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Abstract

The problem of controlling surge and stall in jet engine
compressors is of fundamental importance in prevent-
ing damage and lengthening the life of these compo-
nents. In this paper, we use the mathematical model
developed in [1] to control these two instabilities by
output feedback (only one of the three states is mea-
surable). This problem is particularly challenging since
the system is not completely observable and, hence,
none of the output feedback control techniques found
in the literature can be applied to recover the perfor-
mance of a full state feedback controller. However, we
show how to successfully solve it by using a novel out-
put feedback approach for the stabilization of general
stabilizable and incompletely observable systems [2].
Simulation results confirm the success of this approach
in solving this control problem.

1 Introduction

In this paper we consider the problem of controlling
two instabilities which occur in jet engine compres-
sors, namely rotating stall and surge. In [1], Moore
and Greitzer developed a three state finite dimensional
Galerkin approximation of the nonlinear PDE model
describing the compression system. Ever since its de-
velopment, several researchers have used the Moore-
Greitzer three state model (MG3) to design stabilizing
controllers for stall and surge. The available control
approaches may be divided into three main categories.
1) Linearization and linear perturbation models (e.g.,
[3, 4, 5] among others). 2) Bifurcation analysis (e.g.,
[6, 7, 8, 9, 10]). 3) Lyapunov based methods (e.g.,
[11, 12, 13]). Most of the existing results focus on the
development of state feedback controllers, thus compli-
cating their practical implementation (e.g., in [8], the
authors need 2D sensor arrays to implement a state
feedback control law depending on the squared ampli-

1This work was supported by NASA Lewis Research Center,

Grant NAG3-2084.

tude of the first harmonic of asymmetric flow and the
derivative of the air flow through the compressor). In
[11], a partial state feedback controller simplifies prac-
tical implementation by requiring measurements of the
mass flow and plenum pressure rise, only (hence 2D
sensing is not needed). On the other hand, the lim-
itation of this partial state feedback controller lies in
the fact that it cannot globally stabilize a unique equi-
librium point. To the best of our knowledge, no at-
tempt has been made to design a stabilizing output
feedback controller (using only plenum pressure rise
feedback) based on a full state feedback control law.
This is probably due to the fact that MG3 becomes
unobservable when there is no mass flow through the
compressor, i.e., the system is not uniformly completely
observable (UCO). In this situation, none of the tech-
niques found in the output feedback control literature
(e.g., [14, 15, 16, 17, 18]) can be employed for the solu-
tion of this problem. In [2, 19], we developed a stable
output feedback controller for incompletely observable
nonlinear systems which, in particular, can be applied
to MG3. In this paper we introduce a new globally
stabilizing full state feedback control law for MG3, and
we employ the theory developed in [2, 19] to regulate
stall and surge by using only pressure measurements.

2 Problem Description

The approximated model introduced in [1] is described
by (see [20] for an analogous exposition)

Φ̇ = −Ψ + ΨC(Φ) − 3ΦR

Ψ̇ =
1

β2
(Φ − ΦT )

Ṙ = σR(1 − Φ2 −R), R(0) ≥ 0

(1)

where Φ represents the mass flow, Ψ is the plenum pres-
sure rise, R ≥ 0 is the normalized stall cell squared
amplitude, ΦT is the mass flow through the throt-
tle, σ = 7 and β = 1/

√
2. The functions Ψc(Φ)

and ΦT (Ψ) are the compressor and throttle charac-
teristics, respectively, and are defined as ΨC(Φ) =



ΨC0
+ 1 + 3/2Φ − 1/2Φ3, Ψ = 1

γ (1 + ΦT (Ψ))2, where
ΨC0 is a constant and γ is the throttle opening, the
control input. Given the static relationship existing
between ΦT and γ, without loss of generality, in what
follows we will design a controller assuming that ΦT is
our control input. Our control objective is to stabilize
system (1) around the critical equilibrium Re = 0,Φe =
1,Ψe = ΨC(Φe) = ΨC0 + 2, which achieves the peak
operation on the compressor characteristic. We shift
the origin to the desired equilibrium with the change
of variables φ = Φ − 1, ψ = Ψ − ΨC0 − 2. System (1)
then becomes

Ṙ = −σR2 − σR(2φ+ φ2)

φ̇ = −ψ − 3/2φ2 − 1/2φ3 − 3Rφ− 3R

ψ̇ = − 1

β2
(ΦT − 1 − φ)

(2)

The pressure rise (and hence ψ) is the only measurable
state variable. In the next section we will apply the the-
ory developed in [2, 19] to develop an output feedback
controller to solve the problem above. The procedure
outlined in [2, 19] can be summarized as follows.

