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1. INTRODUCTION

The maneuver regulation (or path following)
problem entails designing a smooth feedback mak-
ing the trajectories of a system follow a pre-
specified path, or maneuver. Unlike a tracking
controller, a maneuver regulation controller drives
the trajectories of a system to a maneuver up to
time-reparameterization. This difference is crucial
in robotics and aerospace applications where the
system dynamics impose constraints on the time
parameterization of feasible maneuvers.

This paper, together with the work in Nielsen and
Maggiore (2004a,b,c), initiates a line of research
inspired by the work of Banaszuk and Hauser
(1995). There, the authors consider periodic ma-
neuvers in the state space and present necessary
and sufficient conditions for feedback linearization
of the associated transverse dynamics. Feedback
linearization is a natural framework for maneu-
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ver regulation, as evidenced by the body of work
on path following which employs this approach
(see for example Altafini (2002), Gillespie et al.
(2001), Hauser and Hindman (1997), Coelho and
Nunes (2003)). In all these papers, the maneuver
regulation problem is converted to an input out-
put feedback linearization problem with respect to
a suitable output. This motivates our interest in
establishing a general framework for doing this.
After reviewing necessary and sufficient condi-
tions for global and local transverse feedback lin-
earization (TFL) (see also Nielsen and Maggiore
(2004a,b,c)), we apply our results to a kinematic
unicycle (Section 5.1), a rear wheel drive car (Sec-
tion 5.2) and a trailer system (Section 5.3). We
show that the latter system is not transversely
feedback linearizable but its transverse dynamics
possess a robust relative degree and hence approx-
imate linearization is possible.

The following notation is used throughout the pa-
per. We denote by Φv

t (x) the flow of a smooth vec-
tor field v. We let col(x1, . . . , xk) := [x1 . . . xn]⊤

and, given two column vectors a and b, we let
col(a, b) := [a⊤ b⊤]⊤. Given a smooth distribution



D, we let inv (D) be its involutive closure (the
smallest involutive distribution containing D) and
D⊥ be its annihilator. For brevity, the term sub-
manifold is used in place of embedded submanifold
of R

n throughout.

2. PROBLEM FORMULATION

Consider the smooth dynamical system

ẋ = f(x) + g(x)u

y = h(x)
(1)

defined on R
n, with h : R

n → R
p (p ≥ 2) of

class Cr (r ≥ 1), and u ∈ R. Given a smooth
parameterized curve σ : D → R

p, where D is either
R or S1, the maneuver regulation problem entails
finding a smooth control u(x) driving the output
of the system to the set σ(D) and making sure
that the curve is traversed in one direction. When
D = S1, σ(D) is a periodic curve. Banaszuk and
Hauser (1995) provide a solution to this problem
in the special case when D = S1 and h(x) = x.
Notice that one particular instance of maneuver
regulation is the case when a controller is designed
to make y(t) asymptotically track a specific time
parameterization of the curve σ(t) (Hauser and
Hindman, 1995). Thus asymptotic tracking and
maneuver regulation are closely related problems.
In some cases, however, it may be undesirable or
even impossible to pose a maneuver regulation
problem as one of tracking (consider, for instance,
the problem of maneuvering a wheeled vehicle
with bounded translational speed by means of
steering). We impose geometric restrictions on the
class of curves σ(·).

Assumption 1. The curve σ : D → R
p enjoys the

following properties

(i) σ is Cr, (r ≥ 1)
(ii) σ is regular, i.e., ‖σ̇‖ 6= 0
(iii) σ : D → σ(D) is injective (when D = S1 we

instead require σ to be a Jordan curve)
(iv) σ is proper, i.e. for any compact K ⊂ R

p,
σ−1(K) is compact (automatically satisfied
when D = S1)

Assumption 1 guarantees that σ(D) is a subman-
ifold of R

p with dimension 1.

Assumption 2. There exists a C1 map γ : R
p →

R
p−1 such that 0 is a regular value of γ and

σ(D) = γ−1(0). Moreover, the lift of γ−1(0) to
R

n, Γ := (γ ◦ h)−1(0), is a submanifold of R
n.

