ∈ Bδ(Γ1))(∀t0 ∈ R)(∀t ≥ t0)

x([t0, t], t0, x0) ⊂ Bη(Γ2) =⇒ x([t0, t], t0, x0) ⊂ Bε(Γ1).

(36)

6.1 Proof of Theorem 16

Suppose assumptions (i)-(iii) in Theorem 16 hold and
let x0 ∈ Bδ(Γ1) be arbitrarily fixed. We need to show
that x0 ∈ B(Γ1), or

(∀ε > 0)(∃T > 0)(∀t0 ∈ R) x(R≥t0+T , t0, x0) ⊂ Bε(Γ1).
(37)

By assumption (ii), the basin of attraction B(Γ2) con-
tains a neighbourhood of Γ1. Therefore, without loss of
generality we may assume that δ in assumption (iii) is
small enough so that

Bδ(Γ1) ⊂ B(Γ2). (38)

By the definition of Kδ in the theorem statement, we
have that for each t0 ∈ R, x(R≥t0 , t0, x0) ⊂ Kδ. Since,
by assumption, Kδ is compact, for each t0 ∈ R, T+

t0,x0
=

R≥t0 .

Let ε > 0 be arbitrary, and pick ε′ ∈ (0, ε). By as-
sumption (i), Γ1 is UA relative to Γ2, so by Lemma 31
the threshold property (36) holds, i.e.,

(∃δ′, η1 > 0)(∀x0 ∈ Bδ′(Γ1))(∀t0 ∈ R)(∀t ≥ t0)

if x([t0, t], t0, x0) ⊂ Bη1
(Γ2) then x([t0, t], t0, x0) ⊂ Bε′(Γ1).

(39)
By assumption (i), Γ1 is UAS relative to Γ2, and by
assumption (iii), Kδ ∩Γ2 ⊂ B(Γ1). Since Kδ is compact,
by Corollary 33 in Appendix A the set Kδ ∩ Γ2 enjoys
the uniform attraction property (A.5) in the Appendix,
and thus

(∃T2 > 0)(∀t0 ∈ R) x(R≥t0+T2 , t0,Kδ∩Γ2) ⊂ Bδ′/2(Γ1).
(40)

By the Basic Assumption, and using Lemma 30 with K
replaced by Kδ and T2 > 0 given as in (40), we have:

(∃η2 > 0)(∀t0 ∈ R)(∀z0 ∈ Bη2(x0))(∀t ∈ [t0, t0 + T2])

∥x(t, t0, x0)− x(t, t0, z0)∥ < δ′/2. (41)

Let η:=min{η1, η2}. From (38) we get

(∃T1 > 0)(∀t0 ∈ R) x(R≥t0+T1
, t0, x0) ⊂ Bη(Γ2). (42)

Let t0 ∈ R be arbitrary. By (42), and since x(t0 +
T1, t0, x0) ∈ Kδ, there exists z0 ∈ Kδ ∩ Γ2 such that
∥x(t0 + T1, t0, x0)− z0∥ < η. By (41),

∥x(t0 + T1 + T2, t0 + T1, x(t0 + T1, t0, x0))

− x(t0 + T1 + T2, t0 + T1, z0)∥ < δ′/2 (43)
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and, since z0 ∈ Kδ ∩ Γ2, by (40) it follows that
x(t0 + T1 + T2, t0 + T1, z0) ∈ Bδ′/2(Γ1). (44)

Next, combining (43) and (44) we get
x(t0 + T1 + T2, t0, x0) =

x(t0 + T1 + T2, t0 + T1, x(t0 + T1, t0, x0)) ∈ Bδ′(Γ1)
(45)

and from (42) we have
x(R≥t0+T1+T2

, t0, x0) =

x(R≥t0+T1+T2 , t0 + T1 + T2, x(t0 + T1 + T2, t0, x0))

⊂ Bη(Γ2). (46)
By the threshold property in (39), (45) and (46) imply
that
x(R≥t0+T1+T2 , t0, x0) =

x(R≥t0+T1+T2
, t0 + T1 + T2, x(t0 + T1 + T2, t0, x0))

⊂ Bε′(Γ1) ⊂ Bε(Γ1). (47)
Setting T :=T1 + T2, (47) implies that property (37)
holds. Hence, Bδ(Γ1) ⊂ B(Γ1) so we conclude that Γ1 is
t0-UA.

Now suppose that conditions (i)’-(ii)’ hold and let

x0 ∈ BS be arbitrary, so that the setK:=
⋃

t0∈R x(R≥t0 , t0, x0)

is compact. By (i)’, Γ2 ⊂ B(Γ1), and therefore
K∩Γ2 ⊂ B(Γ1). Now repeating the proof above withKδ

replaced by K we reach the conclusion that (37) holds,
thereby implying that BS ⊂ B(Γ1). This concludes the
proof of Theorem 16.