(i) Extend system (2) with a chain of nu integrators
at the input side (where nu is determined from
the observability mapping).

(ii) Design a stabilizing state feedback control law
v̄ = ϕ(x, z) for the extended system.

(iii) Implement the nonlinear observer in [2, 19] and
choose an appropriate compact set Cξ satisfying
assumption A3 therein.

(iv) Choose the design constant ρ in the observer
small enough to guarantee closed-loop stability,
and implement the output feedback control law v̂
after projecting x̂ using the projection defined in
[2, 19].

In the following sections we will apply this approach to
the jet engine surge and stall control problem.

3 State Feedback Control Design

Here, we apply the output feedback control design out-
lined in the previous section to system (2), assuming
that y = ψ, i.e., only the pressure rise is measured.
For convenience, in the remainder of the paper we will
redefine the control input to be u = ΦT − 1. Next,
notice that Assumption A2 is satisfied since, for exam-
ple, a stabilizing control law for (2) is given in [20] by
means of backstepping design. However, the control
law proposed in [20] turns out to be quite complex.
In [11], it is shown that a linear partial state feedback

control law of the type u = d1ψ − d2φ achieves either
a unique asymptotically stable equilibrium point with
domain of attraction {(R, φ, ψ) ∈ R

3|R ≥ 0} or two
equilibria on the axisymmetric and stall characteris-
tic, with domains of attraction {(R, φ, ψ) ∈ R

3|R = 0}
and {(R, φ, ψ) ∈ R

3|R > 0}, respectively (see The-
orem 3.1 in [11]). Here, this problem is overcome
by viewing system (2) as an interconnection of two
subsystems, namely the R-subsystem and the (φ, ψ)-
subsystem, and then building a full state feedback con-
troller which makes the origin of (2) an asymptoti-
cally stable equilibrium point with domain of attraction
{(R, φ, ψ) ∈ R

3|R ≥ 0}, as seen in the next theorem.

Theorem 1 For system (2), with the choice of the
control law

ū = (1 − β2k1k2)φ+ β2k2ψ + 3β2k1Rφ (3)

where k1 and k2 are positive scalars satisfying the in-
equalities,

k1 >
17

8
+

(2Cσ + 3)2

2
(4)

(

Cσ − 105

64

)

k2
1 +

3

4

(

−1

2
Cσ +

21

4

)

k1

− (Cσ + 3)2 > 0 (5)

k2 > k1 +
9

4
k2
1 +

9k1

4k1 − 9/2
+

(k2
1 − 1)2

4
(6)

C >
3

2σ
(7)

the origin is an asymptotically stable equilibrium point
with domain of attraction

A = {(R, φ, ψ) ∈ R
3|R ≥ 0}.
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Figure 1: Comparison between the partial state feedback
controller developed in [11] and the full state
feedback controller (3).



Remark 1: By using inequalities (4)-(7), it is easy to
show that the only equilibrium point of the closed-loop
systemon the set A is the origin, as predicted by Theo-
rem 1. Figure 1 shows the evolution of the closed-loop
trajectories under the partial state feedback controller
developed in [11] and the controller (3) for a particu-
lar choice of the coefficients d1, d2, k1, k2. The partial
state feedback controller stabilizes an equilibrium point
different from the origin (R, φ, ψ) = (0, 0, 0).

Remark 2: Inequalities (4)-(7) represent conserva-
tive bounds on k1 and k2. In practical implementation,
these parameters may be chosen significantly smaller
after some tuning.

