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Abstract: This paper investigates a class of Lagrangian control systems with n degrees-of-
freedom (DOF) and n − 1 actuators, assuming that n − 1 virtual holonomic constraints have
been enforced via feedback, and a basic regularity condition holds. The reduced dynamics of such
systems are described by a second-order unforced differential equation. We present necessary
and sufficient conditions under which the reduced dynamics are those of a mechanical system
with one DOF and, more generally, under which they have a Lagrangian structure.

1. INTRODUCTION

A virtual holonomic constraint (VHC) is a relation of the
form h(q) = 0 that can be made invariant via feedback
control. The early idea of VHCs appeared in Nakanishi
et al. [2000] where the authors enforced the angle of a
virtual pendulum on the configuration of a brachiating
robot in order to follow the target dynamics of a harmonic
oscillator and to imitate the pendulum-like motion of
an ape’s brachiation. In the past decade, VHCs have
emerged as a useful tool for motion control in biped robots
(see, e.g., Plestan et al. [2003], Westervelt et al. [2003],
Chevallereau et al. [2008]), and as an approach to motion
planning for general robotic systems (e.g., Shiriaev et al.
[2005, 2006, 2010], Freidovich et al. [2008]). In the context
of motion control of biped robots, researchers encode
a walking gait by imposing, through feedback control,
relations between the joint angles of the robot, and they
show that when the relations are satisfied, the reduced
motion arising is a stable limit cycle corresponding to a
periodic walking motion (see, e.g., Plestan et al. [2003],
Westervelt et al. [2003]). In the context of motion planning,
researchers use VHCs to aid the selection of closed orbits
corresponding to desired repetitive behaviors, which can
then be stabilized in a variety of ways (as in, e.g., Shiriaev
et al. [2005, 2006]).
A fundamental question that naturally arises in the con-
text of virtual holonomic constraints is whether the re-
duced dynamics induced by a given VHC are Lagrangian.
There are several appealing reasons for posing such a
question. First, if the reduced dynamics are Lagrangian,
then periodic motion planning and control of oscillations
are feasible (see Shiriaev et al. [2005]). Second, one can
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leverage the structural properties of Lagrangian systems
to understand the qualitative properties of the reduced
dynamics. Finally, this question has an intrinsic theoret-
ical value as it fits within the framework of a classical
problem of mathematical physics known as the inverse
problem of Lagrangian mechanics, posed first by Helmholtz
[1887]. This problem asks if a given set of differential
equations represents a Lagrangian system. Comprehensive
historical surveys regarding this problem can be found in
Santilli [1978], Tonti [1985], Krupková and Prince [2008].
See Saunders [2010] for a survey on recent findings. The
focus of the literature in this area is on finding conditions
for the existence of a local Lagrangian function for dif-
ferential equations of arbitrary even order. In the context
of virtual holonomic constraints, the inverse problem of
Lagrangian mechanics takes on a special significance, since
it was shown in Maggiore and Consolini [2013], Consolini
and Maggiore [2012] that virtual holonomic constraints
may induce reduced dynamics that fail to be Lagrangian.
Specifically, when enforcing n − 1 virtual holonomic con-
straints on a Lagrangian control system with n DOF and
n − 1 actuators, the reduced dynamics are described by
a second-order unforced differential equation whose state
space is either a plane or a cylinder. In the former case,
the reduced dynamics are always Lagrangian, while in
the latter case they may fail to be such (see Maggiore
and Consolini [2013], Consolini and Maggiore [2012]). The
work in Maggiore and Consolini [2013], Jankuloski et al.
[2012] provided sufficient conditions for the existence of
a Lagrangian structure, but a number of open problems
remain. To begin with, the work in Maggiore and Consolini
[2013], Jankuloski et al. [2012] investigated the existence of
a Lagrangian function in the special form of kinetic minus
potential energy. The existence of more general Lagrangian
structures was not investigated. Further, necessary and
sufficient conditions for the existence of a Lagrangian
structure are not available to date. Finally, while the work
in Maggiore and Consolini [2013], Consolini and Maggiore



[2012] presented counter-examples of non-Lagrangian re-
duced dynamics, it is not clear whether the existence of a
Lagrangian structure is “typical” or “exceptional” for the
reduced dynamics induced by a VHC.
Contributions of the paper. In this paper we consider La-
grangian control systems with n DOF and n−1 actuators.
As an application example of this class of systems, one can
mention the single support phase of walking in biped robot
locomotion. We assume that a regular VHC, h(q) = 0, of
order n− 1 (the definition will be given in Section 2) has
been enforced via feedback control, and we investigate the
resulting reduced dynamics. These are given by a second-
order unforced differential equation of the form

s̈ = Ψ1(s) + Ψ2(s)ṡ
2, (1)