6.2 Proof of Theorem 18

(=⇒) Suppose that Γ1 is UAS. Since Γ1 ⊂ Γ2, Γ1 is
UAS relative to Γ2, hence condition (i) holds. Since Γ1 is
UA, there exists r > 0 such that Br(Γ1) ⊂ B(Γ1). Since
Γ1 ⊂ Γ2, B(Γ1) ⊂ B(Γ2), and thus Br(Γ1) ⊂ B(Γ2),
implying that condition (iii) holds. Since Γ1 is US, we
have
(∀ε > 0)(∃δ > 0)(∀t0 ∈ R) x(R≥t0 , t0, Bδ(Γ1)) ⊂ Bε(Γ1).
Hence condition (5) in the definition of LUS-Γ1 holds for
arbitrary r > 0, so condition (ii) holds.

Next, suppose Γ1 is UGAS. Then it is UGAS relative
to Γ2, so condition (i)’ holds. Since B(Γ1) = Rn and
since B(Γ1) ⊂ B(Γ2), Γ2 is t0-UGA and hence condition
(iii)’ holds. As for condition (iv), let x0 ∈ Rn be arbi-
trary and define δ:=2∥x0∥Γ1 , so x0 ∈ Bδ(Γ1). Since Γ1 is
UGS, there exists ε > 0 such that x(R≥t0 , t0, Bδ(Γ1)) ⊂
Bε(Γ1) for all t0 ∈ R. Since Γ1 is compact, there exists
c > 0 such that Bε(Γ1) ⊂ Bc(0). Thus for each t0 ∈ R,
x(R≥t0 , t0, x0) ⊂ Bc(0), implying that x0 ∈ BS. Since
x0 is arbitrary, BS = Rn and condition (iv) holds.

(⇐=) Suppose conditions (i)-(iii) hold. By Theo-
rem 14, conditions (i) and (ii) imply that Γ1 is US. To
prove that Γ1 is UAS, in view of item (iv) of Propo-
sition 9 it suffices to show that Γ1 is t0-UA. To this
end, we invoke Theorem 16. Conditions (i) and (ii) of
Theorem 16 correspond to conditions (i) and (iii) of
Theorem 18, which hold by assumption. It is only left
to show that there exists δ > 0 such that the set

Kδ:=
⋃
t0∈R

x(R≥t0 , t0, Bδ(Γ1))

is compact and Kδ ∩ Γ2 ⊂ B(Γ1). By assumption (i),

there exists ε > 0 such that Bε(Γ1)∩ Γ2 ⊂ B(Γ1). Since
Γ1 is US, there exists δ > 0 such that

(∀t0 ∈ R) x(R≥t0 , t0, Bδ(Γ1)) ⊂ Bε(Γ1).
The above implies that for the value of δ just discussed,
Kδ ⊂ Bε(Γ1), and therefore

Kδ ∩ Γ2 ⊂ Bε(Γ1) ∩ Γ2 ⊂ B(Γ1).

Moreover, since Γ1 is compact and Kδ ⊂ Bε(Γ1), Kδ is
compact too. Thus assumption (iii) of Theorem 16 holds,
and Γ1 is t0-UA. By part (iv) of Proposition 9, Γ1 is UAS.

Now suppose that assumptions (i)’, (ii), (iii)’, and (iv)
hold. By Theorem 14, Γ1 is US, and by Theorem 16 it
is t0-UGA. Part (v) of Proposition 9 implies that Γ1 is
UGAS.

Finally, suppose that assumptions (i)’, (ii), and (iii)’
hold. By the first part of Theorem 18, Γ1 isUAS. By The-
orem 16, assumptions (i)’ and (iii)’ imply that all initial
states giving rise to t0-uniformly bounded solutions are
contained in the basin of t0-uniform attraction of Γ, i.e.,
BS ⊂ B(Γ1). This concludes the proof of the theorem.

7 Conclusion

In this paper we presented reduction theorems for
uniform stability, t0-uniform attractivity, and uniform
asymptotic stability of compact sets, as well as a num-
ber of consequences. We also presented Lyapunov char-
acterizations of the properties of local uniform stability
near a set and t0-uniform attractivity. Further research
on Lyapunov characterizations might provide useful ex-
tensions and new stability results. In an example we il-
lustrated how in certain simple cases, reduction theo-
rems can be used to assess the property of almost global
t0-uniform attractivity. The development of general re-
duction theorems for almost global uniform asymptotic
stability remains an open problem.