In order to complete the state feedback design, we
have to add an appropriate number of integrators at
the input side of the system. Following the procedure
outlined in [2, 19], we form the observability mapping
H:

ye =





y
ẏ
ÿ



 = H
(

[R, φ, ψ]>, u, u̇
)

=





ψ
−1/β2(u − φ)

1/β2
(

−u̇− ψ − 3/2φ2 − 1/2φ3 − 3Rφ− 3R
)



 . (8)

Notice that Assumption A1 in [2, 19] is satisfied, for
all φ 6= −1, with nu = 2 in that given ye, u, and u̇,
one can uniquely find R, φ, ψ. The operating point
φ = −1 corresponds to Φ = 0, i.e., no mass flow
through the compressor which is a condition we would
like to avoid during normal engine operation. Since
nu = 2, we extend the system with two integrators
ż1 = z2, ż2 = v, u = z1. To simplify the notation in
the following, define x = [R, φ, ψ]>, and rewrite (2) as
ẋ = f(x) + g(x)z1. Next, we find a stabilizing con-
trol law for the extended system by using backstep-
ping: v = α̇ − z̃1 − k4z̃2 , ϕ(x, z), where z̃1 = z1 − ū,

α = −k3z̃1− ∂V
∂x

g(x)+ ∂ū
∂x

[f(x)+g(x) z1], z̃2 = z2−α,
and k3, k4 are arbitrary positive constants. This com-
pletes the design of a stabilizing state feedback for the
extended system. The Lyapunov function of the closed-
loop extended system is V̄ = V + 1

2 z̃
2
1 + 1

2 z̃
2
2 , where

V = CR+ 1
2φ

2 + k1

8 φ
4 + 1

2 (ψ − k1φ)2 is the Lyapunov
function for the original x-system. Notice that the set
{[R, φ, ψ, z1, z2]> ∈ R

5 |R ≥ 0} is invariant, hence by
applying the backstepping lemma we guarantee that
the origin of the extended system is asymptotically sta-
ble with domain of attraction D = A× R

2.

4 Observer Design

The validity of Assumption A1 in [2, 19] allows us to
design a stable observer. First, we calculate the Jaco-

bian of the observability mapping (8).

∂H
∂x

=







0 0 1
0 1

β2 0

− 3+3φ
β2 − 3φ+3R+(3/2) φ2

β2 − 1
β2






(9)

which is an invertible square matrix, as expected. Its
inverse is

[

∂H
∂x

]−1

=







− 1
3(1+φ) −β2(3φ+3R+(3/2)φ2)

3(1+φ) − β2

3(1+φ)

0 β2 0
1 0 0







(10)
As already pointed out, Assumption A1 in
[2, 19] is satisfied on the domain X × U =
{

[R, φ, ψ] ∈ R
3 |φ > −1

}

× R
2. Hence, the out-

put feedback approaches found in the literature cannot
be used to solve the surge and stall control problem.
We first design the nonlinear observer defined in
[2, 19]:

˙̂
R = −σR̂2 − σR(2φ̂+ φ̂2)−

−
l1
ρ + β2(3φ̂+ 3R̂+ (3/2)φ̂2) l2

ρ2 + β2 l3
ρ3

3(1 + φ̂)
(ψ − ψ̂)

˙̂
φ = −ψ̂ − 3/2 φ̂2 − 1/2 φ̂3 − 3R̂φ̂− 3R̂+

+ β2(l2/ρ
2)(ψ − ψ̂)

˙̂
ψ = −z1 − φ̂

β2
+ (l1/ρ)(ψ − ψ̂)

Next, we implement the projection in [2, 19] to confine
the observer estimates to within the observable space.
First, choose L = [l1, l2, l3]

> such that Ac − LCc has
eigenvalues placed at −2, then calculate the solution
P of the Lyapunov equation associated to Ac − LCc,
and its square root S = S>. Recall that ξ̂ = H(x̂, z),
˙̂
ξ =