where the state space is either R2 or the cylinder S1×R. In
Section 3, we present necessary and sufficient conditions
under which (1) admits a global mechanical structure,
i.e., it results from the Euler-Lagrange equation with a
Lagrangian function of the form L(s, ṡ) = (1/2)M(s)ṡ2 −
V (s), with M 6= 0. We then present necessary and
sufficient conditions under which (1) admits any global
Lagrangian structure, i.e., all solutions of (1) satisfy the
Euler-Lagrange equation for an appropriate Lagrangian
function L(s, ṡ). An outcome of our results is that the
existence of a global Lagrangian structure for systems of
the form (1) is exceptional when the state space is S1 ×R.
We remark that while the literature on the inverse problem
of Lagrangian mechanics focuses on the existence of a
local Lagrangian, the problem investigated in this paper is
of a global nature, but it only concerns the second-order
system (1).
Notation. We let n := {1, . . . , n}, and given x ∈ R

n, we
denote ‖x‖ := (x⊤x)1/2. Given x ∈ R and T > 0, then
[x]T := x modulo T . The set of real numbers modulo T is
denoted by [R]T . Therefore, [R]T = {[x]T : x ∈ R}. The
set [R]T can be given the structure of a smooth manifold
diffeomorphic to the unit circle S

1 ⊂ C through the map
[x]T 7→ exp(i2(π/T )[x]T ). Given a function h : Q → R

k,
we define h−1(0) := {q ∈ Q : h(q) = 0}. Given a
smooth manifold Q, we denote by TQ its tangent bundle,
TQ := {(p, vp) : p ∈ Q, vp ∈ TpQ}. If h : Q1 → Q2

is a smooth map between manifolds, and p ∈ Q1, dhp :
TpQ1 → Th(p)Q2 denotes the differential of h at p, while
dh : TQ1 → TQ2 denotes the global differential of h,
defined as dh : (p, vp) 7→ (h(p), dhp(vp)). If h : Q1 →
Q2 is a diffeomorphism, then we say that Q1,Q2 are
diffeomorphic, and we write Q1 ≃ Q2. In this case, the
global differential dh : TQ1 → TQ2 is a diffeomorphism
as well (see [Lee, 2013, Corollary 3.22]).

2. PRELIMINARIES ON VIRTUAL HOLONOMIC
CONSTRAINTS

In this section we review basic material taken from Mag-
giore and Consolini [2013]. Consider a Lagrangian control
system with n DOF and n− 1 actuators modelled as

d

dt

∂L

∂q̇
−

∂L

∂q
= B(q)τ.

In the above, q = (q1, . . . , qn) ∈ Q is the configuration
vector. We assume that each component qi, i ∈ n, is either
a linear displacement in R, or an angular displacement in
[R]Ti

, for some Ti > 0 (typically, Ti = 2π). With this
assumption, the configuration manifold Q is a generalized

cylinder, and TQ is the Cartesian product TQ = Q×R
n.

The term B(q)τ represents external forces produced by
the control vector τ ∈ R

n−1. We assume that B : Q →
R

n×(n−1) is smooth and rankB(q) = n− 1 for all q ∈ Q.
Further, the function L : TQ → R is assumed to be smooth
and to have the special form L(q, q̇) = 1

2 q̇
TD(q)q̇ − P (q),

where D(q), the generalized mass matrix, is symmetric
and positive definite for all q ∈ Q. We will assume that
there exists a left annihilator of B on Q. That is to say,
there exists a smooth function B⊥ : Q → R

1×n which does
not vanish and is such that B⊥(q)B(q) = 0 on Q. With
the above mentioned assumptions, the Lagrangian control
system takes on the following standard form

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = B(q)τ. (2)

Definition 2.1. (Maggiore and Consolini [2013]) A virtual
holonomic constraint (VHC) of order n−1 for system
(2) is a relation h(q) = 0, where h : Q → R

n−1 is
a smooth function which has a regular value at 0, i.e.,
rank(dhq) = n− 1 for all q ∈ h−1(0), and is such that the
set

Γ = {(q, q̇) : h(q) = 0, dhq q̇ = 0} (3)

is controlled invariant. That is to say, there exists a
smooth feedback τ : Γ → R

n−1 such that Γ is positively
invariant for the closed-loop system. The set Γ is called the
constraint manifold associated with h(q) = 0. A VHC
is said to be stabilizable if there exists a smooth feedback
τ(q, q̇) that asymptotically stabilizes Γ. Such a stabilizing
feedback is said to enforce the VHC h(q) = 0. △

Definition 2.2. (Maggiore and Consolini [2013]) A relation
h(q) = 0, where h : Q → R

n−1 is a smooth function, is
a regular VHC of order n− 1 for (2) if system (2) with
output function e = h(q) has well-defined vector relative
degree {2, . . . , 2} everywhere on the constraint manifold
given in (3). △

