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Abstract

Virtual holonomic constraints (vhcs) are relations among the configuration variables of a mechanical control system that can
be rendered invariant via feedback. A regular vhc is a vhc with the property that the accelerations imparted by the control
forces are everywhere transverse to the constraint surface. This paper proposes a methodology for the design of regular vhcs
for mechanical systems with degree of underactuation one based on the notion of a virtual constraint generator, a control
system on the configuration manifold of the mechanical system whose orbits are all the regular vhcs for the mechanical system.
Designing a regular vhc corresponds to designing controllers for the virtual constraint generator. We show how to design
regular vhcs inducing two kinds of motions for the constrained dynamics: traversal of the vhc in one direction or oscillation
back and forth along the vhc. We propose an optimal control problem for the virtual constraint generator whose solutions
are regular vhcs inducing the kind of motions just described and, at the same time, meeting geometric requirements such
as obstacle avoidance. We demonstrate the utility of our technique by designing a constraint for an overhead crane making
the trolley move from left to right with bounded speed while ensuring that the cable angle remains within fixed limits, and a
constraint for a cart-acrobot making the cart oscillate back and forth underneath an obstacle placed overhead while ensuring
that the acrobot avoids the obstacle and remains as close as possible to being in the upright position.

1 Introduction

Virtual holonomic constraints (vhcs) have emerged over
recent years as a powerful new tool for motion control
of robots. From their initial application to the control of
bipedal robots in [10], vhcs have been used to address
a number of different complex motion control tasks, in-
cluding path-following for a pvtol aircraft [7], design-
ing repetitive motions for the Furuta pendulum [27], and
controlling snake robots [21]. The accumulated evidence
of this work is that vhcs are a powerful alternative to the
classical reference tracking framework for motion con-
trol of complex robotic systems, furnishing controllers
which can be more robust than the classical options.

Applications to bipedal robots have focussed on design-
ing constraints such that the hybrid zero dynamics pos-
sess a stable limit cycle. Crucially, the repeated impacts

Email addresses: rein.otsason@mail.utoronto.ca
(Rein Otsason), maggiore@ece.utoronto.ca (Manfredi
Maggiore).
1 Parts of this paper were presented at the 2019 IEEE Con-
ference on Decision and Control [22]. R. Otsason and M.
Maggiore were supported by the Natural Sciences and En-
gineering Research Council (NSERC) of Canada.

and associated transitions of the robot at every footfall
provide the key stabilizing effect. Outside of the context
of bipedal locomotion, the focus of research on virtual
constraints has been on control techniques to stabilize
particular orbits arising from a constraint, as a substi-
tute for this natural stabilizing action.Work on this front
has included [29] and [28], which use virtual constraints
to discover candidate periodic orbits and then provide a
constructive procedure to stabilize those orbits, and [20],
which uses a dynamic family of constraints to stabilize
a particular orbit of a nominal constraint. While some
of the mentioned work provides more or less sytematic
methods for designing constraints for specific systems,
none provides a general, constructive method to design
the constraint itself, which is necessarily prior to stabi-
lizing any of its orbits.

This important constraint design process has been best
explored in the context of bipedal locomotion. The ear-
liest constraints for bipedal locomotion were simple and
designed through intuition [10], but as the robots which
constraints were being applied to increased in complex-
ity, so did the methods used to design them. In [30],
Bézier polynomials were first used to parametrize the
constraints. Designing the constraint was then trans-
formed into a parameter optimization problem, an ap-
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proach which was explored and extended in [31,11,4].
More recent work has retained the use of Bézier poly-
nomials to parametrize the constraints, but has treated
constraint design as an optimal control problem for the
robot using direct collocation [14,12,13]. Other work has
exploited machine learning techniques in order to gen-
erate new constraints from families of existing ones [8],
or to learn a representation of a constraint given a se-
lection of open-loop gaits corresponding to the desired
behaviour [9]. Besides being specialized to the particular
requirements of bipedal robots, most of the approaches
just described share two key features in common. The
first is the use of Bézier polynomials to parametrize the
constraints. The second is the reliance on the full dy-
namics in the state space of the robot in order to de-
sign the constraint to achieve a particular motion task.
In contrast, the approach to constraint design proposed
in this paper relies on a control system defined on the
configuration space of the robot.

We can situate the constraint design problem in the
broader context of motion planning for underactuated
robots. Let σ : R → Q be a path in the configuration
space of a robot. For a fully actuated robot, it is possible
to traverse this path at any speed. That is, for any time
parametrization s : R → R, q(t) = σ(s(t)) is a solution
of the equations of motion for a suitable control τ(t).
In this sense the problem of trajectory planning is en-
tirely decoupled from path planning, and indeed this de-
coupling has been exploited by several different motion
planning techniques (see, for example, [15,1,25,24]). For
a robot with n degrees of freedom and m < n actuators,
by contrast, the time parameterization must satisfy the
vector differential equation [2]

a(s)s̈+ b(s)ṡ2 + c(s) = 0 , (1)

where the functions a, b, c : R → Rn−m depend on the
path σ. For a path q = σ(s), the solutions of (1) give all
possible time parametrizations s(t) that the robot can
execute, and generally it may happen that (1) has no
solutions, or solutions that do not conform with the de-
sign requirements of the motion control problem one is
seeking to solve. Designing a trajectory for an underac-
tuated system is thus inescapably linked with designing
the path. This is one of the central difficulties of under-
actuated robotics.

Several different approaches have been proposed to han-
dle this difficulty. In [2], decoupling vector fields were
used to design paths so that the terms a, b, and c are all
zero, such that the path can be traversed at any speed,
just as in the fully actuated case. Unfortunately, this ap-
proach is only applicable to systems with no potential.

More computationally driven approaches simply lift the
problem to the state space (so called kinodynamic mo-
tion planning), and solve the motion planning using one

of many different algorithms, most popularly the ran-
domized approach of [16] and its descendants. This ap-
proach generates time-dependent trajectories that are
to be used as reference signals for asymptotic tracking.
Representing desired robot behaviours in terms of timed
reference signals is problematic in motion control ap-
plications such as robot locomotion where imposing a
timing on the feedback loop leads to an inherent lack
of robustness in the face of disturbances (see, for ex-
ample, the discussion in [3] and [31, Section 1.4]). Ad-
ditionally, the numerical methods used in kinodynamic
motion planning do not necessarily produce trajectories
that can be stabilized via feedback. Further, these al-
gorithms do not lend themselves to a theoretical analy-
sis offering guarantees that the generated solutions meet
the requirements of the problem. Finally, when the goal
is to design periodic trajectories associated to a repet-
itive behaviour, finding closed orbits of a large system
of differential equations is a notoriously hard numerical
problem.

