
Transverse Feedback Linearization of Multi-Input Systems

Christopher Nielsen and Manfredi Maggiore

Abstract— In this note the problem of feedback lineariz-
ing dynamics transverse to controlled invariant manifolds is
considered for multi-input control affine systems. Transverse
controllability indices are introduced which adapt the familiar
notion of controllability indices to assist solving this particular
problem. Sufficient conditions for transverse feedback lineariza-
tion are presented.

I. I NTRODUCTION

Many interesting problems in control can be interpreted
as the problem of stabilizing the system state to a set
in the state space. This is for instance the case for the
maneuver regulation (path following) problem. Set stabi-
lization problems have been solved in a variety of ways,
see for instance [1], [2], [3]. When the set in question has
the structure of a smooth manifold, one approach to solve
a set stabilization problem is to transform the dynamics
transverse to the manifold into linear controllable form. This
is referred to as transverse feedback linearization. Transverse
feedback linearization was introduced by Banaszuk and
Hauser in [4], where the authors investigate single-input
systems and invariant manifolds given by periodic orbits.
When feasible, transverse feedback linearization is attractive
due to its simplicity and because it allows one to use a wealth
of synthesis techniques for linear controllable systems.

In [5], [6], we presented conditions for a system to be
transverse feedback linearizable with respect to an arbitrary
controlled invariant manifold. Our conditions generalizethe
results in [4]. In this paper we consider multiple input sys-
tems and present sufficient conditions for global transverse
feedback linearization.

II. N OTATION AND MATHEMATICAL PRELIMINARIES

Throughout this paper by amanifold is meant asmooth
manifold and by a submanifold is meant anembedded
submanifold. For details on the material presented in this
section the reader may refer to [7], [8]. We denote byΦv

t (x)
the flow of a smooth vector fieldv through the pointx. Given
a distributionD, let D⊥ be its annihilator while[D(x)]⊥ is
the orthogonal complement of the vector spaceD(x).

A. Tangent bundle, contractible manifolds

If f : M → N is a diffeomorphism of manifolds, then
the tangent bundlesTM andTN are said to beequivalent,
denotedTM ' TN . An m-dimensional manifoldM is said
to be parallelizable if TM ' M × R

m. One has thatM
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is parallelizable if and only if there existm vector fields
v1, . . . , vm : M → TM such that

(∀p ∈ M) TpM = span{v1(p), . . . , vm(p)}.

A manifold M is contractibleif there exists a pointp0 ∈
M and a smooth functionH : M × [0, 1] → M such that
for all p ∈ M

H(p, 1) = p, H(p, 0) = p0.

All contractible manifolds are parallelizable. All manifolds
that are homeomorphic toRn are contractible. The converse
is false. Since by definition ann-dimensional manifold is
locally diffeomorphic toR

n, it is locally contractible. The
next property of contractible manifolds is used in the sequel.

Theorem II.1 ([9]) Let M be a contractible submanifold of
R

n, v1, . . . , vr : M → TR
n a set of smooth vector fields in

R
n and ∆ = span{v1, . . . , vr} a distribution in R

n. If ∆
has constant dimensionk on M , then there existk smooth
vector fieldsw1, . . . , wk : M → R

n such that

(∀p ∈ M) ∆(p) = span{w1, . . . , wk}.

B. Tubular neighborhoods, retractions

Let M be anm-dimensional submanifold ofRn. Give M

the inner product〈 , 〉 : M × M → R induced fromR
n.

The normal spaceof M at p is defined as

TpM
⊥ = {v ∈ R

n : 〈v, w〉 = 0 ∀w ∈ TpM}.

The normal bundleof M , denotedTM⊥, is the disjoint
union of all normal spaces ofM . It is a manifold in its
own right, and has dimension2n − m. The projectionπ :
TM⊥ → M defined byπ : (p, v) 7→ p is smooth. One has
thatTM⊥ ' M×R

n−m if and only if there exists a function
s : U → R

n−m, whereU is a subset ofRn containingM ,
such that

(∀p ∈ M) dim(Im((ds)p)) = n − m andM = s−1(0).