A regular VHC is a VHC. Indeed, the condition that
the output function e = h(q) has vector relative degree
{2, . . . , 2} implies (see Isidori [1995]) that rank(dhq) =
n − 1 for all q ∈ h−1(0). Moreover, the zero dynamics
manifold exists and it coincides with Γ, implying that Γ is
controlled invariant. Regular VHCs enjoy two important
properties. First, under mild assumptions (see Maggiore
and Consolini [2013]), regular VHCs are stabilizable by
input-output feedback linearizing feedback. The second
useful property of regular VHCs is that they induce well-
defined reduced dynamics. Specifically, the dynamics on
Γ (i.e., the zero dynamics associated with the output
e = h(q)) are given by a second-order unforced system. In
order to find the reduced dynamics, we follow a procedure
presented in Jankuloski et al. [2012]. We first pick a regular
parametrization σ : Θ → Q of the curve h−1(0), where
Θ = R if h−1(0) ≃ R, while Θ = [R]T , T > 0, if
h−1(0) ≃ S

1. The map σ : Θ → σ(Θ) = h−1(0) is
a diffeomorphism. Therefore, the global differential dσ :
TΘ → Th−1(0), (s, ṡ) 7→ (σ(s), σ′(s)ṡ) is a diffeomorphism
as well. Since, Th−1(0) = Γ, we conclude that TΘ ≃ Γ.
Next, multiplying (2) on the left by B⊥(q) we obtain
B⊥Dq̈+B⊥(Cq̇+∇P ) = 0. The dynamics on Γ are found
by restricting the equation above on Γ. To this end, we
use the fact that dσ : TΘ → Γ is a diffeomorphism, and
we let q = σ(s), q̇ = σ′(s)ṡ, and q̈ = σ′(s)s̈+ σ′′(s)ṡ2. By
so doing, we obtain



s̈ = Ψ1(s) + Ψ2(s)ṡ
2, (4)

where Ψ1(s) = − B⊥
∇P

B⊥Dσ′

∣

∣

∣

q=σ(s)
,

Ψ2(s) = −

B⊥Dσ′′ +
∑n

i=1
B⊥

i
σ′⊤Qiσ

′

B⊥Dσ′

∣

∣

∣

∣

q=σ(s)

,

and where B⊥
i is the ith component of B⊥ and (Qi)jk =

1/2(∂qkDij +∂qjDik −∂qiDkj). The unforced autonomous
system (4) represents the reduced dynamics of system (2)
when the regular VHC of order n−1, h(q) = 0, is enforced.
The state space of (4) is TΘ = Θ × R which, as we
have seen, is diffeomorphic to Γ. The set TΘ is a plane
if h−1(0) ≃ R, and a cylinder if h−1(0) is a Jordan curve.

3. MAIN RESULTS

In this section we formulate and solve the main problem
investigated in this paper for a two-dimensional system of
the form (4), with state space X = TΘ, with Θ = R or
[R]T , T > 0. The functions Ψi : Θ → R, i = 1, 2, are
assumed to be smooth. We begin by defining precisely the
Lagrangian structures under consideration.

Definition 3.1. System (4) is said to be:
(a) Euler-Lagrange (EL) with Lagrangian L if there

exists a smooth Lagrangian function L : X → R such
that the following two properties hold:
(i) The Lagrangian L is nondegenerate, i.e., ∂2L/∂ṡ2 >

0 for all (s, ṡ) ∈ X .
(ii) All solutions (s(t), ṡ(t)) of (4) satisfy the Euler-

Lagrange equation

d

dt

∂L

∂ṡ
(s(t), ṡ(t))−

∂L

∂s
(s(t), ṡ(t)) = 0 (5)

for all t in their maximal interval of definition.
(b) Mechanical if it is EL with Lagrangian L(s, ṡ) =

(1/2)M(s)ṡ2 − V (s), where M : Θ → (0,∞), V : Θ →
R are smooth.

(c) Singular Euler-Lagrange (SEL) with Lagrangian
L if there exists a smooth Lagrangian function L :
X → R such that ∂2L/∂ṡ2 is not identically zero and
property (ii) of part (a) holds. Moreover, if L is any
function satisfying the latter two properties, then
(i)′ L is degenerate, i.e., ∂2L/∂ṡ2 has zeros.

△

Remark 3.2. EL systems with Lagrangian L are Hamil-
tonian with Hamiltonian function given by the Legendre
transform of L (see, e.g., Arnold [1989]). On the other
hand, while SEL systems have a Lagrangian structure,
they are generally not Hamiltonian because the Legendre
transform of L may not be well-defined. Moreover, SEL
systems are not mechanical since, by definition, ∂2L/∂ṡ2 =
M(s) > 0 for a mechanical system. If L is the Lagrangian
of an EL system of the form (4), the Euler-Lagrange
equation (5) defines a smooth vector field on X which coin-
cides with (4). Indeed, requirement (i) in Definition 3.1(a)
ensures that the coefficient of s̈ in (5) is not zero, and
therefore (5) defines a smooth vector field on X . Moreover,
by uniqueness of solutions of (4) and requirement (ii) in
Definition 3.1(a), the local phase flow of this vector field
must coincide with the local phase flow of (4). Hence,
the vector field arising from (5) must coincide with (4).
On the other hand, for a SEL system (see Remark 5.4),
the Euler-Lagrange equation (5) gives rise to the equation
α(s, ṡ)