A sufficient condition for

Γ = {x : γ1(h(x)) = . . . = γp−1(h(x)) = 0} (2)

to be a submanifold of R
n is that h be transversal

to γ−1(0), i.e., (Guillemin and Pollack, 1974)

(∀x ∈ Γ) Im (dh)x + Th(x)γ
−1(0) = R

p.

The codimension of Γ is equal to the codimen-
sion of γ−1(0) which implies dimΓ = n − p +
1 (Consolini and Tosques, 2003). The problem
of maneuvering y to γ−1(0) is thus equivalent to
maneuvering x to Γ and can be cast as an output
stabilization problem for the system

ẋ = f(x) + g(x)u

y′ = (γ ◦ h)(x).
(3)

In general one may be able to maneuver x to
the subset of Γ which can be made invariant by
a suitable choice of the control input. Accord-
ingly, let Γ∗ be the largest controlled invariant
submanifold of Γ under (1) and let n∗ = dimΓ∗

(n∗ ≤ dimΓ = n − p + 1). Further, let u∗ be a
smooth feedback rendering Γ∗ invariant and define
f∗ := (f + gu∗)|Γ∗ .

Assumption 3. Γ∗ is a closed connected subman-
ifold (with n∗ ≥ 1) and the following conditions
hold

(i) (∃ ǫ > 0)(∀ x ∈ Γ∗) ‖Lf∗h(x)‖ > ǫ.
(ii) f∗ : Γ∗ → TΓ∗ is complete

In Banaszuk and Hauser (1995), Γ∗ = Γ =
σ(S1), and it is assumed that f(x) 6= 0 on Γ∗.
Thus in that work Assumption 3 is automatically
satisfied (the completeness of f∗ follows from the
periodicity of σ(S1)).

The requirement, in Assumption 3, that Γ∗ be
a closed connected submanifold can be checked
using conditions presented in Nielsen and Mag-
giore (2004a,c). The condition, in Assumption 3,
that ‖Lf∗h(x)‖ > ǫ on Γ∗ implies that there are
no equilibria on Γ∗ and that, whenever x ∈ Γ∗,
‖ẏ‖ = ‖Lf∗h(x)‖ > ǫ. This condition ensures that
the output of (1) traverses the curve σ(D). We are
now ready to formulate the main problems inves-
tigated in this paper. The following are a direct
generalization of analogous statements found in
Banaszuk and Hauser (1995).

Problem 1: Find, if possible, a single coordinate
transformation T : x 7→ (z, ξ) ∈ Γ∗ × R

n−n∗

valid in a neighborhood N of Γ∗ such that in (z, ξ)
coordinates

(i) Γ∗ = {(z, ξ) ∈ Γ∗ × R
n−n∗ : ξ = 0}

(ii) The dynamics of system (1) take the form

ż = f0(z, ξ)

ξ̇1 = ξ2

...

ξ̇n−n∗−1 = ξn−n∗

ξ̇n−n∗ = b(z, ξ) + a(z, ξ)u

(4)



where a(z, ξ) 6= 0 in N .

The following is the local version of Problem 1.

Problem 2: For some x0 ∈ Γ∗, find, if possible,
a transformation T 0 : x 7→

(

z0, ξ0
)

∈ Γ∗ × R
n−n∗

valid in a neighborhood U0 of x0 ∈ Γ∗ such that
in
(

z0, ξ0
)

coordinates properties (i) and (ii) of
Problem 1 are satisfied in U0.

It is clear that if one can solve Problem 1 or 2,
then the smooth feedback

u = −
1

a(z, ξ)
(b(z, ξ) + Kξ). (5)

achieves local output stabilization of (3) and
hence local stabilization of (1) to Γ∗ (resp., Γ∗ ∩
U0). In turn, stabilization to Γ∗ implies, by As-
sumption 3(i), traveral of σ(D) in output coordi-
nates. In light of this, the main focus in Prob-
lems 1 and 2 is the output stabilization of (3).

We begin by reviewing necessary and sufficient
conditions to solve Problem 1 (Theorem 1) and
Problem 2 (Theorem 3). For the sake of brevity
we do not include the proofs which can be found
in Nielsen and Maggiore (2004c) or Nielsen and
Maggiore (2004b) (Problem 1) and Nielsen and
Maggiore (2004a) (Problem 2).