The functions is called asubmersion.
If ε > 0 andp ∈ M , let Dp(ε) = {v ∈ TpM

⊥ : ‖v‖ < ε}.
If ε : M → R>0 is a smooth function, let

D(ε) =
⋃

p∈M

{p} × Dp(ε(p)).

Then D(ε) ⊂ TM⊥ and M × 0 = {(p, v) ∈ D(ε) : v =
0} ⊂ D(ε). D(ε) is referred to as thedisk sub-bundle.



Theorem II.2 (Tubular neighborhood theorem) IfM is a
closed submanifold ofRn then there exists a smooth function
ε : M → R>0 and a diffeomorphismt : D(ε) → R

n onto an
open neighborhood ofM in R

n such thatt|M×0 : (p, 0) 7→
p.

The mapt is called atubular mapand its imaget(D(ε))
is called atubular neighborhoodof M in R

n, see Figure 1.
It is an open set inRn. When M is compact there exists
a constantε > 0 such thatD(ε) is a tubular neighborhood.
A tubular neighborhood of a contractible submanifold is a
contractible manifold.

A retractionof a manifoldN onto a submanifoldM of N

is a smooth functionr : N → M such thatr|M = identity
on M . The tubular neighborhood theorem implies that any
closed submanifoldM of R

n admits a retraction of a tubular
neighborhood ofM , t(D(ε)), onto M . Such a retraction is
defined by this commutative diagram

D(ε)
t

//

π
""

D
D

D
D

D
D

D
D

t(D(ε)) ⊂ R
n

π◦t−1

yyr
r

r
r

r

M

whereπ is the natural projection ofTM⊥ onto M .
Given a submanifoldM of R

n, a tubular neighborhoodN
of M with associated retractionr : N → M , and an open
subsetV ⊂ M , we say that an open subsetU ⊂ N is a
tubular neighborhood ofV adapted fromN if U = r−1(V ).

III. PROBLEM FORMULATION AND MAIN RESULT

Consider the control system

ẋ = f(x) +

m
∑

i=1

uigi(x) = f(x) + g(x)u, (1)

where thef, g1, . . . , gm are smooth vector fields inRn. We
assume throughout this paper that{g1, . . . , gm} are linearly
independent. Suppose we are given a pair(Γ∗, u∗), whereΓ∗

is an∗-dimensional closed and connected submanifold ofR
n

which is controlled invariant (assume thatn−n∗ ≥ m), and
u∗ : Γ∗ → R

m is a friend of Γ∗, i.e., a smooth feedback
which makesΓ∗ invariant:

(

f +

m
∑

i=1

u∗
i gi

)∣

∣

∣

∣

∣

Γ∗

: Γ∗ → TΓ∗.

Denote f∗ := (f +
∑

i u∗
i gi)|Γ∗ . We want to solve the

following problem.

Problem 1: Find, if possible, a coordinate transformation

Ξ = (r, s) : x 7→ (z, ξ)

N → Ξ(N ) =: M ⊂ Γ∗ × R
n−n∗

whereN is a tubular neighborhood ofΓ∗, and a feedback
transformation

v 7→ u = a(x) + b1(x)v1 + b2(x)v2,

whereu, v = col(v1, v2) ∈ R
m, a : N → R

m is smooth,
and b = [b1 b2] : N → R

m×m is smooth and nonsingular
on N , such that
(i) The restriction ofΞ to Γ∗ is

Ξ|Γ∗ : Γ∗ → Ξ(Γ∗)

z 7→ (z, 0).

(ii) In new coordinates,(1) reads as:

ż = f0(z, ξ) + g1(z, ξ)v1 + g2(z, ξ)v2

ξ̇ = Aξ + Bv1

(2)

wherev1 ∈ R
ρ0 , (ρ0 ≤ m), B is full rank and the pair

(A, B) is controllable.
For i = 0, 1, . . ., define the distributions

Gi = span{ad
j
fgk : 0 ≤ j ≤ i, 1 ≤ k ≤ m}.

Problem 1 involves decomposing the dynamics of (1) near
the controlled invariant manifoldΓ∗ into a tangential com-
ponent (thez subsystem) and a transversal component (the
ξ subsystem) which is linear and controllable. This process
also involves transforming the set of control inputs into two
subsets:v1 represents a group of controls that can be used
to steer the system’s state toΓ∗, v2 represents controls that
only affect the dynamics on the manifold. Our main result
is a sufficient condition to solve Problem 1.

