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Abstract— We study the practical and asymptotic tracking problems
for nonlinear systems when only the output of the plant and the reference
signal are available for feedback. We provide sufficient conditions and a
control topology yielding practical tracking. In the special case when
the reference signal is generated by an exosystem and there exists
an internal model satisfying suitable observability properties tracking
becomes asymptotic.

I. I NTRODUCTION

Consider the nonlinear system

ẋ = f(x, u)

y = h(x)
(1)

wherex ∈ R
n denotes the state of the system,u ∈ R

m is the control
input, andy ∈ R

m is the measurable output. The vector fieldf and
the functionh are assumed to be sufficiently smooth. In this paper
we address following problem.

Problem 1 (Output Feedback Practical Tracking): Given the
dynamical system (1), a sufficiently smooth reference trajectory1

r(t) = [r1(t), . . . , rm(t)]>, and any real numbere0 > 0, find, if
possible, an output feedback

ẋc = fc(xc, y, r)

u = hc(xc, y)
(2)

with the property that for the closed-loop system (1)-(2) there exists
a positive real numberT and a closed setA such that any integral
curve(x(t), xc(t)) leaving fromA is defined for allt ≥ 0, bounded,
and ‖y(t) − r(t)‖ ≤ e0 for all t ≥ T .

If Problem 1 can be solved withe0 = 0 andT = ∞, we say that (2)
solves the output feedbackasymptotictracking problem. Additionally,
if the projection{x ∈ R

n : (x, xc) ∈ A} can be made arbitrarily
large by a suitable choice of the controller, we say that the solution
to Problem 1 issemiglobal.

Problem 1 has been solved globally and asymptotically for systems
in output feedback form([1], [2]). When the reference trajectory
is generated by an exosystem, Problem 1 is included in themore
general class of output regulation problems [3], where exosystem-
generated disturbances and parametric uncertainties are allowed to
affect the plant (our approach does not handle these). It hasbeen
shown, for special classes of nonlinear systems, how to solve the
output regulation problem globally [4] or semi-globally [5], [6].
Other (non-output feedback) approaches to output trackinginclude
differential flatness [7] and system inversion [8]. See alsothe more
recent work in [9].

In this paper we cast Problem 1 as a nonautonomous stabilization
problem and assume that there exists a smooth feedback stabilizing
the system’s state to the state of the stable inverse of the plant.
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1We do not require to know the entire signalr(t) in advance.

We use observers to estimate state and stable inverse of the plant
and, in the spirit of the separation principle in [10], employ the
resulting estimates to define an output feedback controllersolving
Problem 1. The estimation above can be carried out when the system
is differentially flat or when the reference signal is generated by an
exosystem and an internal model exists. In the latter case weshow
that asymptotic tracking can be achieved.

Interestingly, our approach may yield asemiglobal solution to
Problem 1 even when the plant isnot globally flat.More precisely, we
show that a loss of relative degree (or a singularity in the coordinate
transformation) yields a restriction on the reference signals to be
tracked, but does not necessarily restrict the domain of operation of
our controller. On the contrary, a loss of relative degree restricts the
domain of operation of input-output linearizing controllers.

Throughout this paper we use col(a, b) to indicate the vector
[a>, b>]>. If v is a n-dimensional vector,vi, i = 1, . . . , n, are
its components. Given real numbersa, b, c, diag[a, b, c] denotes
the matrix witha, b, c on the diagonal and zeros elsewhere. Given
matricesA, B, C, we denote byblock-diag[A, B, C] the matrix
formed by placingA, B, C on the diagonal and zeros elsewhere.
Given a functiong : R

n → R
p and a smooth vector fieldf : R

n →

R
n, we denote byLfg =

∂g
∂x

f(x) the Lie derivative ofg alongf . If

g = g(x, y) : R
n×R

m → R
p, then we denoteLfg =

∂g(x, y)
∂x

f(x).

II. A SSUMPTIONS

In this section we state the assumptions we need throughout the
paper. The assumptions are grouped into three categories associated
with three different aspects of our control topology.