[

s̈−Ψ1(s)−Ψ2(s)ṡ
2
]

= 0, where α is a smooth

function with zeros. It follows from this identity that
the Euler-Lagrange equation does not give rise to a well-
defined vector field on X , and the collection of its solutions
(s(t), ṡ(t)) contains, but is not equal to the collection of
solutions of (4). We will illustrate this fact with an exam-
ple in Section 6. Finally, we remark that the requirement,
in Definition 3.1(c), that ∂2L/∂ṡ2 is not identically zero
guarantees that the Euler-Lagrange equation (5) gives rise
to a second-order differential equation. △

Inverse Lagrangian Problem (ILP). Find necessary
and sufficient conditions under which system (4) is, re-
spectively, EL, mechanical, or SEL.
In order to present the solution of ILP, we let Ψ̃i : R → R,
i = 1, 2, be defined as Ψ̃i(x) := Ψi([x]T ), and we define

the virtual mass M̃ : R → (0,∞) and virtual potential

Ṽ : R → R as

M̃(x) = exp
(

− 2

∫ x

0

Ψ̃2(τ) dτ
)

,

Ṽ (x) = −

∫ x

0

Ψ̃1(τ)M̃(τ) dτ.

(6)

We now present the main results of this paper.

Theorem 3.3. (Solution to ILP - Part 1). If Θ = R,
then system (4) with state space X = TΘ is mechanical,

with M = M̃ and V = Ṽ , where M̃, Ṽ are defined in (6)

with Ψ̃i(x) = Ψi(x).

Proof. By inspection, the Euler-Lagrange equation with
Lagrangian L(s, ṡ) = (1/2)M(s)ṡ2 − V (s) produces equa-
tion (4).

Remark 3.4. When system (4) is mechanical and Θ = R,

the total energy E0(s, ṡ) = (1/2)M̃(s)ṡ2 + Ṽ (s) is a first
integral of the system, i.e., it is constant along all solutions.
Shiriaev et al. [2005, 2006] present an “integral of motion”
for (4) which does not coincide with E0, but it relies on the

functions M̃(s) and Ṽ (s) in (6). The “integral of motion”
in Shiriaev et al. [2005, 2006] is not a first integral because
it is only constant along one solution of the system. △

Theorem 3.5. (Solution to ILP - Part 2). If Θ = [R]T ,
then the following statements about system (4) with state
space X = TΘ are equivalent:
(i) System (4) is EL.
(ii) System (4) is mechanical.
(iii) The functions M̃ and Ṽ in (6) are T -periodic.
Moreover, if (4) is EL, then the Lagrangian function
L : T [R]T → R is given by L(s, ṡ) = (1/2)M(s)ṡ2 − V (s),
whereM : [R]T → (0,∞) and V : [R]T → R are the unique

smooth functions such that M̃ = M ◦ π and Ṽ = V ◦ π,
where π : R → [R]T is defined as π(x) = [x]T .

Remark 3.6. The sufficiency part of the theorem was
proved in Maggiore and Consolini [2013], Jankuloski et al.
[2012], but we present it in Section 5 for completeness. △

Theorem 3.7. (Solution to ILP - Part 3). If Θ = [R]T ,
then the following statements about system (4) with state
space X = TΘ are equivalent:
(i) System (4) is SEL.
(ii) The function M̃ is T -periodic, while Ṽ is not T -

periodic.
Moreover, if (4) is SEL, then the Lagrangian function
L : T [R]T → R is the unique smooth function such that

L(π(x), ẋ) = L̃(x, ẋ) for all (x, ẋ) ∈ R × R, where π is
defined in Theorem 3.5,



L̃(x, ẋ) = − sin(2πf0Ẽ0(x, ẋ)) +
√

2f0M̃(x)πẋ×

[

cos(2πf0Ṽ (x))C

(

√

2f0M̃(x) ẋ

)

−

sin(2πf0Ṽ (x))S

(

√

2f0M̃(x) ẋ

)

]

,

(7)

where f0 = 1/Ṽ (T ), Ẽ0(x, ẋ) = (1/2)M̃(x)ẋ2+ Ṽ (x), and
C(·), S(·) are the Fresnel cosine and sine integrals, defined
as C(x) =

∫ x

0
cos(πt2/2)dt, S(x) =

∫ x

0
sin(πt2/2)dt.

Remark 3.8. Theorems 3.5 and 3.7 show that, when Θ =
[R]T (which, in the setup presented in Section 2, corre-
sponds to the situation when the VHC h(q) = 0 is a
Jordan curve) the property of (4) being either EL or SEL
is exceptional, in that it is not satisfied by a generic system
of the form (7) with state space TΘ. Indeed, in order
for (4) to be EL or SEL it is required at a minimum that

M̃(x) be T -periodic, which corresponds to requiring that

the T -periodic function Ψ̃2 : R → R has zero average. In

other words, the set {Ψ̃2 : R → R|
∫ T

0
Ψ̃2(τ)dτ = 0} has

“measure zero” in the set of all smooth T -periodic and
real-valued functions defined on the real line. △

In the next two sections we prove Theorems 3.5 and 3.7
assuming that Θ = [R]T . We now provide an outline of the
arguments that follow.
Outline of proofs of Theorems 3.5 and 3.7.