Theorem III.1 Suppose thatΓ∗ is contractible. Then Prob-
lem 1 is solvable if
(a) (∀i ∈ {0, . . . , n − n∗ − 2}), Gi, is involutive in a

neighborhood ofΓ∗.
(b) (∀i ∈ {0, . . . , n − n∗ − 1}), Gi, is non-singular in a

neighborhood ofΓ∗.
(c) (∀i ∈ {0, . . . , n − n∗ − 1}), dim(TpΓ

∗ + Gi(p)) is
constant onΓ∗.

(d) (∀p ∈ Γ∗) dim(TpΓ
∗ + Gn−n∗−1(p)) = n.

It turns out that conditions (b)-(d) are also necessary (see
Lemma V.1), while condition (a) is not. The theorem above
is proved in Section VI. The proof relies on the notion of
transverse controllability indices and the subsequent charac-
terization of the directions transverse toTpΓ

∗ presented in
the next section.

IV. T RANSVERSE CONTROLLABILITY INDICES

In this section we adapt Brunovský’s definition of con-
trollability indices [10] to the framework investigated in
this paper. LetN be a tubular neighborhood ofΓ∗ with
associated retractionr : N → Γ∗. Let V be a contractible
open subset ofΓ∗ and letU be a tubular neighborhood of
V adapted fromN . Note thatU is a contractible manifold
(see Section II-B). IfΓ∗ is contractible then we replace
the pair (V, U) by (Γ∗, N ). Since V is a contractible
manifold, it is also parallelizable and there exist vector fields
v′1, . . . , v

′
n∗ : V → TV such that (∀p ∈ V ) TpV =

span{v′1(p), . . . , v′n∗(p)}. For eachp ∈ V let

ρ0(p) := dim(TpV + G0(p)) − n∗

ρi(p) := dim(TpV + Gi(p)) − dim(TpV + Gi−1(p)),
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Fig. 1. Illustration of the tubular neighborhood theorem.

i = 1, 2, . . ., so thatdim(TpV + Gi(p)) = n∗ + ρ0(p) +
. . . + ρi(p). When theρi’s are constant overV the list
{ρ1, . . . , ρn−n∗−1} is coordinate and feedback invariant and
we have the next result.

Lemma IV.1 Assume that, for alli ∈ {0, . . . , n − n∗ − 1},

(∀p ∈ V ) dim(TpV + Gi(p)) = constant

(∀p ∈ U) dim(Gi(p)) = constant.

Thenρ0 ≥ ρ1 ≥ · · · ≥ ρn−n∗−1 and there exists a smooth
feedback transformation onU , v 7→ u = h + Kv, such that
for all p ∈ V and (∀i ∈ {0, . . . , n − n∗ − 1}) the following
holds

TpV + Gi(p) = TpV ⊕





i
⊕

j=0

span{ad
j
fgk : 1 ≤ k ≤ ρj}



 .

Proof: By standing assumption,Γ∗ (and henceV ) is
locally controlled invariant. Use thefriend u∗ to define a
preliminary feedback transformationu = u∗ + v′. Hereafter,
without loss of generality, letf |Γ∗ = f∗ and u = v′. Let
Π(p) = Im ([ g1 · · · gm ]) (p) be the image of the input
vector fields prior to any feedback transformations. We will
use this matrix function in the final steps of the construction.
On V , define the distributionḠ0(p) = [G0(p) ∩ TpV ]⊥ ∩
G0(p). First we show that̄G0 is a smooth, regular distribu-
tion. On V , G0(p) ∩ TpV is constant dimensional since

dim(TpV ∩ G0(p)) = dim(TpV ) + dim(G0(p))

− dim(TpV + G0(p)).