In contrast to kinodynamic motion planning, for robots
with underactuation degree one virtual constraints rep-
resent motions as paths in the configuration manifold,
without imposing any timing on the feedback loop. The
problem of inducing repetitive motions is greatly sim-
plified when using virtual constraints, and indeed this
problem is at the core of the papers [29,26]. In [29], a can-
didate path in the form of a virtual constraint was con-
sidered, and a method was devised to stabilize a periodic
solution of (1), provided that such a solution exists and
is known. Soon after, [26] provided a sufficient condition
for the existence of such a periodic orbit, and used this
to design constraints for the cart-pendulum, but did not
provide a general constructive procedure for generating
paths (virtual constraints) satisfying this condition. One
of the contributions of this paper is to provide just such
a constructive procedure.

To summarize, path planning and trajectory planning
are inextricably linked for underactuated robots: the ge-
ometry of a path that the robot is to follow in the con-
figuration space determines the kind of trajectories in
the state space that the robot is able to track. To date
there has been no systematic attempt at designing paths
in the configuration space inducing desired qualitative
properties for the trajectories that the robot can produce
along these paths. This paper initiates such an investi-
gation. We note that the approach we develop here is in-
dependent of, and indeed complementary to, the various
techniques which have been developed to stabilize con-
straints or particular trajectories along them. The con-
straints designed heremay be stabilized by variousmeth-
ods, including but not limited to feedback linearization
and sliding-mode control; in this regard the problem of
designing constraints inducing certain dynamics is sim-
ilar to the problem of designing an appropriate sliding
surface in sliding-mode control.
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Contributions of this paper. For robots with a single
degree of underactuation, this paper makes three contri-
butions. First, in Section 3 we introduce a tool we call
the virtual constraint generator (vcg), a virtual control
system on the configuration space of the robot with the
property that its solutions are all regular vhcs for the
robot (regular vhcs are reviewed in Section 2).

The second contribution, in Section 5, is to show pre-
cisely which properties a vhc curvemust possess in order
that themotion of the robot along this curve corresponds
to one of these two desired behaviours: either the robot’s
configuration traverses the entire curve in one direction,
or it oscillates back and forth along the curve. We con-
vert these requirements into control specifications for
the vcg and show that searching for a regular vhc in-
ducing one of the two foregoing behaviours corresponds
to designing a virtual controller for the vcg meeting
one of two control specifications which we call dynamic
specifications. This is an important conceptual transi-
tion: constraint design problems are turned into control
design problems for the vcg. There are additional geo-
metric specifications to be met, and these correspond to
the standard objectives of path planning. Among these
are to ensure that the vhc curve be contained in a safe
set (obstacle avoidance) and that certain quantities in-
crease monotonically along the curve (monotonicity).

The final contribution of this paper is the formulation,
in Section 6, of an optimal control problem for the vcg
encompassing both the dynamic and geometric speci-
fications. In contrast with other constraint design ap-
proaches reviewed earlier, this optimal control problem
is posed on the configuration space of the robot.

The ideas of this paper are illustrated by means of two
motion control problems, introduced in Section 4 and
solved in Sections 7 and 8. The first problem concerns
an overhead crane. The objective is to make the trolley
move from left to right with bounded speed while en-
suring that the cable angle remains within fixed limits.
The second problem concerns an acrobot on a cart. Here
the objective is to make the cart oscillate back and forth
underneath an obstacle placed overhead while ensuring
that the acrobot avoids the obstacle and remains as close
as possible to being in the upright position.

Notation. We denote the i-th standard basis vector of
Rn by ei. If v ∈ Rn, we denote by vi the i-th component
of v. Similarly, for a vector-valued function f , fi denotes
the i-th component of f . For T > 0 and x ∈ R, we denote
by [x]T the quantity x modulo T , and by [R]T the set of
real numbers modulo T . If M be a smooth manifold and
x ∈ M , we denote by TxM the tangent space to M at x,
and by TM the tangent bundle of M . If f : Rn → Rm is
a smooth function and x ∈ Rm, then by dfx we denote
the Jacobian matrix of f at x. If g1, . . . , gk is a collection
of vector fields on Rn, and f : Rn → Rm is a smooth
function, then Lgf : Rn → Rm×k denotes the function

x 7→ [dfxg1(x) · · · dfxgk(x)]. We denote by GL(n;R) the
set of invertible n×n real matrices. Finally, we use dots
to denote differentiation with respect to time and primes
to denote differentiation with respect to the constraint
parameter s.

2 Background on Virtual Holonomic Con-
straints

In this section we review the basic setup of mechanical
systems and virtual holonomic constraints. This mate-
rial can be found in the references [18–20,5]. Let q =
(q1, . . . , qn) be generalized coordinates for a simple me-
chanical system. Each coordinate qi is either an element
of R, corresponding to a translational degree of freedom,
or an element of [R]2π, corresponding to a rotational de-
gree of freedom. The configuration manifold Q is thus a
generalized cylinder. The equations of motion for a sim-
ple mechanical control system with m inputs are

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = B(q)τ , (2)

where D : Q → Rn×n is the mass matrix, assumed
to be everywhere symmetric and positive definite, C :
TQ → Rn×n is the Coriolis matrix, P : Q → R is the
potential, B : Q → Rn×m is the input matrix, and τ =
(τ1, . . . , τm) is the vector of control forces. Ifm < n, then
the system is underactuated, and n−m is the degree of
underactuation. We assume that the matrixB(q) has full
rank for all q ∈ Q. We also assume that B has a smooth
left annihilator B⊥ : Q → R(n−m)×n, that is, a function
B⊥ such that B⊥(q) is full rank and B⊥(q)B(q) = 0 for
all q ∈ Q.

In this paper, a virtual holonomic constraint (vhc) for
the system (2) is an embedded curve C ⊂ Q satisfying
the following regularity condition: for each q ∈ Q,

TqC ⊕ Im(D−1(q)B(q)) = TqQ. (3)

This regularity condition has an intuitive physical mean-
ing. Considering the equations of motion (2), at each
point q ∈ Q the subspace Im(D−1(q)B(q)) is the vector
space of directions in which we can accelerate using our
control inputs. The condition in (3) requires that at each
point of the constraint curve C, this subspace be trans-
verse to the curve, so that accelerations can be applied
to drive the configuration q(t) onto the constraint and
keep it there. Some other approaches in the literature
(see [29,28] and related work) do not require regular con-
straints, since requiring regularity implies a possibility
of missing potentially desirable trajectories. But, as we
show in a moment, regularity brings about two benefits.
First, it guarantees that the constraint manifold itself
is stabilizable, and not just one of the trajectories on it.
Second, it guarantees the existence of well-defined con-
strained dynamics, substantially easing analysis, a fea-
ture that will be put to use throughout the rest of this
paper.
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The tangent bundle Γ := TC = {(q, q̇) ∈ TQ : q ∈ C, q̇ ∈
TqC} is called the constraint manifold, and the regularity
property (3) guarantees that there is a unique smooth
feedback τ : Γ → Rn−1 rendering Γ invariant. This fact
implies that there are uniquely defined constrained dy-
namics on Γ, as we shall see in a moment.