3. SOLUTION TO PROBLEM 1

Theorem 1. Problem 1 is solvable if and only if
there exists a function α : R

n → R such that

(1) Γ∗ ⊂ {x ∈ R
n : α(x) = 0}

(2) α yields a uniform relative degree n − n∗ on
Γ∗.

The function α is used to generate the feedback
(5) by setting

a(T (x)) = LgL
n−n∗−1
f α(x)

b(T (x)) = Ln−n∗

f α(x).

The conditions in Theorem 1, although rather
intuitive, are difficult to check in practice. In what
follows we present sufficient conditions for the
existence of a solution to Problem 1 which are
easier to check.

Corollary 1. If one of the path constraints in (2),
γk̄ ◦ h, yields a relative degree n − n∗ then Prob-
lem 1 is solved by setting α = γk̄ ◦ h.

Thus, it may be possible to solve Problem 1
by performing input-output linearization choosing
as output one of the path constraints. However
(Nielsen and Maggiore (2004c)), Problem 1 may
be solvable even when none of the path constraints
yields a well-defined relative degree.

Lemma 1. If there exists a function α : R
n → R

which satisfies the conditions of Theorem 1, then
for all x ∈ Γ∗

TxΓ∗ + span{g, . . . , adn−n∗−1
f g}(x) = R

n. (6)

Condition (6) is a generalization of the notion of
transverse linear controllability to the case of con-
trolled invariant submanifolds of any dimension. It
is useful in deriving checkable sufficient conditions
for the existence of a solution to Problem 1. The
notion of transverse linear controllability was orig-
inally introduced in Nam and Arapostathis (1992)
and later used in Banaszuk and Hauser (1995) for
transverse feedback linearization. In both papers,
n∗ = 1, D = S1, and TxΓ∗ = span {f∗(x)}.

Theorem 2. Problem 1 is solvable if

(1) Γ∗ is parallelizable (TΓ∗ ∼= Γ∗ × R
n∗)

(2) TxΓ∗+span {g . . . adn−n∗−1
f g}(x) = R

n on Γ∗

(3) The distribution span {g . . . adn−n∗−2
f g} is in-

volutive.

4. SOLUTION TO PROBLEM 2

The following is an obvious result in the light of
Theorem 1.

Theorem 3. Problem 2 is solvable if and only if
there exists a function α : R

n → R defined in a
neighborhood U0 of some x0 ∈ Γ∗ such that

(1) Γ∗ ∩ U0 ⊂ {x ∈ U0 : α(x) = 0}
(2) α yields a relative degree n − n∗ at x0.

Lemma 2. If there exists a function α : R
n → R

which satisfies the conditions of Theorem 3, then

Tx0Γ∗ + span{g, . . . , adn−n∗−1
f g}(x0) = R

n.

Let D = span {g . . . adn−n∗−2
f g}. Theorem 2

proves that involutivity of D, together with trans-
verse linear controllability, are sufficient condi-
tions for the existence of a function α satisfying
conditions (1) and (2) in Theorem 1 and hence
solving Problem 1. When the involutive closure
of D, inv(D), is regular at x0 ∈ Γ∗, the next
result provides necessary and sufficient conditions
to solve Problem 2. These conditions are easier to
check than those in Theorem 3.

Theorem 4. Assume that inv(D) is regular at
x0 ∈ Γ∗. Then Problem 2 is solvable if and only if

(1) Tx0Γ∗ + span{g, . . . , adn−n∗−1
f g}(x0) = R

n

(2) adn−n∗−1
f g(x0) /∈ inv(D)(x0).

Corollary 2. If dim(inv D) = n, then Problems 1
and 2 are unsolvable.

Corollary 3. Assume that inv D is regular on Γ∗

and that



(1) TxΓ∗ + span{g, . . . , adn−n∗−1
f g}(x) = R

n on
Γ∗

(2) adn−n∗−1
f g(x) /∈ inv(D)(x) on Γ∗.

Then there exists an open covering {U (i)} of Γ∗

and a collection of transformations {T (i)}, with
T (i) : x 7→ (z(i), ξ(i)) ∈ Γ∗ ∩ U (i) × R

n−n∗ such
that Γ∗ ∩ U (i) = {ξ(i) = 0} and in (z(i), ξ(i))
coordinates the systems has the form (4).