A. Stable Inverse Estimation

Assumption A1 (Stable Inverse): Givenr(t), there existsxr
0 ∈ R

n

and a sufficiently smooth and bounded functionur(·) : R
+ → R

m

such that, whenu(t) = ur(t), the integral curve of (1) leaving from
xr

0, xr(t), is bounded, defined for allt ≥ 0, and such thatr(t) ≡
h(xr(t)). In other words, for allt ≥ 0,

ẋr(t) = f(xr(t), ur(t))

r(t) = h(xr(t))

xr(0) = xr
0.

(3)

The following is the most restrictive assumption in this paper.
Assumption A2 (Compensator): One can find a compensator with
input v

ζ̇ = a(ζ, x, v)

u = b(ζ, x),
(4)

whereζ ∈ R
q1 , v ∈ R

m, and a, b are smooth, with the following
properties.

(i) There existζr
0 ∈ R

q1 and vr(·) : R
+ → R

m such that, when
v(t) = vr(t) andx(t) = xr(t), the integral curve of (4) leaving
from ζr

0 , ζr(t), is bounded, defined for allt ≥ 0, and such that
ur(t) ≡ b(ζr(t), xr(t)).

(ii) There exists a set of indices{k1, . . . , km}, with
P

ki = n+q1,
such that, fori = 1, . . . , m, the time derivativesy(j)

i , j =
0, . . . , ki − 1, calculated along the vector field of (1), (4), are
independent ofv. Moreover, the map

HX :X → HX(X ), X ⊂ R
n × R

q1

(x, ζ) 7→ col(y1, . . . , y
(k1−1)
1 , . . . , ym, . . . , y(km−1)

m ),

has a smooth inverseH−1
X : HX(X ) → X .
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Letting Xr = col(xr, ζr) and

Y r = col(r1, . . . , r
(k1−1)
1 , . . . , rm, . . . , r(km−1)

m ),

part (ii) in A2 implies that, ifY r ∈ HX(X ), Xr = H−1
X (Y r).

The condition Y r ∈ HX(X ) restricts the class of reference
signalsr(t). The following assumption further requires thatY r(t)
be contained in a convex compact set contained inHX(X ). This
allows one to use the dynamic projection-based observer in [10] to
estimate the stable inverse of the plant.
Assumption A3 (Reference Trajectory): The reference trajectory
r(t) is such that, for allt ≥ 0,

Y r(t) ∈ C1 ⊂ HX(X ),

for some convex compact setC1 whose boundary∂C1 is ann+q1−1
dimensionalC1 submanifold, i.e.,∂C1 = {Y r ∈ R

n+q1 : g1(Y
r) =

0}, whereg1 : R
n+q1 → R is aC1 function for which0 is a regular

value, i.e.,∀Y r ∈ ∂C1, ∂g1/∂Y r 6= 0.

We remark that A3 can be relaxed by requiring thatY r(t) ∈ C1 for
all t ≥ T , for some positive realT , without affecting the results of
this paper.

B. Nonlinear Stabilization

Consider the change of coordinatesx̃ = x−xr, rewrite (1) in new
coordinates as

˙̃x = f̃(t, x̃, u), (5)

and notice that asymptotic stability of the origin of (5) implies
asymptotic tracking for (1).
Assumption A4 (Stabilizer): There exist a smooth function
ū(x, xr, ur), a C1 function V ′(x̃), V ′ : D′ → R

+, and a real
numberc′ ≥ 1 such that̄u(xr, xr, ur) = ur, {x̃ ∈ R

n : V ′(x̃) ≤ c′}
is a compact subset ofD′, and the time derivative ofV ′ along the
trajectories of

˙̃x = f̃(t, x̃, ū(x, xr, ur))

satisfies
V̇ ′ ≤ −Φ′(x̃),

where Φ′(x̃) is continuous onD′ and positive definite on the set
{x̃ ∈ R

n : V ′(x̃) ≤ c′}.