Step 1. In Section 4, we define a lifted system, ẍ =
Ψ̃1(x) + Ψ̃2(x)ẋ

2, with state space R
2. In Lemma 4.1,

we show that trajectories of the lifted system are related
to trajectories of system (4) through the map dπ, where
π(x) = [x]T .
Step 2. In Lemma 4.2, we show that solutions of the Euler-
Lagrange equation (5) are related through the map dπ to
solutions of the Euler-Lagrange equation with Lagrangian
L̃ = L ◦ dπ.
Step 3. Leveraging Lemmas 4.1 and 4.2, in Proposition 4.3
we show that (4) is EL or SEL if and only if the lifted

system is EL or SEL with a Lagrangian L̃(x, ẋ) which is
T -periodic with respect to x.
Step 4. In Section 5, we find necessary and sufficient
conditions for the existence of a Lagrangian L̃ for the
lifted system which enjoys the periodicity property of
Proposition 4.3. In Proposition 5.1 we show that in order
for a function L̃(x, ẋ) which is nondegenerate and T -
periodic with respect to x to be a Lagrangian for the lifted
system, it is necessary and sufficient that M̃ and Ṽ in (6)
are T -periodic. This result proves Theorem 3.5.
Step 5. In Lemma 5.2, we find expressions for M̃(x+nT ),

Ṽ (x+ nT ), n ∈ Z.
Step 6. Using Lemma 5.2, in Proposition 5.3, we prove
that the lifted system is SEL with a Lagrangian L̃(x, ẋ)

which is T -periodic with respect to x if and only if M̃ in (6)

is T -periodic, while Ṽ isn’t. In light of Proposition 4.3, this
proves Theorem 3.7.

4. LIFT OF ILP TO R
2

Let π : R → [R]T be defined as π(x) = [x]T , and let
π̄ : TR → T [R]T denote the global differential of π,
π̄ := dπ, so that π̄(x, ẋ) = ([x]T , dπxẋ) = ([x]T , ẋ). Given
two functions f : [R]T → R and F : T [R]T → R, we

define their lifts to be functions f̃ := f ◦ π : R → R, and

F̃ := F ◦ π̄ : TR → R. If L̃ : TR → R is a smooth function,
its associated Euler-Lagrange equation is

d

dt

∂L̃

∂ẋ
−

∂L̃

∂x
= 0. (8)

Finally, we define the lift of system (4) as

ẍ = Ψ̃1(x) + Ψ̃2(x)ẋ
2, (9)

where Ψ̃1 and Ψ̃2 are the lifts of Ψ1 and Ψ2, namely,
Ψ̃i(x) := Ψi([x]T ). The state space of the above differential

equation is X̃ = TR. We will apply to system (9) the
terminology of Definition 3.1, whereby L will be replaced
by L̃. The proofs of technical results are omitted due to
space limitations.

Lemma 4.1. The vector field of equation (4) is π̄-related
to the vector field of (9). Therefore, pair (s(t), ṡ(t)) is
a solution of (4) if and only if there exists a solution
(x(t), ẋ(t)) of (9) such that (s(t), ṡ(t)) = π̄(x(t), ẋ(t)).

Lemma 4.2. Let I ⊂ R be an open interval, and s : I →
[R]T , x : I → R be C1 signals such that (s(t), ṡ(t)) =
π̄(x(t), ẋ(t)) for all t ∈ I. Then, the pair (s(t), ṡ(t))
satisfies the Euler-Lagrange equation (5) with smooth
Lagrangian L : T [R]T → R if and only if the pair
(x(t), ẋ(t)) satisfies the lifted Euler-Lagrange equation (8)

with smooth Lagrangian L̃ = L ◦ π̄.

Proposition 4.3. The following statements are equivalent
(i) System (4) with state space X = T [R]T is EL (resp.,

SEL) with Lagrangian L.
(ii) System (9) with state space X̃ = TR is EL (resp.,

SEL) with Lagrangian L̃ = L ◦ π̄.