5. EXAMPLES

5.1 Kinematic Unicycle

Consider the kinematic model of a unicycle with
fixed translational speed v 6= 0

ẋ =





v cosx3

v sin x3

0



+





0
0
1



 u

y = col (x1, x2) .

We now solve the problem of maneuvering the
output of the unicycle to any curve σ(D) satisfying
Assumption 1 with r ≥ 2. We first show, by means
of Theorem 2, that the problem is always solvable.
Later, we show that the function α yielding the
solution can always be chosen as the path con-
straint.

Note that Assumption 2 is not needed. Specifi-
cally, we do not need to assume that there ex-
ists a submersion γ such that σ(D) = γ−1(0)
because the lift of σ(D), Γ, is always an embed-
ded submanifold of dimension 2 (a generalized
cylinder Γ = σ(D) × R) and Assumption 3 is
always satisfied. To see why the latter is true,
refer to Figure 1 and observe that the nonholo-
nomic constraint of the unicycle yields Γ∗ = {x ∈
R

3 : x = (σ(t), arctan2(σ̇(t))), t ∈ D}, where
arctan2 : R × R → R denotes the smooth arctan-
gent function. Hence, Γ∗ is a well defined closed
submanifold of dimension 1. To show that f∗ is
complete, assume without loss of generality that
σ is unit speed, i.e., ‖σ̇‖ = 1. Then, the flow of f∗,

t 7→ Φf∗

t = (σ(vt), arctan2(vσ̇(vt))) is well defined
for all t ∈ D.

Next, the conditions of Theorem 2 reduce to

TxΓ∗ + span{g, adfg} = R
3 on Γ∗,

where adfg = v sin x3
∂

∂x1

− v cosx3
∂

∂x2

. Simple
geometric considerations (see Figure 1) show that,
for all x ∈ Γ∗,

TxΓ = span{f∗, g}(x) = TxΓ∗ + span{g}(x)

and

span{adfg}(x) = (TxΓ)⊥.

Theorem 2 can thus be applied to conclude that
Problem 1 has a solution. Here Theorem 2 allows

us to recover the well known fact that unicycles
with constant forward velocity can follow any
smooth regular curve on the plane. 2

Now we show that the path constraint defining
Γ can always be used to define the function α in
Theorem 1.

Lemma 3. If the curve σ satisfies Assumption 1
with r ≥ 2 then Corollary 1 applies to the unicycle
system.

Proof : We have already seen that Assumptions 2
and 3 are automatically satisfied. This implies
that there exists a map γ : R

2 → R such that
σ(D) = {(y1, y2) : γ(y1, y2) = 0}. The lift of
this path is a generalized cylinder given by Γ =
{x : γ(x1, x2) = 0}. By checking the conditions
of Corollary 1 using the standard definition of
relative degree we get

Lgγ = 0

LgLfγ = v cosx3
∂γ

∂x2
− v sinx3

∂γ

∂x1
.

We thus fail to achieve the desired relative degree
of 2 at any x ∈ R

3 such that

x3 = arctan

(

∂γ

∂x2
/

∂γ

∂x1

)

, (7)

which cannot occur ∀x ∈ Γ∗ (see Figure 2).

γ = 0

y1 = x1

y2 = x2

x3

(

∂γ
∂x1

, ∂γ
∂x2

)

Fig. 2. Geometric interpretation of condition (7).

Figure 3 depicts a few phase curves of the unicy-
cle approaching and following a unit circle. The
controller is designed using α = x2

1 + x2
2 − 1.

5.2 Rear-wheel driving car-like robot

Consider the kinematic model of a rear-wheel
drive car-like robot with fixed translational speed
v 6= 0 and steering angle in (−π

2 , π
2 ).

ẋ =











v cosx3

v sin x3
v

ℓ
tan x4

0











+









0
0
0
1









u

y = col (x1, x2) .

(8)

2 Actually, Theorem 2 partially recovers this well-known
property of unicycles in that it requires that the curve σ

has no self-intersections (see Assumption 1(iii)).
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y1

y2

x1

x2

x3

σ(t)

σ(t)

σ̇(t)

σ̇(t)

x3(t)

(sin x3,− cos x3)

(sin x
3 ,− cos x

3)

Γ

Γ∗

TxΓ

g

f∗

adf g

Fig. 1. Maneuver regulation for the unicycle with forward velocity v = 1.