This assumption, derived from Assumption ULP in [11], implies that
the smooth feedback̄u(x, xr, ur) uniformly asymptotically stabilizes
the origin of (5) and any integral curve leaving from the set{x̃ ∈
R

n : V ′(x̃) ≤ c′} approaches the origin. A4 can be relaxed by
allowing V ′ to depend on time provided it satifies suitable bounding
properties. Also, the results in Section III-B remain unchanged if the
origin x̃ = 0 is assumed to be practically stable by requiringΦ′ to
be positive definite over the set{x̃ : c’ ≤ V ′(x̃) ≤ c′}, for some
c’ ∈ (0, c′). Next, in preparation for the application of the separation
principle in [10], following the idea of Tornambé in [12] weaugment
(1) with m chains of integrators2 - one chain for every input channel
ui - of ordern1, . . . , nm, respectively (the indicesni are defined in
A6),

ξ̇ = Acξ + Bcw, ξ ∈ R
q2 , q2 =

X

i

ni, w ∈ R
m

u = Ccξ

(6)

where the triple(Ac, Bc, Cc) is in Brunovsky normal form. Next,
using the stabilizer̄u in A4, we seek to design a stabilizer̄w for the
augmented system (5), (6). To this end, we need the following.

2One may replace the chain of integrators (6) by anystable linear
system with vector relative degree{n1, . . . nm}. With appropriate notational
changes, the results of this paper still hold.

Assumption A5 (Dynamic Extension): For the system with output
α ∈ R

m,

ẋ = f(x, Ccξ)

ξ̇ = Acξ + Bcw

ẋr = f(xr, b(ζr, xr))

ζ̇r = a(ζr, xr, vr)

α(x, xr, ζr) = ū(x, xr, b(ζr, xr))

(7)

the time derivativesα̇1, . . . , α
(n1)
1 , . . . , α̇m, . . . , α

(nm)
m calculated

along the vector field of (7), do not depend onw andvr.

Recalling thatXr = col(xr, ζr), we rewrite the(xr, ζr) dynamics
in (7) as

Ẋr = F (Xr, vr), r = H(Xr),

with obvious definition ofF andH . Sinceū(xr, xr, ur) = ur, A5
implies that the time derivatives ofur and

ξr 4
= col

`

ur
1, . . . , (u

r
1)

(n1−1), . . . , ur
m, . . . , (ur

m)(nm−1)´

,

calculated along the vector fieldF (i.e., for i = 1, . . . , m, (ur
i )

(j) =
Lj

F ci, j = 0, . . . , ni − 1), are independent ofvr. The following
lemma shows that, under assumptions A4 and A5, there exists a
stabilizer for the augmented system (5), (6).

Lemma 1 Assume that A4 and A5 hold. Then there exist a smooth
function w̄(x, ξ, Xr), a C1 function V (x̃, ξ̃) : D → R

+, with ξ̃ =
ξ − ξr, and a real numberc∗ ≥ 1 such that{(x̃, ξ̃) ∈ R

n × R
q2 :

V (x̃, ξ̃) ≤ c∗} is a compact subset ofD, and the time derivative of
V along the trajectories of

˙̃x = f̃(t, x̃, ur + Ccξ̃)

˙̃
ξ = Acξ̃ + Bcw̄(x, ξ, Xr) − col((ur

1)
(n1), . . . , (ur

m)(nm))

satisfiesV̇ ≤ −Φ(x̃, ξ̃), where Φ(x̃, ξ̃) is continuous onD and
positive definite on the set{(x̃, ξ̃) ∈ R

n × R
q2 : V (x̃, ξ̃) ≤ c∗}.

Moreover, if c′ in A4 can be chosen arbitrarily large andV ′ is
radially unbounded, thenc∗ and V have the same properties.

Proof: Omitted.

C. State Estimation

The next few definitions and assumptions are taken from [10].
Consider system (1) and, given a set of indices{l1, . . . , lm}, with
P

li = n, let yx := col(y1, . . . , y
(l1−1)
1 , . . . , ym, . . . , y

(lm−1)
m ) (all

derivatives are calculated alongf ) and define

Hx : (x, u1, . . . , u
(n1−1)
1 , . . . , um, . . . , u(nm−1)

m ) 7→ yx

where the indicesnj , j = 1, . . . , m indicate the number of time
derivatives ofuj that end up appearing inHx (whenHx does not
depend onui, we setni = 0). By using the dynamic extension (6)
we haveyx = Hx(x, ξ). For any positive real numberc ≤ c∗, let

Ωc = {(x, ξ) ∈ R
n × R

q2 : V (x̃, ξ̃) ≤ c}.