A vhc admits two representations: implicit and para-
metric. In the implicit representation, C is expressed as
C = {q ∈ Q : h(q) = 0}, where h : Q → Rn−1 is a
smooth function whose Jacobian is nonvanishing at all
q ∈ h−1(0). In this case, the regularity condition (3) is
equivalent to requiring system (2) with output e = h(q)
to have well-defined vector relative degree {2, . . . , 2} ev-
erywhere on Γ (which amounts to the invertibility of the
matrix dhqD

−1(q)B(q) at all q ∈ h−1(0)), and the con-
straint manifold Γ is the zero dynamics manifold associ-
ated with the output e = h(q). The implicit representa-
tion is used to design feedbacks that asymptotically sta-
bilize Γ (and therefore asymptotically enforce the con-
straint) through input-output linearization 2 .

In the parametric representation, C is expressed as a
parametric curve q = σ(s), where σ : I → Q is a C2

function that is a diffeomorphism onto its image, with
domain I = R if the curve is not closed, or I = [R]T ,
for some T > 0, if the curve is closed. For closed curves,
one typically starts with a T -periodic parametrization
σ̂ : R → Q, and defines σ : [R]T → Q to be the unique
C2 function satisfying the identity σ̂(s) = σ([s]T ). This
corresponds to identifying points in the domain of σ̂
whose difference is an integer multiple of T . For para-
metric vhcs, the regularity condition (3) becomes

span(σ′(s))⊕ Im(D−1(σ(s))B(σ(s))) = Tσ(s)Q (4)

for all s ∈ I. In the above, we have used primes to denote
differentiation with respect to the constraint parameter
s. We shall adopt this convention for the rest of this
paper, while reserving dots to denote differentiation with
respect to time t.

While implicit representations are useful for control de-
sign, parametric representations are useful to determine
the dynamics on the constraint manifold. Specifically,
substituting q = σ(s(t)) and its time derivatives in (2)
and premultiplying both sides of the equation by B⊥,

2 Provided that the function (q, q̇) 7→ (h(q), hq q̇) is lower
and upper bounded by a class-K function of the point-to-set
distance of (q, q̇) to Γ, see [18].

one can solve for s̈ and obtain (see [19,20,29,32])

s̈ = Ψ1(s) + Ψ2(s)ṡ
2, (s, ṡ) ∈ I× R , (5)

Ψ1(s) = − B⊥∇P

B⊥Dσ′(s)

∣∣∣∣
q=σ(s)

, (6)

Ψ2(s) = − B⊥ (Dσ′′ + C(σ, σ′))

B⊥Dσ′(s)

∣∣∣∣
q=σ(s)

. (7)

Any solution (q(t), q̇(t)) of (2) which is entirely con-
tained in Γ has the form (q(t), q̇(t)) = Φ(s(t), ṡ(t)) :=
(σ(s(t)), σ′(s(t))ṡ(t)), where the map Φ : T I → TQ is
a diffeomorphism onto Γ, and the pair (s(t), ṡ(t)) is a
solution of (5). For this reason, we refer to (5) as the
constrained dynamics. The denominators involved in the
above quantities are guaranteed to be non-zero by the
regularity condition (4).

While in classical mechanics the dynamics of a mechan-
ical system subject to a holonomic constraint are always
Euler-Lagrange, the same is not necessarily true for a
virtual holonomic constraint. In [19], it is shown that a
sufficient condition for the constrained dynamics to be
Lagrangian is that I = R, i.e. that the constraint is an
open curve in Q. If the dynamics on a vhc are Euler-
Lagrange, then the associated Lagrangian is

L =
1

2
M(s)ṡ2 − V (s) , (8)

where M(s) and V are the virtual mass and virtual po-
tential, defined as

M(s) = exp

(
−2

∫ s

0

Ψ2(τ) dτ

)
, (9a)

V (s) = −
∫ s

0

Ψ1(τ)M(τ) dτ . (9b)

When the constrained dynamics (5) are Euler-Lagrange,
they possess a first integral

E(s, ṡ) =
1

2
M(s)ṡ2 + V (s) , (10)

which in analogy with mechanical systems we call the
total virtual energy. See also [29].

3 Virtual Constraint Generator

In this paper a central goal is the systematic design and
generation of virtual holonomic constraints. The tool we
shall use for this task is the virtual constraint genera-
tor (vcg), which was introduced in [22], and generalized
earlier work in [6]. A virtual constraint generator, as we
define it here, is a virtual control system on the config-
uration manifold with the property that every possible
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∆(q1)

∆(q2)

∆(q3)

q = σ(s)

q1

q2

q3

Fig. 1. A parametric vhc must be everywhere transverse to
∆(q) in order to be regular

parametric vhc is a solution of the generator for some
virtual control input.

We begin by constructing the vcg from simple consider-
ations stemming from the properties of regular vhcs dis-
cussed in the preceding section. Recall the transversal-
ity requirement (4). Let ∆(q) = Im(D−1(q)B(q)). The
distribution ∆(q) assigns to each point q ∈ Q an (n−1)-
dimensional hyperplane. The transversality requirement
(4) means that a parametric vhc q = σ(s) must cross
these hyperplanes at each point. Generating vhcs, then,
is equivalent to finding all curves that are everywhere
transverse to the distribution ∆(q). Figure 1 illustrates
this situation.

Consider a vector field f : Q → TQ such that f is
transverse to ∆(q) for all q ∈ Q. For instance, one could
choose f(q) = (B⊥(q))T. Let q = σ(s) be an integral
curve of f . Then q = σ(s) is a parametric vhc, since by
construction for all s the tangent vector σ′(s) satisfies

span(σ′(s))⊕∆(q) = Tσ(s)Q .

All integral curves of f are parametric vhcs, but f alone
cannot produce all possible vhcs. Let g : Q → TQ be a
smooth vector field such that g(q) ∈ ∆(q) for all q ∈ Q.
Then the vector field f +g is also everywhere transverse
to ∆, and so every integral curve of f + g is also a para-
metric vhc. More generally, let g : Q → Rn×(n−1) be any
matrix-valued function such that Im(g(q)) = ∆(q) for all
q ∈ Q. An obvious choice would be g(q) = D−1(q)B(q).
Then for all u ∈ Rn−1, g(q)u ∈ ∆(q). This motivates the
following definition of the virtual constraint generator.

Definition 1. Consider a simple mechanical system (2)
with degree of underactuation 1 and the smooth distri-
bution onQ given by ∆(q) = Im(D−1(q)B(q)). A virtual
constraint generator (vcg) for the system is a control

system on Q with n− 1 control inputs,

dq

ds
= f(q) + g(q)u , (11)

where f is any smooth vector field such that for all q ∈ Q,

span(f)⊕∆(q) = TqQ , (12)

and g : Q → Rn−1 is any smooth matrix-valued function
such that Im(g(q)) = ∆(q) for all q ∈ Q.