Fig. 3. Unicycle approaching and following the
unit circle.

Consider again the problem of maneuvering the
output of the car to an arbitrary curve σ(D)
satisfying Assumption 1 with r ≥ 3. Following
the same reasoning used in Section 5.1, it is easy
to verify that Assumptions 2 and 3 are satisfied
and

Γ∗ =
{

x ∈ R
4 : x = (σ(s), ϕ(s),

arctan

(

ℓ

v
ϕ̇(s)

)

, s ∈ D

}

,

where ϕ(s) = arctan2 (σ̇(s)) is the angle of σ̇(s)
with respect to the positive y1 axis.

In checking the conditions of Theorem 2, we
require that

TxΓ∗ + span {g, adfg, ad2
fg} = R

4,

where

adfg = −
v

ℓ

(

sec2 x4

) ∂

∂x3

ad2
fg = −

v2

ℓ
sin x3

(

sec2 x4

) ∂

∂x1

+
v2

ℓ
cosx3

(

sec2 x4

) ∂

∂x2
.

The condition above is satisfied provided x4 6=
±π

2 + 2kπ which does not occur on Γ∗. Finally,

since [g, adfg] ∈ span {g, adfg}, the conditions of
Theorem 2 are satisfied and therefore we conclude
that Problem 1 has a solution. As in the unicycle
example, we now show that the path constraint
defining Γ can always be used to define the func-
tion α in Theorem 1.

Lemma 4. If the curve σ in (8) satisfies Assump-
tion 1 with r ≥ 3 then Corollary 1 applies to the
car system (8).

Proof : Similar to the proof of Lemma 3.

The points at which we fail to achieve the re-
quired relative degree of n − n∗ = 3 have the
same geometric interpretation as in the unicycle
example (i.e., a singularity occurs when the car
is perpendicular to the curve). Let us now apply
this result to a more specific and useful application
example. We attempt to make the car follow an
approximation of the Toronto Indy race track,
generated by a 4th order spline. Splines are useful
in path generation since they can be utilized to
model arbitrary paths to any degree of accuracy.
An nth order spline is class Cn−1. Here, we use 4th

order splines to obtain C3 curves. Let K represent
an ordered collection of knots and let I represent
an index set of all piecewise polynomials. Intro-
duce the following notation to represent the spline
we wish to follow, which may have an arbitrary
number of knots

σ : λ ∈ R 7→

(

λ,
∑

i∈I

4
∑

j=0

(ai
j(λ − Ki)

j)

(1(λ − Ki) − 1(λ − Ki+1))

)
(9)

where 1(t) is the unit step function. We enforce
that the spline be the graph of a function in R

2.
This guarantees injectivity and properness and
therefore this class of curves satisfy Assumption 1.



Let σi represent a single segment of the spline.
Then, Assumption 2 is also satisfied since

σ(D) =
{

y ∈ R
2 : y2 −

∑

i∈I

4
∑

j=0

(ai
j(y1 − Ki)

j)

(1(y1 − Ki) − 1(y1 − Ki+1)) = 0
}

.

By Lemma 4, in each knot interval we can use
the sole constraint defining Γ, αi(x) = x2 −
∑4

j=1 ai
j(x1 − Ki)

j , and apply Corollary 1 Define
a coordinate transformation in each knot interval
(Ki, Ki+1),

Ti : x 7→ col(ϕi(x), αi(x), Lfαi(x), L2
fαi(x))

yielding the normal form (4). The smooth lin-
earizing feedback solving the maneuver regulation
problem is

ui =
−L3

fαi − k1αi − k2Lfαi − k3L
2
fαi

LgLfαi

with k1, k2, k3 > 0. In order to traverse the entire
path, the controller must switch from ui to ui+1

when x1 switches from knot interval (Ki, Ki+1) to
(Ki+1, Ki+2). The controller ui is a function of the
path constraint and its first 3 derivatives. Thus, in
order for the switching to be bumpless, we require
a 4th order or higher spline. Figure 4 shows the
car following a 4th order spline consisting of 38
knots for various initial conditions.
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Fig. 4. The car following the Toronto Indy race
track.