Note that the properties ofV in Lemma 1, the boundedness of
(xr(t), ur(t)), and the smoothness ofur(t) imply that Ωc is a
bounded set.
Assumption A6 (Observability): System (1) is observable over an
open setO ⊂ R

n ×R
nu containing the origin, i.e., there exists a set

of indices{l1, . . . , lm} such that the mappingF : O → Y (where
Y = F(O)) defined by

(x, ξ) 7→ Y :=

»

yx

ξ

–

=

»

Hx(x, ξ)
ξ

–

(8)
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has a smooth inverseF−1 : Y → O,

F−1(Y ) = F−1(yx, ξ) =

»

H−1
x (yx, ξ)

ξ

–

. (9)

Assumption A7 (Topology of O): There exists a positive scalar
c̄ ≤ c∗ and a setC2 such that

F (Ωc̄) ⊂ C2 ⊂ Y (= F (O)) , (10)

whereC2 has the following properties

(i) The boundary ofC2, ∂C2, is ann−1 dimensional,C1 subman-
ifold of R

n, i.e., there exists aC1 function g2 : C2 → R such
that ∂C2 = {Y ∈ C2 : g2(Y ) = 0}, and (∂g2/∂Y )> 6= 0 on
∂C2.

(ii) C ξ̄
2 = {yx ∈ R

n : (yx, ξ̄) ∈ C2} is convex for allξ̄ ∈ R
nu .

(iii) 0 is a regular value ofg2(·, ξ̄) for each fixedξ̄ ∈ R
nu , i.e., for

all yx ∈ C ξ̄
2 , ∂g2

∂yx
(yx, ξ̄) 6= 0.

(iv)
S

ξ̄∈RnuC
ξ̄
2 is compact.

See [10] for a detailed explanation of A6 and A7.
Condition (10) yields the following implications

V (x̃, ξ̃) = 0 ⇔ (x̃, ξ̃) = (0, 0) ⇒ (xr, ξr) ∈ Ωc̄
A7
⇒ (xr, ξr) ∈ C2.

III. PROPOSEDSOLUTION

We now provide a solution to Problem 1 using the separation
principle presented in [10]. In Section III-A we present thecontrol
topology. In Section III-B we show that systems which are differen-
tially flat (dynamic feedback linearizable) automaticallysatisfy A1,
A2 and thus naturally lend themselves to the estimation of the stable
inverse of the system. Finally, we focus our attention to thecase when
the reference signalr(t) is generated by an exosystem. We show that
if an internal model exists, it can be used as the compensatorin A2.

A. Control Topology

Consider the dynamic output feedback controller

ξ̇ = Acξ + Bcw̄(x̂, ξ, X̂r)

u = Ccξ,
(11)

whereX̂r = col(x̂r, ζ̂r) and x̂ are the states of two estimators

˙̂
Xr =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

»

∂HX

∂X̂r

–−1
(

LF1
HX −

Γ1NY r (Ŷ r)LG1
g1

NY r (Ŷ r)>Γ1Nr
Y (Ŷ r)

)

if LG1
g1 ≥ 0 and Ŷ r ∈ ∂C1

F1(X̂
r, r)

4
= F (X̂r, 0) +

»

∂HX

∂X̂r

–−1

(E1)−1L1
“

r − H(X̂r)
”

otherwise
(12)

˙̂x =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

h

∂Hx
∂x̂

i−1
(

LF2
Hx −

Γ2Nyx(Ŷ )LG2
g2

Nyx(Ŷ )>Γ2Nyx(Ŷ )

)

if LG2
g2 ≥ 0 and Ŷ ∈ ∂C2

F2(x̂, ξ, y)
4
= f(x̂, Ccξ) +

h

∂Hx
∂x̂

i−1

(E2)−1L2 (y − h(x̂))

otherwise
(13)

and the various parameters are defined in the next table (where i =
1, 2). The estimators (12) and (13) incorporate high-gain parameters
ρ1, ρ2 to guarantee convergence and a dynamic projection to avoid
peaking and confinêXr and(x̂, ξ) to within the observable regionsX