Equivalently, a vcg is characterized by these two prop-
erties:

(i) The matrix-valued function Q → Rn×n given by[
f(q) g(q)

]
is invertible for all q ∈ Q.

(ii) Im(g(q)) = Im(D−1(q)B(q)) for all q ∈ Q.

It is easy to establish that a virtual constraint generator
always exists. The matrix D−1(q)B(q) trivially satisfies
the requirements for g, and the vector field (B⊥(q))T

satisfies the transversality requirements for f , so that

dq

ds
= (B⊥(q))T +D−1(q)B(q)u (13)

is a suitable choice for a vcg for any system (2) meeting
our assumptions. For computational reasons, we usually
choose to replace D−1(q) in the above with adj(D(q)),
which simply corresponds to scaling the control u by
det(D(q)). This replacement is formally justified by
Proposition 3 below.

We have explicitly constructed the virtual constraint
generator in such a way that any of its solutions satisfies
the fundamental transversality requirement for a regu-
lar vhc. The following theorem formalizes this, and ad-
ditionally establishes that any parametric vhc is a solu-
tion of the constraint generator for some virtual control
input.

In what follows, a reparametrization of a parametric vhc
σ : I → Q is another parametric vhc σ̃(s̃) := σ(µ(s̃)),
where µ is a smooth function R → R if I = R, or [R]T →
[R]T ′ , with T ′ > 0, if I = [R]T . Moreover, µ′(s̃) ̸= 0 for
all s̃ ∈ I.

For notational consistency with the notion of parametric
vhc introduced in Section 2, solutions of the control
system (11) will be denoted by σ(s), with the convention
that if σ is T -periodic, with T > 0, then we take its
domain to be [R]T , per the construction in Section 2.

Theorem 2. Consider the vcg (11) and a C1 signal u :
R → Rn−1 giving a globally defined solution σ : I → Q,
whose image is an embedded curve in Q, where I = R if
the curve is not closed, and I = [R]T , with T > 0, if the
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curve is closed. Then the curve q = σ(s) is a parametric
vhc for system (2). Vice versa, if σ : I → Q is such
that q = σ(s) is a parametric vhc for system (2), then
there exists a reparametrization σ◦µ(s̃) that is a solution
of (11) for a suitable C1 virtual control signal ū(s̃).

Proof. Let σ : I → Q be a solution of (11) corresponding
to a smooth virtual control signal ū(s). For each s ∈ I, we
have σ′(s) = f(σ(s))+g(σ(s))ū(s). Since f satisfies (12),
it follows that the transversality condition (4) holds, and
therefore q = σ(s) is a vhc for (2).

Now let q = σ(s) be a parametric vhc so that, by def-
inition, the transversality condition (4) holds. We need
to find a smooth function µ such that µ′ ̸= 0, and a C1

virtual control signal ū such that, letting σ̃ = σ ◦ µ and
s = µ(s̃), it holds that

dσ̃

ds̃
= f(σ̃) + g(σ̃)ū(s̃). (14)

By (12), thematrix-valued function T (q) = [f(q) g(q)] is
everywhere nonsingular. LettingU(s) = T−1(σ(s))σ′(s),
we have

σ′(s) = f(σ(s))U1(s) + g(σ(s))U2:n(s),

where U1 is the first component of U and U2:n is the vec-
tor containing the last n−1 components of U . Since σ is
C2, U is C1. Moreover, since σ(s) satisfies (4), the func-

tion U1(s) is nowhere zero. Let µ(s̃) =
∫ s̃

0
(1/U1(s))ds.

Then, µ′ = 1/U1 ̸= 0, and letting σ̃(s̃) = σ ◦ µ(s̃), we
have

dσ̃

ds̃
=

1

U1(µ(s̃))
σ′(µ(s̃))

= f(σ̃(s̃)) + g(σ̃(s̃))
U2:n(µ(s̃))

U1(µ(s̃))
.

Denoting ū(s̃) = U2:n(µ(s̃))/U1(µ(s̃)), the function σ̃(s̃)
is C1 because U is C1 and U1 ̸= 0, and ū satisfies (14),
as required.

The preceding result guarantees that the orbits of any
vcg are all possible regular vhcs for the given system.
That is, any choice of vcg generates the exact same
vhcs (orbits); the only thing that is different between
two vcgs for a system is a possible difference in the pa-
rameterizations of the constraints they generate. This
naturally leads to the following two questions: what rela-
tionships exist between all possible vcgs for a given me-
chanical system, and how is the reparametrization of a
parametric vhc reflected in the vcg? The following two
results answer these questions. The first shows that any
two vcgs for the same mechanical system are related by
a simple scaling of the drift vector field and a feedback

transformation. The second shows that a reparametriza-
tion of a parametric vhc is accomplished by a simultane-
ous scaling of the drift vector field and a reparametriza-
tion of the control. Their proofs are in Appendix A.

Proposition 3. If (11) is a vcg for system (2), then
all other vcgs for (2) are related to (11) via a regular
feedback transformation and a nonvanishing scaling of
the drift vector field f , i.e., they have the form

dq

ds
= (α(q)f(q) + g(q)K1(q)) + g(q)K2(q)v, (15)

where α : Q → R \ {0}, K1 : Q → Rm and K2 : Q →
GL(n − 1;R) are smooth, and v ∈ Rn−1 is the virtual
control input.

The next result states that scaling the drift vector field
of the vcg by a nonvanishing scalar-valued function cor-
responds to reparametrizing the vhcs generated by the
vcg. Moreover, it shows that any reparametrization of
a vhc arises from such a scaling of the drift vector field
of the vcg.

Proposition 4. Let σ(s) be a solution of the vcg (11)
with input signal u = ū(s) such that the curve q = σ(s)
is a closed embedded submanifold of Q. Then, for each
reparametrization σ̃(s̃) = σ(µ(s̃)), there exists a smooth
function α : Q → R \ {0} such that σ̃ is a solution of the
vcg

dq

ds̃
= α(q)f(q) + g(q)u (16)

with input signal u = ū(µ(s̃))µ′(s̃). Vice versa, for
each smooth function α : Q → R \ {0}, there is
a reparametrization σ̃(s̃) = σ(µ(s̃)) such that σ̃(s̃)
is a solution of the vcg (16) with input signal
u = α(σ(µ(s̃)))ū(µ(s̃)), where the reparametrizing func-
tion µ is the solution of the differential equation

dx

ds̃
= α(σ(x))

with initial condition x(0) = µ(0).