5.3 1-trailer Systems

Consider the kinematic model of a 1-trailer system
with a unicycle as the tractor or lead vehicle, see
Figure 5.

ẋ =











v cosx3

v sin x3

0
v

L
sin (x3 − x4)











+









0
0
1
0









u

y = col (x1 − L cosx4, x2 − L sinx4) .

(10)

This model is a slight variation of the standard
trailer model (see Fliess et al. (1995); Samson

*

*

x1

x2

x3

x4

y1

y2

L

Fig. 5. Kinematic model of the Standard 1-trailer.

(1995)). The subsequent discussion applies to that
model as well. Our goal is to force the output of
system (10) (i.e. the position of the last trailer)
to follow a sinusoid σ : λ 7→ col

(

λ, 100 cos
(

λ
100

))

.
The curve σ satisfies Assumption 1 and the first

part of Assumption 2 with σ(D) =
{

y ∈ R
2 : y2 −

100 cos
(

y1

100

)

= 0
}

. The lift

Γ = (γ ◦ h)−1(0) =
{

x ∈ R
4 : x2 − L sinx4−

100 cos

(

1

100
(x1 − L cosx4)

)

= 0
}

(11)

is an embedded submanifold and thus Assump-
tion 2 is satisfied. We require various Lie brackets:

adfg =(v sin x3)
∂

∂x1
+ (−v cosx3)

∂

∂x2
+

(

−
v

L
cos (x3 − x4)

) ∂

∂x4

(12)

ad2
fg = −

v2

L2

∂

∂x4
. (13)

To check if Assumption 3 is satisfied, we must first
characterize Γ∗. It is well-known that the stan-
dard n-trailer system is flat Fliess et al. (1995):
specifying a path for the final vehicle completely
determines the state of the system and the control
input. This leads to the strong suspicion that n∗ =
1 and thus we expect to be able to characterize Γ∗

as the zero level set of n − n∗ = 3 functions. We
characterize Γ∗ using the zero dynamics algorithm
of Isidori (1995); Isidori and Moog (1988). We
initialize the algorithm at any x∗ ∈ Γ∗. Let u0 ∈ R

be such that f(x∗)+g(x∗)u0 ∈ Tx∗Γ
∗. At the first

step of the algorithm we have

M0 = Γ = (γ◦h)−1(0) = M c
0 , H0(x) := γ◦h(x),

where M c
0 denotes the connected component of

M0 containing x∗. The next step of the algorithm
yields

M1 =
{

x ∈ M c
0 : f(x) ∈ span {g}(x)+TxM c

0

}

n where TxM c
0 = ker(dH0). Equivalently,



M1 =
{

x ∈ M c
0 : 〈dH0, f(x)〉 + 〈dH0, g(x)〉u = 0

is solvable for u
}

.

At this step, LgH0 ≡ 0 and LfH0 6= 0, so letting
H1 = col(H0, LfH0) we have

M1 = M c
1 =

{

x ∈ R
4 : H1(x) = 0

}

.

The next iteration yields

M2 =
{

x ∈ M c
1 : 〈dH1, f(x)〉 + 〈dH1, g(x)〉u = 0

is solvable for u
}

,

(14)

where LgH1 = col(0, LgLfH0). Due to the com-
plexity of the expression, it is not immediately
clear whether LgH1 = 0 on M c

1 . If LgLfH0 is
nonzero on M c

1 then it would follow that (14)
can be solved for u leading to the conclusion that
M2 = M c

1 and the algorithm terminates yielding
n∗ = 2. Otherwise, the algorithm continues. Sus-
pecting that n∗ = 1, we continue the algorithm
under the assumption that LgLfH0(x) = 0 on
M c

1 , later, we verify that this assumption is valid.
Let H2 = col(H1, LfH1) = col(H1, L

2
fH0). The

next iteration in the algorithm yields

M3 =
{

x ∈ M c
2 : 〈dH2, f(x)〉+〈dH2, g(x)〉u = 0

}

.