Proof. Let L̃ = L ◦ π̄. Then, it is easy to see that
(∂2L̃/∂ẋ2)(x, ẋ) = (∂2L/∂ṡ2)(π̄(x, ẋ)). Therefore, L is
nondegenerate (respectively, degenerate) if and only if

L̃ is nondegenerate (respectively, degenerate). Now, sup-
pose that system (4) is EL (respectively, SEL) with La-
grangian L. Consider an arbitrary solution of (9), namely,
(x(t), ẋ(t)), where x : I → R is C1 and I ⊂ R is an
open interval. By Lemma 4.1, (s(t), ṡ(t)) := π̄(x(t), ẋ(t))
is a solution of (4), and thus satisfies the Euler-Lagrange
equation (5). By Lemma 4.2, (x(t), ẋ(t)) satisfies the Euler-

Lagrange equation with Lagrangian L̃ = L ◦ π̄. Since
(x(t), ẋ(t)) is an arbitrary solution of (9), and since π̄ :
TR → T [R]T is onto, system (9) is EL (respectively,

SEL) with Lagrangian L̃ = L ◦ π̄. The proof that if (9)

is EL (respectively, SEL) with Lagrangian L̃ = L ◦ π̄,
then (4) is EL (respectively, SEL) with Lagrangian L is
analogous. We consider an arbitrary solution (s(t), ṡ(t))
of (4), and we let (x(t), ẋ(t)) be a solution of (9) such
that (s(t), ṡ(t)) = π̄(x(t), ẋ(t)). Such a solution exists by
Lemma 4.1 and the fact that π̄ is onto. Thus, (x(t), ẋ(t))
is a solution of the Euler-Lagrange equation (8) with La-

grangian L̃ = L◦π̄. By Lemma 4.2, (s(t), ṡ(t)) is a solution
of the Euler-Lagrange equation (5) with Lagrangian L.
Since (s(t), ṡ(t)) is an arbitrary solution of (4), we conclude
that (4) is EL (respectively, SEL).

5. PROOFS OF MAIN RESULTS

By virtue of Proposition 4.3, solving ILP and finding a
Lagrangian L for system (4) is equivalent to solving ILP

and finding a Lagrangian L̃ for the lifted system (9) such

that L̃ = L ◦ π̄, for some smooth L : T [R]T → R. Given



a smooth function L̃ : TR → R, there exists a smooth
function L : T [R]T → R satisfying L̃ = L ◦ π̄ if and only

if L̃ is T -periodic with respect to its first argument, i.e.,
L̃(x + T, ẋ) = L̃(x, ẋ) for all (x, ẋ) ∈ TR. In this section,
we leverage this fact to prove Theorems 3.5 and 3.7.

Proposition 5.1. The lifted system (9) is EL with a smooth

Lagrangian L̃ : TR → R such that L̃(x + T, ẋ) = L̃(x, ẋ)

for all (x, ẋ) ∈ TR, if and only if the virtual mass M̃

and virtual potential Ṽ in (9) are T -periodic. If this is
the case, then system (4) is mechanical with Lagrangian
L = (1/2)M(s)ṡ2 − V (s), where M and V are defined

through M̃ = M ◦ π, Ṽ = V ◦ π.

Proof. (⇐) If M̃ , Ṽ are T -periodic, then L̃(x, ẋ) =

(1/2)M̃(x)ẋ2 − Ṽ (x) is T -periodic with respect to x, and
d
dt

∂L̃
∂ẋ − ∂L̃

∂x = M̃(x)
(

ẍ− Ψ̃1(x) − Ψ̃2(x)ẋ
2
)

. Since M̃ > 0,

the lifted system is mechanical with Lagrangian L̃.
(⇒) Assume that system (9) is EL with smooth La-

grangian L̃ : TR → R such that L̃(x + T, ẋ) = L̃(x, ẋ)

for all (x, ẋ) ∈ TR. By definition of EL system, L̃ is

nondegenerate, i.e., ∂2L̃/∂ẋ2 6= 0. Define a smooth func-

tion Ẽ : TR → R as Ẽ(x, ẋ) := ẋ∂L̃
∂ẋ (x, ẋ) − L̃(x, ẋ). By

differentiating the expression for Ẽ above along the vector
field of (9), it is readily seen that Ẽ is an integral of motion

for (9), i.e., ˙̃E = 0. Consequently, Ẽ must satisfy the first-
order linear PDE

∂Ẽ

∂x
ẋ+

∂Ẽ

∂ẋ

(

Ψ̃1(x) + Ψ̃2(x)ẋ
2
)

= 0. (10)

Its general solution, obtained via the method of charac-
teristics in Pinchover and Rubinstein [2005], is Ẽ(x, ẋ) =

F (Ẽ0(x, ẋ)), where F is a smooth function and Ẽ0(x, ẋ) =
1
2M̃(x)ẋ2 + Ṽ (x). Using the definition of Ẽ, we have
∂Ẽ
∂ẋ = ẋ∂2L̃

∂ẋ2 for all (x, ẋ) ∈ TR. Therefore, ∂2L̃
∂ẋ2 =

M̃(x)F ′(Ẽ0(x, ẋ)). Since ∂2L̃/∂ẋ2 > 0 and M̃ > 0, it

follows that F ′(Ẽ0(x, ẋ)) > 0 for all (x, ẋ) ∈ R
2, and

thus F is strictly increasing. Furthermore, we know that
Ẽ(x+T, ẋ) = Ẽ(x, ẋ) for all (x, ẋ) ∈ R

2. Therefore, for all

(x, ẋ) ∈ TR, we have F (Ẽ0(x+T, ẋ)) = F (Ẽ0(x, ẋ)), which

implies that Ẽ0(x+ T, ẋ) = Ẽ0(x, ẋ). Since ẋ is arbitrary,

this latter identity implies that M̃ and Ṽ are T -periodic.
Since M̃ and Ṽ are T -periodic, then (1/2)M̃(x̃) ˙̃x2−Ṽ (x̃) is
a Lagrangian for the lifted system (9). By Proposition 4.3,
L(s, ṡ) = (1/2)M(s)ṡ2 − V (s) is a Lagrangian for the
original system (4).