SinceG0 andTpV are regular distributions and their inter-
section is constant dimensional, it follows thatG0(p)∩TpV

is smooth along with[G0(p) ∩ TpV ]⊥. Thus Ḡ0(p) is the
intersection of two smooth, regular distributions. In addition,
we now show thatḠ0 has constant dimensionρ0 and
therefore that it is a smooth distribution. For allp ∈ V ,

dim(Ḡ0(p)) = n − dim(G0(p) ∩ TpV ) + dim(G0(p))

− dim([G0(p) ∩ TpV ]
⊥

+ G0(p))

= dim(G0(p)) − dim(G0(p) ∩ TpV )

= ρ0.

This plus the fact thatḠ0 ⊂ G0 and Ḡ0(p) ∩ TpV =
(G⊥

0 (p) + TpV
⊥) ∩ (G⊥

0 (p) + TpV
⊥)⊥ = 0, implies that

(∀p ∈ V ) G0(p) = G0(p) ∩ TpV ⊕ Ḡ0(p).

By Theorem II.1 there existρ0 vector fieldsw1, . . . , wρ0

such that onV , Ḡ0 = span{w1, . . . , wρ0}. Write

wj =

m
∑

k=1

c
j
kgk, j = 1, . . . ρ0 (3)

where eachc
j
k : V → R is a C∞(V ) function. By

construction(∀j ∈ {1, . . . , ρ0}) wj 6∈ TpV . Let
[

g̃1 · · · g̃ρ0

]

=
[

g1 · · · gm

]

C0

where C0 is an m × ρ0 full rank matrix of real-valued
functions obtained from (3). Using a similar procedure, find
an additionalm − ρ0 vector fieldsg̃ρ0+1, . . . , g̃m such that
for all p ∈ V span {g̃1, . . . , g̃m}(p) = G0(p).

We now have the desired decomposition onV

(∀p ∈ V ) TpV + G0(p) = TpV ⊕ span{g̃1, . . . , g̃ρ0}(p).

In the new basis forG0

(∀p ∈ V ) g̃ρ0+1(p), . . . , g̃m(p) ∈ TpV.

Since, onV , f(p) ∈ TpV , we have1 ad
j
f g̃k(p) ∈ TpV +

Gj−1(p), ρ0 + 1 ≤ k ≤ m, j = 0, 1, . . ., and so
ρ1, . . . , ρn−n∗−1 ≤ ρ0. Geometrically, onV the vector fields
ad

j
f g̃k(p), ρ0 + 1 ≤ k ≤ m, cannot be used to generate

directions inTpV +Gj(p) which are not contained inTpV +
Gj−1(p). To simplify notation, relabel these new vector
fields g̃1, . . . , g̃m as g1, . . . , gm and proceed to perform the
induction step. This part of the proof is regrettably omitted
due to space restrictions, however the induction step proceeds
in a similar manner as above.

Let Π̃(p) = Im ([ g1 · · · gm ]) (p) be the image of the
input vector fields generated during the above process so
that so that for allp ∈ V , Π̃(p) = Π(p). In conclusion,
the feedback transformation,v 7→ u = ĥ + K̂v := u∗ +
(

Π>Π
)−1

Π>Π̃v, defined onV , has the required properties.

1To unify the notation, it is understood throughout thatGk(p) = 0 for
k < 0.



Finally let K = K̂ ◦ r and h = ĥ ◦ r to obtain a feedback
transformation defined onU .
The next result follows from the proof of Lemma IV.1.

Corollary IV.2 Assume thatΓ∗ is contractible and

(∀p ∈ Γ∗)(∀i ∈ {0, . . . , n − n∗ − 1})

dim(TpΓ
∗ + Gi(p)) = constant

(∀p ∈ N )(∀i ∈ {0, . . . , n − n∗ − 1})

dim(Gi(p)) = constant

(∀p ∈ Γ∗) dim(TpΓ
∗ + Gn−n∗−1(p)) = n.

Then there exists a smooth feedback transformationv 7→
u = α + Kv defined onN such that for allp ∈ Γ∗, R

n is
isomorphic to

TpΓ
∗ ⊕ span{ad

j
fgk(p) : 0 ≤ j ≤ n − n∗ − 1, 1 ≤ k ≤ ρj}.