Ŷ r = HX(X̂r), Ŷ = F(x̂, ξ)
G1 = LF1

HX ,

G2 = col(LF2
Hx, ξ̇)

NY r (Ŷ r) =

„

∂g1

∂Ŷ r

«

>

Nyx(Ŷ ) =

„

∂g2

∂ŷx

«

>

Ei = block-diag[Ei
1, . . . , Ei

m]

E1
j = diag[ρ1, . . . , ρ

kj

1 ]

E2
j = diag[ρ2, . . . , ρ

lj
2 ]

Li = block-diag[Li
1, . . . , Li

m]

L1
j Hurwitz (kj × 1)

L2
j Hurwitz (lj × 1)

Γi = (SiĒi)−1(SiĒi)−>

Ēi = block-diag[Ēi
1, . . . , Ēi

m]

Ē1
j = 1/ρ

kj

1 E1
j , Ē2

j = 1/ρ
lj
2 E2

j

Si = (P i)1/2

P i satisfies:

Ai>P i + P iAi = −I(n+qi)×(n+qi)

Ai =

»

0(n+qi−1)×1 I(n+qi−1)×(n+qi−1)

01×(n+qi)

–

− Li[1, 01×n+qi−1]

w Chains of integrators

ξ̇ = Acξ + Bcw

observer

y
System

ur X̂r

observer

stabilizer

x̂

ξ

w̄(x̂, ξ, X̂r)

Fig. 1. Block diagram of the controller solving Problem 1.

andO, respectively (see [10] for more details). Note that the unknown
input vr is replaced by0 in (12). These estimates are used in̄w
(see Lemma 1) to replaceXr andx. The resulting control topology
is illustrated in Figure 1. The properties of the two estimators are
summarized in the following lemma.

Lemma 2 Consider (12) and (13) and suppose that∀t ≥ 0,
(x(t), ξ(t)) ∈ Ωc̄. Assume that A1-A3, and A6-A7 hold. Then, the
estimatesX̂r and x̂ enjoy the following properties

(i) The setsH−1
X (C1) and F−1(C2) are positively invariant for

(12) and (13), respectively.
(ii) For all δ > 0, there existρ̄i and Ti(ρi), i = 1, 2, such that

‖X̂r(t)−Xr(t)‖ ≤ δ for all t ≥ T1(ρ1) and‖x̂(t)−x(t)‖ ≤ δ
for all t ≥ T2(ρ2), with Ti(ρi) → 0 as ρi → 0, wheneverρi ∈
(0, ρ̄i), i = 1, 2. Moreover, for sufficiently smallρ2, ‖x̂(t) −
x(t)‖ → 0. If the vector fieldF does not depend onvr, i.e.,
F (Xr, vr) = F (Xr), then‖X̂r(t) − Xr(t)‖ → 0.

Proof: The properties of̂x are proven in [10], Theorem 1 and
Lemma 1. A variation of the same proofs can be used to prove the
properties ofX̂r.

The following result is a direct consequence of the separation
principle in [10].

Theorem 1 Suppose A1-A7 hold. Then, for anyc ∈ (0, c̄), there
exist positive real numbersρ∗

1, ρ∗
2 such that, for allρ1 ∈ (0, ρ∗

1),
ρ2 ∈ (0, ρ∗

2), the dynamic output feedback controller

ξ̇ = Acξ + Bcw̄(x̂, ξ, X̂r)

u = Ccξ
(14)

solves Problem 1 over the set

A =
n

(x, ξ, X̂r, x̂) ∈ R
3n+q1+q2 : (x, ξ) ∈ Ωc, X̂

r ∈ H−1
X (C1),

(x̂, ξ) ∈ F−1(C2)
o
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Sketch of the proof:Sincer(t) = h(xr(t)) andh is continuous,
for all e0 > 0 there existsε∗ > 0 such that for allx ∈ R

n such
that ‖x − xr‖ ≤ ε∗, ‖h(x) − h(xr)‖ ≤ e0. Using an argument
similar to that of the proof of Lemma 2 in [10] one finds that for
any ϑ ∈ (0, c), there exist positive real numbersρ∗