Lemma 5.2. Consider the virtual mass and virtual poten-
tial in (9). For all n ∈ Z and all x ∈ R, the following
holds:

M̃(x+ nT ) = M̃(T )nM̃(x) (11)

Ṽ (x+ nT ) =



























M̃(T )nṼ (x) + Ṽ (T )
M̃(T )n − 1

M̃(T )− 1
,

if M̃(T ) 6= 1,

Ṽ (x) + nṼ (T ),

if M̃(T ) = 1.

(12)

Proposition 5.3. The lifted system (9) is SEL with a

smooth Lagrangian L̃ : TR → R such that L̃(x + T, ẋ) =

L̃(x, ẋ) for all (x, ẋ) ∈ TR, if and only if the virtual mass

M̃(x) in (6) is T -periodic, and the virtual potential Ṽ (x)
is not T -periodic.

Proof. (⇐) Suppose that the virtual mass M̃(x) is T -

periodic and the virtual potential Ṽ (x) is not T -periodic,

so that Ṽ (T ) 6= 0 and f0 = 1/Ṽ (T ) is well-defined.

Consider the function L̃ : TR → R defined in (7). With

our definition of f0, L̃(x, ẋ) is T -periodic with respect to
x. Moreover, by direct computation, we have

d

dt

∂L̃

∂ẋ
−

∂L̃

∂x
= α̃(x, ẋ)

(

ẍ− Ψ̃1(x)− Ψ̃2(x)ẋ
2
)

, (13)

where α̃(x, ẋ) = (∂2L̃)/(∂ẋ2) = 2πf0M̃(x) cos(2πf0Ẽ0(x,
ẋ)). Note first that α̃ is not identically zero because

Ṽ is not identically zero (if it were, then Ṽ would be
T -periodic, contradicting our assumption). At the same
time, we now show that α̃ has zeros. By assumption,
M̃(T ) = M̃(0) = 1 and Ṽ (T ) 6= V (0) = 0. By identity (12)

in Lemma 5.2, Ṽ (x) → ±∞ as |x| → ∞, and the two
limits as x → ±∞ have opposite sign, which implies that
the continuous map Ṽ : R → R is onto. Thus, there
exists x̄ ∈ R such that 2πf0Ṽ (x̄) = π/2, implying that
α̃(x̄, 0) = 0. We have shown that α̃ has zeros, which

implies that L̃ is degenerate. By definition, all solutions
of the lifted system (9) satisfy the differential equation

ẍ = Ψ̃1(x) + Ψ̃2(x)ẋ
2. Therefore, by identity (13), any

solution of (9) satisfies the Euler-Lagrange equation with

a degenerate Lagrangian L̃. In order to complete the proof
that system (9) is SEL, we need to show that if L̃′ is any

other Lagrangian for system (9), then L̃ is degenerate, i.e.,

∂2L̃′/∂ẋ2 has zeros. Suppose there exists a nondegenerate

Lagrangian L̃′ for system (9). Then, system (9) is EL,

which by Proposition 5.1 implies that Ṽ is T -periodic, a
contradiction.
(⇒) Suppose that the lifted system (9) is SEL, and let L̃

be a degenerate Lagrangian such that L̃(x, ẋ) is T -periodic

with respect to x, and ∂2L̃/∂ẋ2 has zeros, but it is not

identically zero. We need to show that M̃(T ) = 1, so that

M̃ in (6) is T -periodic (this fact will imply that Ṽ is not T -
periodic, because if it were so, then by Proposition 5.1 the
system would be EL). As in the proof of Proposition 5.1,

let Ẽ = ẋ∂L̃/∂ẋ−L̃. Then, Ẽ satisfies the linear PDE (10),

whose general solution is Ẽ(x, ẋ) = F (Ẽ0(x, ẋ)), with

Ẽ0(x, ẋ) = (1/2)M̃(x)ẋ2+Ṽ (x). Since L̃ is T -periodic with

respect to x, so is Ẽ. Therefore, Ẽ(x, ẋ) = Ẽ(x + nT, ẋ)
for all (x, ẋ) ∈ TR and all n ∈ Z. Using Lemma 5.2, for all

n ∈ Z we have F (E0(x, ẋ)) = F
(

Ẽ0(x+ nT, ẋ)
)