(4)

In the sequel we will need to identify directions in the
intersectionTpV ∩ Gi(p). To this end it is useful to define
the integers

µ0(p) := dim(TpV ∩ G0(p))

µi(p) := dim(TpV ∩ Gi(p)) − dim(TpV ∩ Gi−1(p))

n̂i(p) :=

i
∑

j=0

µj .

When theρi’s and µi’s are constant overV we have the
following result whose proof is omitted for brevity.

Lemma IV.3 Assume that the conditions of Lemma IV.1
hold. Then, for eachi ∈ {0, . . . , n − n∗ − 1}, there exist
n̂i vector fieldŝvk : U → TR

n such that, after the feedback
transformation in Lemma IV.1, for allp ∈ U

Gi(p) =

span {v̂1, . . . , v̂n̂i
} ⊕





i
⊕

j=0

span{ad
j
fgk : 1 ≤ k ≤ ρj}





where(∀p ∈ V ) span{v̂1, . . . , v̂n̂i
}(p) ⊂ TpV.

Under the assumptions of Corollary IV.2, we are now
ready to definetransverse controllability indicesk1, . . . , kρ0 :

ki := number of integers in the list{ρ0, . . . , ρn−n∗−1}

which are ≥ i.

It is easily checked thatk1 ≥ · · · ≥ kρ0 and
∑

i ki =
n − n∗. Moreover there is a bijection between the list
{ρ0, . . . , ρn−n∗−1} and the list{k1, . . . , kρ0}. Using Corol-
lary IV.2 and IV.3, and following Wonham’s construction in
[11], it is not difficult to see that a reordering of the vector

fields in (4) results in the next array ofn independent vector
fields onN :

1 v̂1, . . . , v̂n̂0 , g1, . . . , gρ0 ; . . . ; . . . ,

v̂n̂kρ0−1
, ad

kρ0−1

f g1, . . . , ad
kρ0−1

f gρ0 ;

2 v̂n̂kρ0−1+1, . . . , v̂n̂kρ0
; ad

kρ0

f g1, . . . , ad
kρ0

f gρ0−1;

v̂n̂kρ0−1−1
, ad

kρ0−1−1

f g1, . . . , ad
kρ0−1−1

f gρ0−1;

· · · · · · · · · ·

ρ0 − 1 v̂n̂k3−1+1, . . . , v̂n̂k3
; adk3

f g1, adk3

f g2; . . . ;

adk2−1
f g1, adk2−1

f g2;

ρ0 v̂n̂k2−1+1, . . . , v̂n̂k2
; adk2

f g1; . . . ; adk1−1
f g1

ρ0 + 1 vn̂k1−1+1, , . . . , vn∗ ; .
(5)

Here v̂1, . . . , v̂n̂k1−1
: N → TR

n are vector fields which
restricted toΓ∗, pointwise form a partial basis forTpΓ

∗.
The vector fieldsvn̂k1−1+1, . . . , vn∗ : Γ∗ → TΓ∗ are vector
fields defined solely onΓ∗, pointwise completing the basis
of TpΓ

∗. The remaining vector fields of the array point-wise
span all directions transverse toTpΓ

∗. By the construction in
the proof of Lemma IV.1,(∀i ∈ {1, . . . , m})(∀j ∈ {ki, ki +
1, . . .})(∀k ∈ {i, . . . , m}) ad

j
fgk ∈ TpΓ

∗ + Gj−1(p).

V. NECESSARY CONDITIONS

We present a set of necessary conditions to solve Prob-
lem 1.

Lemma V.1 Suppose that Problem 1 is solvable. Then, for
any x ∈ Γ∗, there exists a contractible neighborhoodV of
x in Γ∗ such that, lettingU be the tubular neighborhood of
V adapted fromN ,
(a) For all p ∈ V , dim(TpV + Gi(p)) = constant,0 ≤ i ≤

n − n∗ − 2 (i.e., ρ0, . . . , ρn−n∗−2 = constant)
(b) For all p ∈ V , dim(TpΓ

∗ + Gn−n∗−1(p)) = n (i.e.,
∑n−n∗

−1
i=0 ρi = n − n∗)

(c) The controllability indices of(A, B) in (2) coincide with
the transverse controllability indices of(1).