We are now set to show, numerically, the following
two facts

(1) (∀ x ∈ M c
1 ∩ U) LgLfH0(x) = 0

(2) (∀ x ∈ M c
2 ∩ U) LgL

2
fH0 6= 0

(where U is some open set containing x∗) which
allow us to conclude that the assumption above
is in fact correct and that the algorithm termi-
nates with n∗ = 1 and Γ∗ ∩ U = H−1

2 (0) ∩ U .
We do that by numerically generating a uniform
orthogonal grid of M c

1 (a two dimensional man-
ifold) and M c

2 (a one dimensional manifold) and
checking whether properties (1) and (2) hold at
the resulting grid points. To this end, given an n-
dimensional submanifold M in R

m, expressed as
M = H−1(0), where H = col(H1, . . . , Hm−n) :
R

m → R
m−n, we introduce the following

Procedure uniform grid

1. Find a basis {v1, . . . , vn} of TxM = ker(dHx)
2. Apply Gram-Schmidt orthonormalization to

get {ṽ1, . . . , ṽn}
3. Let G =

∑m−n
i=1 H2

i and let

v̂i =











ṽi − µ
∇G

‖∇G‖
if ‖∇G‖ ≥ ǫ

ṽi − µ
∇G

ǫ
if ‖∇G‖ < ǫ.

where µ, ǫ > 0.
4. Choose x0 near M and numerically integrate

the v̂i to generate a grid.

The procedure above uses a continuous approxi-
mation to the gradient vector field ∇G to make
M attractive. The parameter µ controls the speed
of convergence, here we set µ = 1. The value of ǫ
should be significantly larger than the integration
tolerance used in step 4. We use a tolerance of
10−12 and ǫ = 10−3. Figure 6 illustrates the
concept of gridding for the case dimM = 2. The

t1

t2 φ
v̂2

t2
◦ φ

v̂1

t1
(x0)

M
M ∩ U

x0

Fig. 6. Gridding a two dimensional manifold.

map generated by the gridding algorithm is iso-
metric, i.e., unit time intervals are mapped to unit
length intervals in the grid. The vector fields v̂i are
continuous and the manifold M is attractive for
each of them. This is useful for numerical stability
of the procedure: if the algorithm is initialized at a
point x0 which is not exactly on M , the procedure
generates grid points that get closer and closer to
M . Finally, the flows associated to the vector fields
v̂i commute, i.e., starting from a point x ∈ M ,

φ
v̂j

tj
◦ φv̂i

ti
(x) = φv̂i

ti
◦ φ

v̂j

tj
(x).

We apply the procedure above to M c
1 (choosing

x0 = x∗) to determine if LgLfH0 = 0 at each
point of the grid. The result, shown in Figure 7, is
that |LgLfH0| < 10−11 and validates our conjec-
ture (1). Next, we apply the gridding algorithm
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Fig. 7. The value of LgLfH0 over a uniform 2-
dimensional grid of M c

1 .

to M c
2 (choosing x0 = x∗). Figure 8 shows that

LgL
2
fH0 6= 0 on M c

2 thus validating conjecture
(2). We have thus numerically shown that n∗ = 1,
as expected, and Γ∗ = M c

2 near x∗. In particular,
we have seen that LgH0 ≡ 0, LgLfH0 = 0 on
Γ∗, and LgL

2
fH0 6= 0 on Γ∗. It can be shown that

LgLfH0 changes sign in any neighborhood of Γ∗,
implying that H0(x) = γ ◦ h(x) does not yield a
well-defined relative degree and thus Corollary 1
does not apply. Actually, using symbolic mathe-
matics software by Kugi et al. (2003)), one finds
that inv(D) = inv(span {g, adfg, ad2

fg}) = R
4,
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Fig. 8. The value of LgL
2
fh on M c

2 .

and thus, by Corollary 2, the 1-trailer system is
not transversely feedback linearizable. However,
the discussion above immediately gives that γ ◦
h yields a robust relative degree 3 on Γ∗, and
thus one can perform approximate input-output
linearization on the transverse dynamics of system
(10) (Hauser et al. (1992)). We say that the system
is approximately transversely feedback lineariz-
able. Figure 9 shows various simulation results for
initial conditions on and off the desired sinusoid.
The trailer system follows the path for initial
conditions sufficiently close to Γ∗.
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Fig. 9. Approximate transverse feedback lineariza-
tion of the trailer system
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