4 Model problems

In order to clarify the rest of our presentation, we will
pause our theoretical development here to present two
basic mechanical systems. We will demonstrate how to
construct a vcg for each system, and then present a
motion control problem for each, the solutions to which
we will find in Sections 7 and 8.

4.1 Overhead crane

Consider a trolley of mass M that has position x along
a linear track, and an attached payload that is modelled

6



(a) Overhead crane

(b) Cart-acrobot

Fig. 2. Motivating examples

as a point mass m suspended from an inflexible cable of
constant length l. The angle of the payload θ is measured
clockwise from the vertical. The configuration vector is
q = (x, θ). The mass matrix is

D(q) =

[
M +m −ml cos(θ)

−ml cos(θ) ml2

]
,

and the potential is P (q) = −mgl cos(θ). Since the
cart is actuated, the input matrix is B(q) = e1. Select-
ing as a smooth left annihilator (B⊥(q))T = −e2, and
adj(D(q))B(q) as g, the vcg is

dq

ds
=

[
0

−1

]
+

[
ml2

ml cos(θ)

]
u .

The motion control problem which we will pose for this
system is that for any two points x1 < x2 on the track, if
the system begins at the point x1, it will then eventually
pass through the point x2. We do not impose a specific
timing for this manoeuvre, nor do we prescribe a spe-
cific speed for the cart, but we do require the speed to
be bounded. Further, we want this manoeuvre to be per-
formed without any excessive “swinging” of the payload,
and therefore we want to design a regular vhc such that
the angle θ stays in a specified interval [−θmax, θmax]. We
call this a geometric specification. Additionally, we want
all orbits of the constrained dynamics carry the system
from x1 to x2, for all x1 < x2. We call this a dynamic
specification.

4.2 Cart-acrobot

The second example we consider is the cart-acrobot, il-
lustrated in Figure 2b, a double pendulummounted on a
cart. The cart-acrobot has three degrees of freedom and
two actuators: a force applied to the cart, and a torque
applied at the second joint of the double pendulum. We
suppose that at some position along the track there is
located an overhead obstacle, as depicted in Figure 2b.
Let x be the position of the cart along the track, θ1 the
angle of the first link relative to the vertical, and θ2 the
angle of the second link relative to the first, both mea-
sured counterclockwise. Let l1 and l2 be the lengths of
the first and second link respectively. The equations of
motion for the system have the standard form (2), where
the entries of the mass matrix D are

D11 = M +m1 +m2

D12 = −l1(m1 +m2) cos(θ1)− l2m2 cos(θ1 + θ2)

D13 = −l2m2 cos(θ1 + θ2)

D22 = m1l
2
1 +m2(l

2
1 + 2l1l2 cos(θ2) + l22)

D23 = m2l
2
2 +m2l1l2 cos(θ2)

D33 = m2l
2
2

the potential P (q) = m1gl1 cos(θ1) + m2g(l1 cos(θ1) +
l2 cos(θ1+θ2)), and the input matrix is B(q) =

[
e1 e3

]
.

A smooth left annihilator for B(q) is (B⊥(q))T = −e2.
Using (B⊥)T for f , and adj(D(q))B(q) for g, the vcg is

dq

ds
= −e2 + g1u1 + g2u2 (17)

where g1 and g2 are the columns of g, suppressed here
for space.

The high-level motion control objective for the cart-
acrobot is to make it execute a periodic motion, while
avoiding the overhead obstacle. Within the framework of
this paper, this reduces to designing a regular vhc such
that the constraint avoids the obstacle set (the geomet-
ric specification), and that the constrained dynamics of
the vhc contain periodic orbits around a specified point
(the dynamic specification).

The two examples outlined above illustrate two kinds
of dynamic specifications for the constrained dynamics
arising from a vhc. The first kind, appearing in the over-
head crane example, requires solutions of the constrained
dynamics to traverse the entire vhc curve in one direc-
tion. The second kind, appearing in the cart-acrobot ex-
ample, requires all solutions of the constrained dynam-
ics to be periodic. In the next section we formalize these
two specifications and show how to transform them into
control specifications for the vcg.
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5 The Dynamic Problem

In this section we address the following dynamic prob-
lem: design a regular vhc such that the solutions of the
constrained dynamics (5) have certain qualitative prop-
erties. Motivated by the two foregoing examples, we fo-
cus on the properties presented in the next two problems.

Dynamic Problem 1 (DP1, vhcs for traversal). De-
sign a parametric vhc σ : R → Q for system (2) such
that,for all initial conditions (s(0), ṡ(0)) of the resulting
constrained dynamics (5),the following properties hold:

(1) s(t) → ∞ as t → ∞, and
(2) (∃a > 0)(∀t ∈ R)

∥∥ d
dtσ(s(t))

∥∥ ≤ a.

The first condition guarantees that for any points s1 <
s2, any solution starting at s1 eventually passes through
s2. The second condition encodes that this occurs with
bounded speed in the configuration space of the robot.

The second dynamic problem arises when we want to
design constraints achieving a repetitive motion.We be-
gin by defining what constitutes a repetitive motion for
the constrained dynamics (5). Let s⋆ ∈ R. We will say
that an orbit of the constrained dynamics (5) is an os-
cillation around s⋆ if it is either a closed orbit encircling
the point (s⋆, 0), or an equilibrium at (s⋆, 0). Achieving
a repetitive motion then amounts to designing a con-
straint whose orbits are oscillations.

Dynamic Problem 2 (DP2, vhcs for oscillations). De-
sign a parametric vhc σ : R → Q for (2) such that all
orbits of the constrained dynamics (5) are oscillations.

In Propositions 5 and 7 of Section 5.1 we show that the
requirements of DP1 and DP2 amount to requirements
on the function Ψ1(s) appearing in the constrained dy-
namics (5). In Section 5.2 we will show that Ψ1(s) can
be viewed as an output signal of the vcg, and using this
insight we will convert the two dynamic problems into
control specifications for the vcg, which in turn will in-
form the formulation of an optimal control problem in
Section 6.

5.1 Conditions on Ψ1(s) solving DP1 and DP2

Recall from Section 2 that all constraints that are open
curves have constrained dynamics which are Euler-
Lagrange with one degree of freedom. In order to take
advantage of this fact, we will restrict our attention to
open-curve constraints in everything that follows.