1, ρ
∗
2 such that if

ρi ∈ (0, ρ∗
i ), i = 1, 2, every integral curve(x(t), ξ(t)) leaving from

Ωc cannot exit the setΩc̄ and converges in finite time to the residual
setΩϑ. Clearlyϑ can be chosen so that

(x, ξ) ∈ Ωϑ ⇒ ‖x − xr‖ ≤ ε∗,

thus proving the practical tracking property. From this discussion
and the positive invariance ofH−1

X (C1) and F−1(C2) we get that
Problem 1 is solved over the setA. �

Corollary 1 Under the assumptions of Theorem 1, if A4 holds for
arbitrarily large c′ and a radially unboundedV ′, and A6 holds
globally (i.e.,O = R

n × R
q2 ) with F(O) a convex set, then the

solution to Problem 1 is semiglobal.

Proof: From Lemma 1, ifc′ can be chosen arbitrarily large
and V ′ is radially unbounded,c∗ and V have the same properties.
SinceO = R

n ×R
q2 andF(O) is a convex set, we have that A7 is

satisfied for an arbitrarily largēc and a sufficiently large setC2 (see
Remark 5 in [10]). Thus, the setΩc̄ can be made arbitrarily large.

Notice that, in order to solve Problem 1 semiglobally, we do not
requireX in A2 to be all of Rn+q1 . The advantages of this feature
are illustrated in the next section.

Summarizing the results presented in this section, we have found
that if there exists a compensator (4) satisfying A2 and if suitable
observability/stabilizability properties are satisfied,there exists a
dynamic output feedback controller solving Problem 1.When can
the compensator (4) be found?A partial answer to this question is
provided in the next two sections.

B. Differentially Flat Systems

Assume now that (1) is differentially flat (dynamic feedback
linearizable) with respect to the flat outputy (see [7]), i.e., there exists
a regular compensator3 with input w (referred to as thelinearizing
compensator)

η̇ = ϕ(η, x, w), u = γ(η, x, w), η ∈ R
p, w ∈ R

m (15)

and a setD ⊂ R
n × R

p such that the plant augmented with such
compensator yields (up to a feedback transformation) the trivial
system in output coordinates,y(mi)

i = wi,
P

mi = n + q, and
the mappingT (x, η) : D → T (D) defined as

T (x, η) = col(h1, . . . L
m1−1
f h1, . . . , hm, . . . , Lmm−1

f hm),

where

f (x, η, w) = col(f(x, γ(η, x, w)), ϕ(η, x,w)), h(x, η) = h(x),

are the vector field and output function of the augmented sys-
tem (1), (15), is a diffeomorphism onD. Assume for the mo-
ment that the output function of (15) is independent ofw, i.e.,
γ(η, x, w) = γ(η, x). It is then clear that A1 holds in that let-
ting Y r = col(r1, . . . , r

(m1−1)
1 , . . . , rm, . . . , r

(mm−1)
m ) we have

(xr(t), ηr(t)) = T−1(Y r(t)) and ur(t) = γ(ηr(t), xr(t)). It is
also clear that (15) satisfies A2. As a matter of fact, part (i)in

3For each fixedx the mapγ(η, x, w) : (η, w) 7→ u is a submersion, in
other words(η, w) can be uniquely determined from(x, u), see [13].

A2 is implied by the regularity of (15), and part (ii) is satisfied
with ki = mi, HX(·, ·) = T (·, ·), and X = D. In the general
case whenγ(·, ·, ·) depends onw we just add integrators:̇zj = vj ,
j = 1, . . . , m, w = z. Letting ζ = col(η, z), a(ζ, x, v) =
col(ϕ(η, x, z), v), b(ζ, x) = γ(η, x, z), andki = mi + 1, we have
that a(·, ·, ·) and b(·, ·) satisfy A2 onX = D × R

m. The previous
considerations are summarized in the following.

Fact 1 A sufficient condition for A2 to hold is that (1) is differentially
flat (dynamic feedback linearizable) with respect toy.

However, differential flatness is not a necessary conditionfor A2 to
hold, as it is shown in the next section.