Proof: ChooseV small enough that it is covered by
a coordinate chart(V, φ) of Γ∗. Since conditions (a)-(c) are
coordinate and feedback independent, it is sufficient to show
that they hold in(z, ξ) coordinates. Let̃U := Ξ(U) ⊂ M
and Ṽ := Ξ(V ) = V × 0 (the latter equality follows from
property (i) in Problem 1). SinceU is a tubular neighborhood
adapted fromN we haveṼ ⊂ Ũ ⊂ V × R

n−n∗

.
In (φ, ξ) coordinates we have that for anyp ∈ Ṽ

Tφ(p)(φ(Ṽ )) + Gi(φ(p), 0) =

Im

([

In∗ ? ? . . . ?

0n−n∗×n∗ B AB . . . AiB

])

.
(6)

The matrixB is full rank from which it immediately follows
that Tφ(p)(φ(Ṽ )) + G0(φ(p), 0) has constant rank which
combined with (6) proves (a). By controllability of the pair
(A, B), one also has thatTφ(p)(φ(Ṽ ))+Gn−n∗−1(φ(p), 0) =
R

n. From (6) it is also clear that

ρi = rank([B · · · AiB]) − rank([B · · ·Ai−1B])

and property (c) holds.



VI. PROOF OF THE MAIN RESULT

The following result is used in the proof of Theorem III.1.

Theorem VI.1 Problem 1 is solvable if and only if there
existρ0 smooth functionsα1, . . . , αρ0 : U → R, whereU is
a neighborhood ofΓ∗ in R

n, such that
(1) Γ∗ ⊂ {x ∈ U : αi(x) = 0, i = 1, . . . , ρ0}
(2) The system

ẋ = f(x) +

ρ0
∑

i=1

uigi(x)

y′ = α(x)

(7)

has uniform vector relative degree{k1, . . . , kρ0} over
Γ∗.

The proof is conceptually identical to the proof of an
analogous result in [12].

Proof: (⇒) Suppose that Problem 1 is solvable. By
Lemma V.1, part (c), the pair(A, B) has controllability
indicesk1, . . . , kρ0 . Thus, without loss of generality, we can
assume that the pair(A, B) is in Brunovský normal form

A = diag{A1, . . . , Aρ0}, B = diag{B1, . . . , Bρ0},

with Ai ∈ R
ki×ki andBi ∈ R

ki×1 given by

Ai =













0 1 0 . . . 0
0 0 1 . . . 0
· · · · ·
0 0 0 . . . 1
0 0 0 . . . 0













, Bi =















0
0
...
0
1















.

We defineαi’s in (z, ξ) coordinates. Letα = (α1, . . . , αρ0) :
M → R

ρ0 , (z, ξ) 7→ C ξ, where

C = diag{C1, . . . , Cρ0}, Ci = [1 0 . . . 0] (lengthki).

This choice ofα1, . . . , αm satisfies conditions (1) and (2).
(⇐) The existence of smooth functionsα1, . . . , αρ0 : U →
R yielding a uniform vector relative degree{k1, . . . , km}
(with

∑

i ki = n−n∗) overΓ∗ implies, by2 [13, Proposition
11.5.1], that there exists a coordinate transformationΞ =
(r, s) : N → Ξ(N ) ⊂ Z∗ × R

n−n∗

, whereN ⊂ U is a
tubular neighborhood ofZ∗, yielding the normal form (2),
whereZ∗ := {x : s(x) = 0} is the zero dynamics manifold
of the system (7). For anȳx ∈ Γ∗, one hasα(x̄) = 0 and,
since x̄ belongs to a controlled invariant manifold (Γ∗), it
follows that x̄ ∈ Z∗ as well. We have thus shown thatΓ∗ ⊂
Z∗. SinceΓ∗ andZ∗ are two connected, closed submanifolds
of the same dimension andΓ∗ ⊂ Z∗, it follows that Γ∗ =
Z∗.

We are now ready to prove the main result of this paper.