A Proof of Proposition 9

Part (i). (=⇒) If Γ is US then for each ε > 0 there
exists δ > 0 such that x(R≥t0 , t0, Bδ(Γ)) ⊂ Bε(Γ) for all
t0 ∈ R. Letting U = Bδ(Γ), the above property implies
that Γ is t0-US.

(⇐=) If Γ is t0-US then for each ε > 0 there exists
an open set U ⊂ Rn such that Γ ⊂ U , and for each
x0 ∈ U , for each t0 ∈ R, and each t ∈ T+

t0,x0
, it holds

that x(t, t0, x0) ⊂ Bε(Γ). Since Γ is compact, Bε(Γ) is
bounded, and hence T+

t0,x0
= R≥t0 for all (t0, x0) ∈ R×

U . By the compactness of Γ and the fact that Γ ⊂ U
with U open, there exists δ > 0 such that Bδ(Γ) ⊂ U .
It then follows that x(R≥t0 , t0, Bδ(Γ)) ⊂ Bε(Γ) for all
t0 ∈ R, proving that Γ is US.

Part (ii). (=⇒) By definition, if Γ is UAS then it is UA.

(⇐=) Assume Γ is UA. We will show that Γ is US. Let
ε > 0 be arbitrary. By definition of UA, we have
(∃r > 0)(∀ε > 0)(∃T > 0)(∀t0 ∈ R)

x(R≥t0+T , t0, Br(Γ)) ⊂ Bε(Γ). (A.1)
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Let ε > 0 be arbitrary, and let T > 0 be such that (A.1)
holds. By the positive invariance of Γ, for all x0 ∈ Γ
we have that x([t0, t0 + T ], t0, x0) ⊂ Γ. By the Basic
Assumption and Lemma 30, and since Γ is compact,
there exists δ1 > 0 such that ∥x(t, t0, x0)−x(t, t0, x1)∥ <
ε for all x0 ∈ Γ, all x1 ∈ Bδ1(x0), all t0 ∈ R, and all
t ∈ [t0, t0 + T ]. Therefore, x([t0, t0 + T ], t0, Bδ1(x0)) ⊂
Bε(Γ) for all x0 ∈ Γ and all t0 ∈ R. Since Γ is compact,
there exists δ2 > 0 such that Bδ2(Γ) ⊂

⋃
x0∈Γ Bδ1(x0),

using which we obtain that
x([t0, t0 + T ], t0, Bδ2(Γ)) ⊂ Bε(Γ), (A.2)

for all t0 ∈ R. Picking δ = min{r, δ2}, (A.1) and (A.2)
imply that x(R≥t0 , t0, Bδ(Γ)) ⊂ Bε(Γ) for all t0 ∈ R, so
that Γ is US. This proves that UA implies UAS.

Part (iii). (=⇒) If Γ is UGAS then by definition it is
UGA and UGS. This latter property implies that all so-
lutions are t0-uniformly bounded, so that BS = Rn.

(⇐=)Now suppose that Γ isUGA andBS = Rn. We need
to show that Γ isUGS. We have already shown in part (ii)
that Γ is US, so we need to show that for each δ > 0
there exists ε > 0 such that x(R≥t0 , t0, Bδ(Γ)) ⊂ Bε(Γ)
for all t0 ∈ R. Let δ > 0 be arbitrary, and pick ε1 > 0.
Since Γ is UGA, there exists T > 0 such that

x(R≥t0+T , t0, Bδ(Γ)) ⊂ Bε1(Γ) (A.3)

for all t0 ∈ R. Since BS = Rn, for each x0 ∈ Bδ(Γ)
there exists a constant c(x0) such that x(R≥t0 , t0, x0) ⊂
Bc(x0)(0) for all t0 ∈ R. By continuous dependence on
initial data, there exists a constant µ(x0) > 0 such that
x([t0, t0 + T ], t0, Bµ(x0)(x0)) ⊂ B2c(x0)(0) for all t0 ∈ R.
The collection of open balls {Bµ(x0)(x0) : x0 ∈ Bδ(Γ)}
is an open cover of Bδ(Γ), and since this latter set is
compact, it has a finite subcover, so that there exists
a finite collection of points xi ∈ Bδ(Γ), i ∈ k, such
that Bδ(Γ) ⊂

⋃
i∈k Bµ(xi)(xi). Let M = maxi∈k 2c(xi).

Then for each t0 ∈ R, x([t0, t0+T ], t0, Bδ(Γ)) ⊂ BM (0).
Letting ε2 > 0 be such that BM (0) ⊂ Bε2(Γ), we get

x([t0, t0 + T ], t0, Bδ(Γ)) ⊂ Bε2(Γ) (A.4)
for all t0 ∈ R. Setting ε = max{ε1, ε2}, by (A.3)
and (A.4) we conclude that x(R≥t0 , t0, Bδ(Γ)) ⊂ Bε(Γ)
for all t0 ∈ R. Thus Γ is UGS, and therefore also UGAS.