When (1) is differentially flat, so that in output coordinates the
system is in Brunovsky normal form, one can design an input-output
linearizing controller which employs the derivatives of the output
and the reference signal to yield tracking. Such derivatives can be
estimated by means of high-gain observers and thus Problem 1can
be solved, in the spirit of Teel and Praly [14] or Khalil and co-
workers [15], [16], by replacing the derivatives by their estimates
and saturating the control input. On the other hand, even when (1) is
differentially flat, the control topology presented in Section III-A does
not rely on input-output linearizationand the linearizing compensator
is used only for the estimation of the stable inverse of the plant.
Wouldn’t it be better to use input-output linearization rather than the
technique presented in this paper?We use an example to answer this
question.

Example 1 The nonlinear system

ẋ1 = x2,

ẋ2 = x2
1 + u1,

ẋ3 = x4 − u1 − x2
1,

ẋ4 = −x3 − x4 + x4u2

y = col(x1, x3),

(16)

is differentially flat (dynamic feedback linearizable). A linearizing
compensator is

ζ̇1 = ζ2 + ζ3, ζ̇2 = v1, ζ̇3 = v2, u = col(ζ1, ζ2).

The decoupling matrix of the augmented system is
»

1 1
x4 − 1 −1

–

,

and hence the vector relative degree of the augmented system, {4, 3},
is well-defined on the set{(x, ζ) : x4 6= 0}. Given a smooth
reference signalr(t) such thatr̈1 + ṙ2 > 0 (so thatxr

4 > 0), an
input-output linearizing controller for the augmented system is given
by

v =

"

r
(4)
1

r
(3)
2

#

−
1

x4

»

−1 1
1 − x4 1

–

Ke,

wheree = col(e1, . . . , e
(3)
1 , e2, . . . , e

(2)
2 ), with e = y − r, and K

a suitable2 × 7 matrix. This controller solves Problem 1 over a set
A which does not contain any point(x0, ζ0) such thatx0

4 < 0, and
hence does not yield semiglobal output feedback tracking.

On the other hand, we now show that semiglobal output feedback
tracking can be achieved using the control topology in Figure 1. It
is quite clear that A1 holds for any smooth reference signalr(t)
satisfying r̈1 + ṙ2 6= 0 and that A2 holds withk1 = 4, k2 = 3,
and X = {(x, ζ) : x4 6= 0}. Consequently, since the set{(x, ζ) :
x4 > 0} is already convex, the setC1 satisfying A3 can be taken to
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be any convex inner approximation with smooth boundary. Letting
x̃ = x − xr, the stabilizer

ū(x, xr, ur) =

»

ur
1 + (xr

1)
2 − x2

1 + Mx̃
ur

2

–

, M = [−1 − 1 0 0],

satisfies A4 globally (i.e.,c′ = ∞) with

V ′(x̃) =
1

4
x̃>

2

6

4

29 9 7 7
9 27 −1 2
7 −1 6 2
7 2 2 4

3

7

5
x̃.

Letting yx = col(y1, ẏ1, y2, ẏ2) we have yx = Hx(x, u1) =
col(x1, x2, x3, x4 − x2

1 − u1). Since the mappingF : (x, u1) 7→
(yx, u1) is a global diffeomorphism, A6 is satisfied withl1 = 2, l2 =
2, n1 = 1, n2 = 0, andO = R

4×R. It follows that A7 is satisfied by
an arbitrarily largec∗ and a sufficiently large setC2. Sincen1 = 1,
n2 = 0, we need the following dynamic extension

u1 = ξ, ξ̇ = w1, u2 = w2.

It is easy to see that̄̇u1 is independent ofw andvr, and hence A5
holds. From Corollary 1 we conclude that the controller (11), (12),
(13) yields semiglobal output feedback tracking.
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Returning to the question posed earlier, this example showsthat
semiglobal output tracking may be achieved even when the plant
is not globally differentially flat. In other words, in our framework
global differential flatness is not a necessary condition for semiglobal
output feedback tracking.When the system is not globally flat because
either the relative degree of the augmented system (1), (15)is not
everywhere well-defined or the change of coordinatesT (·, ·) is not
a global diffeomorphism, we restrict the class of referencesignals
to be tracked (in the example we imposedr̈1 + ṙ2 > 0). However,
since the linearizing compensator is only employed for estimation,
one may well find a global (or semiglobal) stabilizer yielding a
semiglobal solution to Problem 1. On the other hand, the input-output
linearization approach employs the linearizing compensator as a
dynamic controller. In this framework the domain of operation of the
closed-loop system is unnecessarily restricted and hence Problem 1
cannot be solved semiglobally.