To gain intuition about our problems, suppose for a mo-
ment that the virtual mass M(s) ≡ 1. Then the con-
strained dynamics (5) simplify to s̈ = −V ′(s) = Ψ1(s),

s

ṡ

V (s)

s

E0

V0

s⋆

(a)

s

ṡ

V (s)

s

E0

V0

s⋆− s⋆+

(b)

Fig. 3. E-L dynamics for the two classes of desired mo-
tions. For traversal, shown in (a), the potential should be
unbounded above, to prevent escape in the wrong direction,
strictly decreasing, so that the system accelerates in the cor-
rect direction, and bounded below, so that the kinetic energy,
and therefore the speed, is bounded. For oscillations, in (b),
the potential should grow without bound in both directions
away from the centre of oscillation, located at the minimum
of the potential energy, so that the particle is trapped in the
potential well.

and as is well known from classical mechanics, all im-
portant qualitative properties of the solutions can be de-
duced from the potential V . Oscillations around s⋆ oc-
cur when V is convex and has a global minimum at s⋆,
while traversal occurs when the potential is monotoni-
cally decreasing and unbounded above. Bounded speed
is guaranteed by the potential being bounded below. See
Figure 3 for an illustration of these properties. Since
V ′(s) = −Ψ1(s), for DP1 the properties just stated
translate directly into these requirements on Ψ1:

Ψ1 > 0,

∫ ∞

0

Ψ1(τ) dτ < ∞,

∫ −∞

0

Ψ1(τ) dτ = −∞.

(18)
The question now is whether the intuition just developed
is still valid when the virtual massM(s) is not constant.
The answer is yes, to a large extent.
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Proposition 5 (Conditions for DP1). For the con-
strained dynamics in (5), suppose that the function
Ψ1(s) satisfies the requirements in (18), and that there
exist two positive constants M1,M2 such that the func-
tion M(s) in (9a) satisfies 0 < M1 < M(s) < M2

for all s ∈ R. Then, for each initial condition
(s(0), ṡ(0)) = (s0, ṡ0) ∈ R×R of the constrained dynam-
ics (5), s(t) → ∞ and ṡ(t) is bounded. If, in addition,
σ(s) is a solution of the vcg (11) with a bounded virtual
control signal ū : R → Rn−1, and there exists A > 0 such
that ∥f(q)∥, ∥g(q)∥ < A for all q ∈ Q, then σ′(s(t))ṡ(t)
is also bounded, and DP1 is solved.

Remark 6. There is no loss of generality in the assump-
tion that ∥f∥, ∥g∥ < A, for if the vcg fails to satisfy
it, we may replace f and g by their normalized counter-
parts, and Proposition 3 implies that the resulting con-
trol system is still a vcg, now satisfying the required
properties. The value of the constant A does not need to
be known.

Proof. By definition, V (s) = −
∫ s

0
Ψ1(τ)M(τ) dτ. Since

both M and Ψ1 are strictly greater than zero, V is
strictly decreasing. Since M(s) is bounded above by
M2, for all s ≥ 0 we have V (s) ≥ −M2

∫ s

0
Ψ1(τ) dτ.

By assumption,
∫∞
0

Ψ1(τ) dτ < ∞, implying that
lim infs→∞ V (s) > −∞. Since V is strictly decreas-
ing, V is bounded from below, and therefore it has a
limit lims→∞ V (s) = V0. Similarly, for all s ≤ 0 we
have V (s) ≥ −M1

∫ s

0
Ψ1(τ) dτ. Since, by assumption,∫ −∞

0
Ψ1(τ) dτ = −∞, we deduce that V (s) → ∞ as

s → −∞.

Given an initial condition (s(0), ṡ(0)) = (s0, ṡ0) for the
constrained dynamics (5), the solution (s(t), ṡ(t)) lies on
the energy level set

Ee0 := {(s, ṡ) : E(s, ṡ) = (1/2)M(s)ṡ2 + V (s) = e0},

where e0 = E(s0, ṡ0). Since the energy function E(s, ṡ)
is a first integral of the constrained dynamics (5), the
level set Ee0 is invariant for (5). We claim that in fact
Ee0 is an orbit of (5). First off, since V is monotonically
decreasing and its image is the open interval V (R) =
(V0,∞), V has a C1 inverse V −1 : (V0,∞) → R. Let
Ie0 =

(
−
√
2(e0 − V0),

√
2(e0 − V0)

)
and define the map

γ : Ie0 → Ee0 as

(s, ṡ) = γ(θ)

=
(
V −1

(
e0 − θ2/2

)
, θ/

√
M ◦ V −1(e0 − θ2/2)

)
.

The map γ is a diffeomorphism with inverse γ−1 : Ee0 →
Ie0 , (s, ṡ) 7→ θ =

√
M(s)ṡ, and thus the level set Ee0

is a curve diffeomorphic to the real line. On this level
set, the constrained dynamics have no equilibria since
V ′(s) ̸= 0, which implies that the invariant curve Ee0 is

an orbit of (5), as claimed. The bottom half of Figure 3a
depicts a typical such orbit.

Having established that the level set Ee0 is an orbit
of (5), we now show that the solution (s(t), ṡ(t)) satis-
fies s(t) → ∞ as t → ∞ and |ṡ(t)| is bounded. To this
end, from the parametrization γ(θ) of Ee0 we deduce
that the projection of Ee0 onto the s-axis is the interval
(V −1(e0),∞) which, since Ee0 is an orbit of (5), implies
that s(t) → ∞. Finally, the identity E(s, ṡ) = e0 implies
that

ṡ2 =
2(e0 − V (s))

M(s)
≤ 2(e0 − V0)

m
.

Thus |ṡ(t)| is bounded along the orbit.

Finally, if σ(s) is a solution of the vcg for a bounded
virtual control signal ū(s), we have σ′(s) = f(σ(s)) +
g(σ(s))ū(s). Since σ′(s) is a sum of bounded terms, there
exists C > 0 such that for each s ∈ R, ∥σ′(s)∥ < C. So
∥σ′(s)ṡ(t)∥ is bounded, and the proposition is proved.

Now we turn to DP2.

Proposition 7 (Conditions for DP2). For the con-
strained dynamics in (5), let s⋆ ∈ I ⊆ R be such that
Ψ1(s

⋆) = 0, and (s− s⋆)Ψ1(s) < 0 for all s ∈ I, s ̸= s⋆.
Then there exists a neighbourhood of (s⋆, 0) ∈ R2 such
that all solutions of (5) with initial conditions from
that neighbourhood are oscillations. Further, suppose

that I = R,
∫ ±∞
0

Ψ1(τ) dτ = ∞, and that there exists a
positive constant M1 such that M(s) > M1 > 0 for all
s ∈ R. Then, all solutions of (5) are oscillations around
s⋆, and DP2 is solved.

Proof. The result is a simple extension of Theorem 3 in
[26]. Also see Propositions 8 and 9 in [23].

Remark 8. The conditions of the preceding two propo-
sitions clearly cannot be satisfied if ∇P is everywhere in
ker(B⊥). In particular, if the potential is constant, then
the conditions cannot be satisfied.