= F

(

M̃(T )nẼ0(x, ẋ) + Ṽ (T ) M̃(T )n−1

M̃(T )−1

)

. We claim that

if M̃(T ) 6= 1, then F is a constant function. Indeed,

for any p ∈ Im(Ẽ0) and any n ∈ Z, we have F (p) =

F

(

M̃(T )np + Ṽ (T ) M̃(T )n−1

M̃(T )−1

)

. If M̃(T ) > 1, taking the

limit as n → −∞ in both sides of the identity above we

get F (p) = F

(

−Ṽ (T )

M̃(T )−1

)

. If M̃(T ) < 1, the same identity



is obtained by taking the limit for n → +∞. Since the
right-hand side of the identity above does not depend on
p, F : Im(Ẽ0) → R is a constant map. Thus, for all

(x, ẋ) ∈ TR we have ∂Ẽ
∂ẋ = ẋ∂2L̃

∂ẋ2 = 0, and so ∂2L̃/∂ẋ2 ≡ 0,

contradicting our hypothesis on L̃.

Remark 5.4. Since the degenerate Lagrangian L̃(x, ẋ)
in (7) is smooth and T -periodic with respect to x, there
exists a smooth function L : T [R]T → R such that L ◦

π̄ = L̃. By Lemma 4.2, since α̃(x, ẋ) is T -periodic with
respect to x, (13) implies that L satisfies the identity
d
dt

∂L
∂ṡ − ∂L

∂s = α(s, ṡ)
(

s̈−Ψ1(s)−Ψ2(s)ṡ
2
)

, where α and
α̃ are related through α̃ = α ◦ π̄. △

6. EXAMPLES

We now present a number of examples illustrating the
results of this paper.

Example 6.1. Consider the system s̈ = 1
2+cos(s) [sin(2s) −

sin(s)ṡ2], where s ∈ [R]2π. The virtual mass and potential

are given by M̃(x) = 9/(cosx + 2)2 and Ṽ (x) = 4 −

18(cosx+1)/(cosx+2)2. Since M̃ and Ṽ are 2π-periodic,
by Theorem 3.5 the system is EL and mechanical. △

Example 6.2. For the system s̈ = cos(s) + 0.5 + cos(s)ṡ2,

where s ∈ [R]2π, we have M̃(x) = exp
(

−2
∫ x

0
Ψ̃2(τ)dτ

)

=

exp
(

− 2
∫ x

0
cos τdτ

)

= exp(−2 sinx), which is 2π-

periodic. On the other hand, one can check that Ṽ (2π) =

−
∫ 2π

0
(cos τ + 0.5) exp(−2 sin τ)dτ ≃ 7.1615 6= 0, so that

Ṽ is not 2π-periodic. By Theorem 3.7, the system is SEL.
△

Example 6.3. For the system s̈ = λ, with λ 6= 0 and
s ∈ [R]T , we have M̃(x) = 1 and Ṽ (x) = −λx. Since

M̃ is T periodic and Ṽ isn’t, the system is SEL. By
Theorem 3.7, the Lagrangian is given by (7). The Euler-

Lagrange equation with this Lagrangian reads d
dt

∂L̃
∂ẋ −

∂L̃
∂x = 2π

λT cos
(

2π
λT (ẋ

2/2− λx)
)

(ẍ− λ) = 0. We see that all

solutions of the system s̈ = λ satisfy the Euler-Lagrange
equation, but there are signals (x(t), ẋ(t)) = (T/4+kT, 0),
k ∈ Z satisfying the Euler-Lagrange equation which do not
satisfy the equation s̈ = λ. Thus, the collection of solutions
of a SEL system is contained in, but is not equal to, the
collection of solutions of the associated Euler-Lagrange
equation. △

Example 6.4. Consider the system s̈ = − cos(s) − 2 +
(sin(s) + 2)ṡ2 with s ∈ [R]2π. We have Ψ1(s) = − cos(s)−

2 < 0 and
∫ 2π

0
Ψ̃2(τ)dτ =

∫ 2π

0
(sin τ + 2)dτ = 4π > 0.

This latter identity implies that M̃(2π) 6= 0, so that M̃ is
not 2π-periodic, and the system is neither EL nor SEL.
Moreover, one can show, see Consolini and Maggiore
[2012], that this system has an exponentially stable limit
cycle with domain of attraction including D = {(s, ṡ) ∈
T [R]2π : ṡ ≤ 0}. △

REFERENCES

V. I. Arnold. Mathematical Methods of Classical Mechan-
ics (Graduate Texts in Mathematics, Vol. 60). Springer,
1989.

C. Chevallereau, J.W. Grizzle, and C.L. Shih. Asymp-
totically stable walking of a five-link underactuated 3D

bipedal robot. IEEE Transactions on Robotics, 25(1):
37–50, 2008.

L. Consolini and M. Maggiore. Control of a bicycle
using virtual holonomic constraints. Automatica, 2012.
accepted for publication.
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