Part (iv). (=⇒) If Γ is UAS then by definition it is
UA and US. The former property implies that Γ is t0-
UA and, by part (i), the latter property implies that Γ
is t0-US. Being t0-US and t0-UA, Γ is t0-UAS.

(⇐=) Assume Γ is t0-UAS. Since Γ is t0-UA, Γ ⊂
int(B(Γ)), where B(Γ) is the basin of t0-uniform at-
traction of Γ. This fact and the assumption that Γ
is compact imply that there exists r > 0 such that
Br(Γ) ⊂ int(B(Γ)). The set K = Br(Γ) ⊂ B(Γ) is com-
pact, and by Lemma 32 below it enjoys the uniform
attraction property (A.5):

(∀ε > 0)(∃T > 0)(∀t0 ∈ R) x(R≥t0+T , t0, Br(Γ)) ⊂ Bε(Γ).
The above property implies that Γ is UA.

Part(v). (=⇒) If Γ is UGAS, then by definition it is UGA
and UGS. By part (i), we deduce that Γ is t0-US. More-

over, the UGS property implies that all solutions are t0-
uniformly bounded, so that BS = Rn. TheUGA property
implies that Γ is t0-UGA. In conclusion, Γ is t0-UGAS
and BS = Rn.

(⇐=) Assume Γ is t0-US and t0-UGA, and BS = Rn. Since
Γ is compact and t0-UGA, we have B(Γ) = Rn, so we
may repeat the argument in the proof of part (iv) with
arbitrary r > 0 to conclude that Γ is UGA. Then, in
light of part (iii), Γ is UGAS. This concludes the proof
of Proposition 9.

Lemma 32. Consider the differential equation (3), in
which the vector field f : R× Rn → Rn satisfies the Ba-
sic Assumption. Let Γ ⊂ Rn be a compact positively in-
variant set that is t0-UAS. Then, for each compact set
K ⊂ B(Γ) the following uniform attraction property
holds:

(∀ε > 0)(∃T > 0)(∀t0 ∈ R) x(R≥t0+T , t0,K) ⊂ Bε(Γ).
(A.5)

Proof. Let ε > 0 be arbitrarily fixed. By part (i) of
Proposition 9, since Γ is t0-US it is also US, and we have

(∃δ > 0)(∀t0 ∈ R) x(R≥t0 , t0, Bδ(Γ)) ⊂ Bε(Γ). (A.6)

By t0-uniform attractivity of Γ and the fact that K ⊂
B(Γ), we have
(∀x0 ∈ K)(∃T > 0)(∀t0 ∈ R)
t0 + T ∈ T+

t0,x0
and x(t0 + T, t0, x0) ⊂ Bδ/2(Γ). (A.7)

Let x0 ∈ K be arbitrary, and let T > 0 be as in (A.7).
Using Lemma 30 with K in the lemma given by the set
{x([t0, t0 + T ], t0, x0)}, we have that

(∃δ′ > 0)(∀z0 ∈ Bδ′(x0))(∀t ∈ [t0, t0 + T ])

∥x(t, t0, x0)− x(t, t0, z0)∥ < δ/2. (A.8)

By (A.7) and (A.8) we have that x(t0+T, t0, Bδ′(x0)) ⊂
Bδ(Γ), and by (A.6) we conclude that

x(R≥t0+T , t0, Bδ′(x0)) ⊂ Bε(Γ). (A.9)

By property (A.9) and the fact that the setK is compact,
there exists a finite cover of K by balls Bδi(xi), i ∈ k,
where xi ∈ K, and associated times Ti > 0, i ∈ k, such
that

(∀t0 ∈ R) x(R≥t0+Ti
, t0, Bδi(xi)) ⊂ Bε(Γ). (A.10)

Letting T := max{T1, . . . , Tn}, we conclude that
(∀t0 ∈ R) x(R≥t0+T , t0,K) ⊂ Bε(Γ),

proving that (A.5) holds.

Corollary 33. In the setup of Lemma 32, let Γ1 be a
compact set and Γ2 be a closed set, both positively invari-
ant and such that Γ1 ⊂ Γ2 ⊂ Rn. If Γ1 is UAS relative
to Γ2, then for each compact set K ⊂ B(Γ1) ∩ Γ2 the
uniform attraction property (A.5) holds.

The proof of this corollary follows by repeating the
argument of the proof of Lemma 32, replacing Bδ(Γ)
in (A.6) by Bδ(Γ) ∩ Γ2, and making analogous changes
in (A.9) and (A.10).
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[15] M. Kristić, I. Kanellakopoulos, and P. Kokotović. Nonlinear
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