A further advantage of the technique proposed here is that it
naturally lends itself to the estimation of input disturbances. This
topic has been investigated in [17].

C. Tracking With an Exosystem

Assume that the reference signal is generated by aneutrally stable
exosystem (see [3])ẇ = s(w), r = q(w), where w ∈ R

r, and
s(·), q(·) are smooth. We now show that if there exists an internal
model with suitable observability properties, then A1 and A2 are
satisfied and the controller (11), (12), (13) yields asymptotic tracking.
The notion of internal model we use in the next assumption is due
to Isidori (see Section 8.4 in [3]).
Assumption A8 (Internal Model): (i) There exist mappingsx =
π(w), u = c(w), with π(0) = 0, c(0) = 0, satisfying theregulator
equations

∂π

∂w
s(w) = f(π(w), c(w)) 0 = h(π(w)) − q(w)

and such that the autonomous systemẇ = s(w), u = c(w) is
immersed into a system (theinternal model) ζ̇ = a(ζ), u = b(ζ),
with ζ ∈ R

q1 , i.e., there exists a smooth mappingτ : R
r → R

q1

such that
∂τ

∂w
s(w) = a(τ (w)), c(w) = b(τ (w))

c(w1) 6= c(w2) ⇒ b(τ (w1)) 6= b(τ (w2))

for all w ∈ R
r.

(ii) There exists a set of indices{k1, . . . , km}, with
P

ki = n + q1,
such that the map

(x, ζ) 7→ col(y1, . . . , y
(k1−1)
1 , . . . , ym, . . . , y(km−1)

m )

is a diffeomorphism onX ⊂ R
n × R

q1 .

The solvability of the regulator equations in A8 implies theex-
istence of a stable inverse, which is given by(xr(t), ur(t)) =
(π(w(t)), c(w(t))). Moreover, the internal model can be used as the
compensator (4) in A2 withv = 0. To see why this is true, notice
that (i) in A2 is satisfied withζr

0 = τ (w(0)), while (ii) in A2 directly
follows from property (ii) in A8 and the fact that the internal model is
an autonomous system. The previous considerations are summarized
in the following.

Fact 2 A sufficient condition for A2 to hold is that there exists an
internal model satisfying A8.

As remarked earlier, this fact shows that differential flatness is not a
necessary condition for A2 to hold. We now turn our attentionto the
asymptotictracking problem.

Corollary 2 Suppose A3-A8 hold. Then, for anyc ∈ (0, c̄), there
exist positive real numbersρ∗

1, ρ∗
2 such that, for allρ1 ∈ (0, ρ∗

1), ρ2 ∈
(0, ρ∗

2), the dynamic output feedback controller (11)-(13) solves the
output feedback asymptotic tracking problem over the setA defined
in Theorem 1.

Proof: From A8 and Fact 2 we have that A1, A2 are satisfied and
the vector fieldF does not depend onvr, i.e.,F (Xr, vr) = F (xr).
Thus, from Lemma 2,̂Xr(t)−Xr(t) → 0 as t → ∞, so that, in the
proof of Theorem 1,ϑ = 0 and the origin(x̃, ξ̃) is attractive. Thus,
in particular, by the continuity ofh(·) we haveh(x(t))−h(xr(t)) →
0 as t → ∞.

CONCLUDING REMARKS

We presented an approach, based on a separation principle, to solve
the output feedback practical tracking problem for systemswhich
are not affected by uncertainties or disturbances. When thereference
signal is generated by an exosystem and an internal model satisfying
suitable assumptions exists, this approach yields a solution to the
output feedbackasymptotictracking problem. Since this approach
relies on the on-line estimation of the stable inverse of theplant, it
is susceptible to degradation in performance when uncertainties or
disturbances are present.
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