Proof of Theorem III.1:Conditions (a) - (c) allow us to apply
Lemma IV.1 and Lemma IV.3. Apply the smooth feedback

2While in [13, Proposition 11.5.1] the extra condition that certain vector
fields be complete is assumed, here this condition is not needed because
the normal form (2) is required to be valid in a neighborhood of Γ∗, rather
than the entireRn.

transformationv 7→ u = h + Kv defined inN defined
therein. We proceed to construct the vector valued function
α satisfying the conditions of Theorem VI.1. Consider then

independent vector fields of (5).
Choose any pointp0 ∈ Γ∗ as the origin for generating

S-coordinates by flowing along the vector fields in (5). Note
that all of these vector fields are well defined inN except
for vn̂k1−1+1, . . . , vn∗ which are defined everywhere onΓ∗

and we use these vector fields to generate the mappingF 0 :
(F 0)−1(W ) → W ⊂ Γ∗

F 0 : S0 = (s0
1, . . . ,s

0
n∗−n̂k1−1

)

7→ Φ
vn̂k1−1+1

s0
n∗

−n̂k1−1

◦ · · · ◦ Φvn∗

s0
1

(p0).

Use the remaining vector fields in (5) to define a sequence
of mappingsF

kj

i : (F
kj

i )−1(U
kj

i ) → U
kj

i ⊂ N , j ∈
{1, . . . , ρ0}, i ∈ {kj+1, . . . , kj − 1} associated with each
layer of bracketing in the array (5). Each mapF

kj

i consists
of the composition of flows of vector fields which at each
point onΓ∗ are inGi(p), not in Gi−1(p) (let kρ0+1 = 0 and
n̂−1 = 0)

F
kj

i : S
kj

i =
(

s
kj

(i,1)), . . . , s
kj

(i,j+µi)

)

7→ Φ
v̂n̂i−1+1

s
kj

(i,j+µi)

◦ · · · ◦ Φ
v̂n̂i

s
kj

(i,j+1)

◦ Φ
adi

f g1

s
kj

(i,j)

◦ · · · ◦ Φ
adi

f gj

s
kj

(i,1)

(p),

(1 ≤ j ≤ ρ0), (kj+1 ≤ i ≤ kj − 1).

The notationF
kj

i can be understood as follows: The
superscriptkj , (1 ≤ j ≤ ρ0), indicates the row of (5) used in
the mapping. The indexj in kj reflects the number of input
vector fields, i.e.g1(x), . . . , gj(x) appearing at each order of
bracketing in the row. The subscripti, (kj+1 ≤ i ≤ kj − 1),
gives the order of Lie bracketing. SpecificallyF kj

i consists
of the vector fields inGi that are not inGi−1, i.e. j input
vector fields and a subset of the tangential vector fields,µi

of them to be exact.
For j ∈ {1, . . . , ρ0}, let F kj = F

kj

kj+1
◦· · ·◦F

kj

kj−1. Further
compose these mappings to generateS-coordinates via the
compositeF : F−1(N 0) → N 0 ⊂ N defined as

F := F kρ0 ◦ · · · ◦ F k1 ◦ F 0(p0). (8)

The S-coordinates are given byS = col(S0, . . . , Skρ0 )

where Skj = col(S
kj

kj−1, . . . , S
kj

kj+1
). As candidate output

functions(α1, . . . , αρ0), choose the time (S-coordinate) as-
sociated with the highest order Lie bracket of each input
vector field. Namely, fori ∈ {1, . . . , ρ0} let αi be the time
spent flowing alongadki−1

f gi. With this choice forα, we
must show that the conditions of Theorem VI.1 are satisfied.

The image ofΓ∗ in S-coordinates is given by

F (Γ∗) = {S : s
kj

(i,1) = · · · = s
kj

(i,j) = 0,

1 ≤ j ≤ ρ0, kj+1 ≤ i ≤ kj − 1}.

The chosen outputs are included in the above set of times
and therefore they are identically zero onΓ∗. This shows
that Γ∗ ⊂ {α(x) = 0}. Sinceαi represents the time flow
along vector fieldadki−1

f gi, we immediately have that for all



p ∈ Γ∗, L
ad

ki−1

f
gi

αi 6= 0. In order to show thatLad`
f
gj

αi = 0

for all i ∈ {1, . . . , ρ0}, ` < ki−1, j ∈ {1, . . . , m} we appeal
to S-coordinates.