5.2 Control specifications for the vcg

We now have specific requirements for Ψ1 solving DP1
andDP2. It only remains to encode these requirements in
a control specification for the vcg. The key observation
is that we can view Ψ1 as an output signal of the vcg,
where the output function is 3

Ψ̃1(q) = − B⊥(q)∇P (q)

B⊥(q)D(q)f(q)
. (19)

3 The defining property (12) of the vcg and the fact that

KerB⊥ = ImB imply that the denominator of Ψ̃1 is nonzero,
and thus Ψ̃1 : Q → R is smooth.
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To see that this is the case, recall that by (6) we have

Ψ1(s) = − B⊥∇P

B⊥Dσ′(s)

∣∣∣∣
q=σ(s)

.

Substitution of the vcg dynamics (11) for σ′(s) in the
denominator yields

B⊥(σ(s))D(σ(s))(f(σ(s)) + g(σ(s))u(s)) .

Since Im(g(q)) = Im(D−1(q)B(q)), which is exactly the
kernel of B⊥(q)D(q), this reduces to

B⊥(σ(s))D(σ(s))f(σ(s)) ,

which is exactly Ψ̃1 ◦ σ. So, we consider the vcg with
output

dq

ds
= f(q) + g(q)u

e = Ψ̃1(q) .
(20)

Using the above, we can now reframe our two dynamic
problems as control specifications for the vcg. Consider
the vcg with output (20), where Ψ̃1 is given in (19). Fix
an initial condition q0 and consider the following control
specifications:

spec 1. Find a virtual control signal u : R → Rn−1

such that the corresponding output signal Ψ̃1(σ(s))

satisfies Ψ̃1(σ(s)) > 0,
∫∞
0

Ψ̃1(σ(s)) ds < ∞, and∫ 0

−∞ Ψ̃1(σ(s)) ds = ∞.

spec 2. Find a virtual control signal u : R → Rn−1 such
that the corresponding output signal Ψ̃1(σ(s)) satisfies

Ψ̃1(σ(s
⋆)) = 0 for some s⋆ ∈ R, and Ψ̃1(σ(s)) is strictly

decreasing.

By Propositions 5 and 7, a controller for the vcg meet-
ing spec 1 and yielding a virtual mass that is bounded
away from zero and bounded from above gives a para-
metric vhc solving DP1 4 , while one meeting spec 2 and
yielding a virtual mass that is bounded away from zero
gives a parametric vhc solving DP2.

The requirements on the boundedness of M(s) are not
explicitly stated in spec 1 and spec 2. While it is not
difficult to incorporate them into the optimal control
formulation we present in the next section, the require-
ments only concern the properties of M(s) in the limit
s → ±∞, and the computational procedure that we use
only generates the constraint over a finite interval of the
parameter s.

4 Provided that the functions f and g appearing in the vcg
are chosen to be uniformly bounded. By Proposition 3, this
can always be done through normalization.

Remark 9. It is not hard to find feedback controllers
for the vcg meeting spec 1 and spec 2, and this was
done in [22]. These controllers, however, rely on unnec-
essarily strong assumptions and make it hard to address
geometric specifications. In the following section, we will
develop an optimal control formulation of the constraint
planning problem which, in addition to encompassing
various geometric specifications for the vhcs, cleanly in-
corporates the necessary requirements for Ψ̃1 so that a
constraint solving the total constraint planning problem
emerges as the solution of a single optimal control prob-
lem for the vcg, and in such a way that a solutionmay be
found even when the conditions of [22] are not satisfied.

6 Synthesis of constraints through optimal con-
trol

By Theorem 2, the solutions of the vcg (11) consti-
tute all possible parametric vhcs for the mechanical sys-
tem (2), up to reparametrization. In light of this result,
the constraint design problem described in the introduc-
tion amounts to a search over the solution space of the
vcg, subject to the constraints imposed by the geomet-
ric and dynamic specifications. In this section we for-
mulate this search as an optimal control problem of this
form:

minimize
u∈U

∫
σ(R)

G(q, u) dq (21a)

subject to σ′(s) = f(σ(s)) + g(σ(s))u(s) (21b)

ζ0(σ(0)) = 0 (21c)

ζ1(σ(T )) = 0 (21d)

ηj(s, σ(s), u(s)) ≤ 0, j ∈ {1, . . . , k}. (21e)

In the above, U is the set of admissible virtual control
signals for the vcg, that is, the set of C1 functions u :
R → Rn−1. The differential equation (21b) is the vcg,
and it is the feature guaranteeing that the optimization
is performed over the set of all possible regular vhcs. The
function G : Q × Rn−1 → R is the instantaneous cost,
and the objective function is the path integral ofG along
a solution of the vcg. The equality constraints (21c)
and (21d) impose requirements on the initial condition
of the vcg and the terminal value of the solution at
some time T > 0, where T is either fixed or variable. If
there are none such requirements, we simply set ζ0 or ζ1
equal to zero. Finally, the inequality constraints in (21e)
encode both geometric and dynamic specifications. In
what follows, we discuss these ingredients in more detail.

The instantaneous cost. The objective function is the
path integral of the instantaneous cost along a solution
σ(s) of the vcg. The integral in question is defined as∫

σ(R)
G(q, u) dq =

∫
R
G(σ(s), u(s))∥σ′(s)∥ ds .
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The function G can be chosen to reduce actuator usage
along a specific orbit of the constrained dynamics, or to
encode geometric features of thevhc curve. For instance,
if we wanted to find a minimum-length vhc curve we
would set G ≡ 1. In the cart-acrobot example presented
in Section 8 below, we useG to penalize states where the
acrobot is excessively “crouched,” whereas for the crane
example of Section 7 we choose G to induce the greatest
possible cumulative acceleration along the track.

Equality constraints. The equality constraint (21c) can
be used to express requirements on the initial condition
of the vcg arising from the dynamic problem. Specif-
ically, we have seen in Section 5.2 that when it comes
to inducing oscillations in the constrained dynamics,
spec 2 requires Ψ̃1(σ(s

⋆)) = 0. Without loss of gener-

ality, we may assume s⋆ = 0 and set ζ0 = Ψ̃1 in (21c).
To meet spec 1 (traversal), on the other hand, there
are no requirements on the initial condition so we set
η0 ≡ 0. The constraint (21d) can be used to impose
that the vhc curve reaches the zero level set of ζ1. In a
typical scenario, we might want the vhc curve to con-
nect two points q0, q1 ∈ Q, in which case we could set
ζ0(σ(0)) = σ(0)− q0 and ζ1(σ(T )) = σ(T )− q1.

Inequality constraints. The inequality constraints
in (21e) arise from both the geometric and dynamic
specifications. A typical geometric specification is ob-
stacle avoidance. Let the safe set S ⊂ Q represent the
subset of the configuration space where the robot does
not intersect with obstacles in the task space. Repre-
senting the safe set as the sublevel set of a function
η : Q → Rl, S = {q ∈ Q : η(q) ≤ 0} (where the inequal-
ity is to be understood component-wise), the obstacle
avoidance requirement can be written as η(σ(s)) ≤ 0,
which fits the form in (21e).