{

∂H
∂x̂

˙̂x+ ∂H
∂z

ż
}

, and choose the set Cξ(z) to be the

cube Cξ(z) = {ξ ∈ R
3 | ξ1 ∈ [a1, b1], ξ2 ∈ [−1/β2(z1 +

a2),−1/β2(z1− b2)], ξ3 ∈ [1/β2(−z2 − a3), 1/β
2(−z2 +

b3)]}, which, when a2 < 1, is contained in H(X , z), for

all z. Next, the normal vectors N(ξ̂, z), Nz(ξ̂, z) are
readily calculated as follows,

N(ξ̂, z) =







































[1, 0, 0]> if ξ̂1 = b1

[−1, 0, 0]> if ξ̂1 = a1

[0, 1, 0]> if ξ̂2 = − 1
β2 (z1 − b2)

[0,−1, 0]> if ξ̂2 = − 1
β2 (z1 + a2)

[0, 0, 1]> if ξ̂3 = 1
β2 (−z2 + b3)

[0, 0,−1]> if ξ̂3 = 1
β2 (−z2 − a3)



Nz(ξ̂, z) =















































[0, 0]> if ξ̂1 = b1 or ξ̂1 = a1
[

1
β2 , 0

]>

if ξ̂2 = − 1
β2 (z1 − b2)

[

− 1
β2 , 0

]>

if ξ̂2 = − 1
β2 (z1 + a2)

[

0, 1
β2

]>

if ξ̂3 = 1
β2 (−z2 + b3)

[

0,− 1
β2

]>

if ξ̂3 = 1
β2 (−z2 − a3)

Thus, the output feedback controller design is com-
pleted by using these expressions in the projection de-
fined in [2, 19], and letting v̂ = ϕ(x̂P , z), where x̂P

denotes the projected observer estimate.

5 Simulation Results

Here we present the simulation results when the out-
put feedback controller developed in the previous sec-
tion is applied to system (2). We choose k1 = 25 and
k2 = 1.1 · 105 to fulfill inequalities (4)-(7) in Theo-
rem 2. In order to choose the size of the compact set
Cξ(z) so that Assumption A3 is satisfied, we may use
the Lyapunov function V̄ to calculate Ωx

c2
, choose c2

small enough to guarantee that Ωx
c2

⊂ X , and use
H to calculate bounds on ξ when x ∈ Ωx

c2
. How-

ever, a more practical way to address the design of
Cξ(z) consists of running a number of simulations for
the closed-loop systemunder state feedback correspond-
ing to several initial conditions [R(0), φ(0), ψ(0)]>, and
calculating upper and lower bounds for ψ, φ, and
−ψ − 3/2φ2 − 1/2φ3 − 3Rφ − 3R: these will provide
the values of ai, bi, i = 1, 2, 3, respectively. By do-
ing that, we found that whenever [R(0), φ(0), ψ(0)]> ∈
Ω0

4
= {[R, φ, ψ]> ∈ R

3 |R ∈ [0, 0.1], φ ∈ [−0.1, 0.1], ψ ∈
[−0.5, 0.5]}, we have that a1 = −2, b1 = 1, a2 = −0.5,
b2 = 1, a3 = −0.5, b3 = 0.3 satisfy Assumption A3
in [2, 19]. We must point out that our choice of Ω0 is
rather conservative and is made primarily for the sake
of illustration. The actual domain of attraction D′ un-
der output feedback control is larger that Ω0, and can
be made arbitrarily close to Ωx

c2
, where c2 is the largest

scalar guaranteeing that Ωx
c2

⊂ X . In Figures 2 to 4
system and controller states, together with the control
input, are plotted for three decreasing values of ρ con-
firming the theoretical predictions about the arbitrary
fast rate of convergence of the observer found in The-
orem 1 in [2]. Furthermore, the figures also show the
operation of the projection which prevents the observer
from peaking and guarantees that φ̂ > −0.5. Finally,
note that the output feedback trajectories tend to the
state feedback ones, as showed in Figure 5.

These simulations, besides confirming the theoretical
results, illustrate the simplicity of this approach, which
has the advantage of being modular, in that the state
feedback control design is separated from the observer
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Figure 2: Output feedback control: ρ = 0.05.
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Figure 3: Output feedback control: ρ = 0.02.

design, and of working with systems that are not com-
pletely observable.
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