Fix a set of timesSki

ki−1, Ski−1 , . . . , S0 to uniquely
determine the pointx = F ki

ki−1 ◦ F ki−1 ◦ · · · ◦ F 0(p0) ∈
N 0. Use this point as the origin for the partial mapping
F kρ0 ◦ · · · ◦F ki

ki−2(x). The vector fields of this mapping are
linearly independent inN 0 so its image is a submanifold.
Furthermore, the vector fields span an involutive distribution
Gki−2, so the image of this map is the integral submanifold
Gki−2(x) of Gki−2.

The dimension of the fixed times used to obtain the point
x is exactly equal ton − dim(Gki−2). This shows that in
S-coordinates

F (Gki−2(x)) = {S : Ski

ki−1 =const., Ski−1 = const.,

. . . , S0 = const.}

and thereforeTSF (Gki−2(x)) = col(0, Idim(Gki−2)). From

this it immediately follows that
〈

dαi, ad`
fgj

〉

is zero for

i ∈ {1, . . . , ρ0}, ` < ki − 1, j ∈ {1, . . . , m}.
We are left to show that theρ0 × m decoupling matrix

is full rank for any p ∈ Γ∗. This part of the proof is
omitted. We conclude that the vector functionα(x) =
col(α1(x), . . . , αρ0(x)) yields a vector relative degree of
{k1, . . . , kρ0} thus satisfying condition (2) of Theorem VI.1.

Remark VI.1 Observe that the above proof elucidates the
conservativeness of the conditions of Theorem III.1. Theo-
rem III.1 holds if the integern − n∗ in conditions (a) - (d)
is replaced withk1 .

Example VI.1 Consider the system

ẋ =













0
x4 − x2x3

x1 − x3

x5 − x2x3

0













+













1
0
0
x2

0













u1 +













0
0
0
0
1













u2. (9)

and the pair

(Γ∗, u∗) = ({x : x1 = x2 = x4 = x5 = 0}, 0).

Here Γ∗ is a subspace and hence contractible. Simple
calculations revealρ0 = 2, ρ1 = ρ2 = 1 everywhere on
Γ∗ yielding transverse controllability indicesk1 = 3 and
k2 = 1. Since the constraints definingΓ∗ satisfy property
(1) of Theorem VI.1 it makes sense to see if any pair
of constraints also satisfy property (2). There is only one
choice for y′ which yields a well defined relative degree
nearΓ∗, namelyy′ = col(x1, x5) with vector relative degree
{1, 1} 6= {k1, k2} and so property (2) fails to hold and it is
not clear whether input-output linearization can be used to
stabilizeΓ∗. On the other hand, the sufficient conditions of
Theorem III.1 provide an affirmative answer.

The retraction used to generate the feedback transfor-
mation of Lemma IV.1 has an especially simple form:r :

col(x1, x2, x3, x4, x5) 7→ col(0, 0, x3, 0, 0). The result of the
feedback transformation is

u =

[

0 1
1 0

]

v.

The distributionsG0 and G1 are involutive nearΓ∗

satisfying condition (a) of Theorem III.1. Conditions (b) and
(c) are easily checked by writing down the expressions for
the vector fields withTxΓ∗ = ∂

∂x3
. Finally we have that

(∀x ∈ Γ∗) dim(TxΓ∗ + G2(p)) = 5 and condition (d)
is satisfied. Applying the preliminary feedback above and
following the procedure of Theorem III.1 we obtain the
mappingF (s). Taking the inverse,F−1(x) we obtain the
functionα(x) = (x2e

−x3+x3(0), x1). System(9) with output
y′ = α(x) satisfies Theorem VI.1 and we can now employ
an input-output linearization approach to stabilizingΓ∗.4
4

VII. C ONCLUSIONS

This paper presents preliminary results headed toward
a characterization of transverse feedback linearization for
multi-input systems. The main contributions are a formal
problem formulation, the introduction of transverse control-
lability indices, a methodology for conveniently arranging in-
put vector fields (Lemma IV.1), non-checkable necessary and
sufficient conditions (Theorem VI.1) and sufficient checkable
conditions (Theorem III.1) for the solvability of Problem 1.
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