Another geometric requirement is monotonicity of cer-
tain quantities along the vhc curve. To illustrate, con-
sider the overhead crane example, and suppose we want
to make the trolley traverse to the end of the track. De-
signing a constraint meeting the conditions of DP1 is not
sufficient, because an increase in s does not guarantee
that the trolley moves along the track; it is possible that
increasing s could correspond to the trolley backtrack-
ing, or even a change in the swing angle without any
corresponding motion of the trolley at all. We formalize
this requirement by imposing that a function µ : Q → R
be monotonic along solutions of the vcg, without loss
of generality decreasing. In other words, we require that
the function s 7→ µ ◦ σ(s) be monotonically decreasing.
In the case of the crane, µ would be the function ex-
tracting the track position from the state q. Using the
fact that σ(s) is a solution of the vcg, and requiring the
derivative of µ◦σ(s) to be nonpositive, the monotonicity
requirement gives the inequality constraint

−dµσ(s)(f(σ(s)) + g(σ(s))u(s)) ≤ 0, (22)

which has the form of the general inequality constraint
in (21e).

Now we turn to the dynamic problems DP1 and DP2,
which in Section 5.2 were converted into two sets of con-
trol specifications of the vcg, spec 1 and spec 2, respec-
tively. These specifications are easily seen to amount to
inequality constraints of the form (21e). spec 2 for os-
cillations requires a constraint q = σ(s) with the prop-

erty that the function s 7→ Ψ̃1(σ(s)) is decreasing and

that Ψ̃1(σ(s
⋆)) = 0. We have already included the lat-

ter equality constraint in (21c). The remaining require-
ment can be expressed as an inequality constraint for
the derivative

(dΨ̃1)σ(s)(f(σ(s)) + g(σ(s))u(s)) + ε ≤ 0 , (23)

where ε > 0 is a small design parameter. The con-
straint (23) has once again the form (21e).

For meeting spec 1 for traversal, we take a similar ap-
proach. The first requirement of the control specification
is simply that Ψ̃1(σ(s)) > 0, which can be expressed as

−Ψ̃1(σ(s)) + ε ≤ 0, with ε > 0 a small design parame-
ter. The next requirement is to achieve the convergence
of

∫∞
0

Ψ̃1(σ(s)) ds. For this, we impose a differential in-
equality

d

ds
Ψ̃1(σ(s)) = d(Ψ̃1)σ(s)(f(σ(s)) + g(σ(s))u(s))

≤ β(s, Ψ̃1(σ(s))) ,
(24)

where β is any function such that the solutions of the dif-
ferential equation ẋ = β(t, x) converge to zero and have
finite L1 norm on [0,∞). The simplest such choice would
be ẋ = −x. This gives a constraint of the form (21e).
The final requirement of spec 1 is the divergence of∫ 0

−∞ Ψ̃1(σ(s)) ds, which can be achieved by an inequal-

ity bounding Ψ̃1(σ(s)) below by a positive constant for
s < 0.

7 Example 1: the overhead crane

We now return to the overhead crane example and for-
mulate an optimal control problem of the form (21) to
synthesize a vhc making the trolley move from any ini-
tial point x1 ∈ R to any final point x2 > x1 with
bounded speed, while keeping the cable angle θ con-
fined within the interval [−θmax, θmax]. This latter re-
quirement amounts to having a safe set S = {q ∈ Q :
|θ| ≤ θmax} which gives our first inequality constraint.
Next, we have the monotonicity requirement to make
the trolley traverse the track along the vhc curve. For
this, we set µ(q) = x and get the inequality constraint
in (22), which reduces to ml2u(s) ≥ 0, or equivalently
−u(s) ≤ 0. Finally, we have inequality constraints in or-
der to meet spec 1 for traversal. We will address the
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convergence inequality (24) first. For this system, Ψ̃1

computed using (19), is Ψ̃1(q) = (g/l) sin(θ) , and so we
have the inequality

g

l
cos(θ)(−1 +ml cos(θ)u) ≤ −g

l
sin(θ) ,

where we have used β(s, Ψ̃1(s)) = −Ψ̃1(s). This ensures

the convergence of
∫∞
0

Ψ̃1(σ(s)) ds. Both the divergence

of
∫ 0

−∞ Ψ̃1(s) ds and the strict positivity of Ψ̃1(σ(s)) are

enforced by the inequality Ψ̃1(σ(s)) ≥ ε/(1 + es) , for
some ε > 0.

Finally, we discuss the instantaneous cost. For this prob-
lem, so long as the swing angle of the payload remains
within the safe limits, and the desired dynamic be-
haviour is achieved by the constraint, any configuration
of the system is equally preferable. We are, however,
interested in achieving a fast motion along the track.
So, we select G(q) = −Ψ̃1(q), so that the constraints we
design induce the greatest possible cumulative accelera-
tion along the track, subject to our other requirements.
This leaves us with the optimal control problem

minimize

∫
R
−g

l
sin(σ2(s))∥σ′(s)∥ ds

subject to σ′(s) =

[
0

−1

]
+

[
ml2

ml cos(σ2(s))

]
u(s) ,

− u(s) ≤ 0 ,

|σ2(s)| ≤ θmax ,

− Ψ̃1(σ(s)) +
ε

1 + es
≤ 0 ,

g

l
cos(σ2(s))(−1 +ml cos(σ2(s))u(s))

+
g

l
sin(σ2(s)) ≤ 0 .

Figure 4 shows the constraint generated according to the
above requirements. We note some of the key features
of this constraint to provide some intuition on how it
meets these requirements. Starting on the left, we note
that the payload starts off with a negative swing an-
gle. Since the payload is unactuated, in order for the
controller to maintain this angle under the influence of
gravity, the trolley has to accelerate towards the right.
As we proceed along the constraint in this direction, the
swing angle of the payload begins to decrease, until it
hangs vertically at the right end of the constraint. Now
in order for the controller to maintain this vertical an-
gle, the trolley has to move at a constant (bounded)
speed, meeting our requirement for traversal. We note
that the constraint just designed is very simple, and the
intuitive considerations just outlined could have been
used to design this constraint without any of the math-
ematical formalism we have developed. This constraint,

however, shows that our procedure produces reasonable
constraints which would be expected to solve the desired
problem. In the following section we will design a more
complicated constraint, which would not be so easy to
design simply from intuition.

Now a final comment about the constraint designed
above. At the “end” of its motion along this constraint,
the trolley is moving at some constant speed, while the
payload hangs vertically. For practical applications, the
trolley must of course be brought to a stop. Achieving
this behaviour is the topic of a future paper.

8 Example 2: the cart-acrobot

Returning to the cart-acrobot example, we recall that
the objective is to make the robot perform a repetitive
back-and-forth motion underneath the obstacle. We will
model our obstacle as a circular obstruction at a height
h above the central x = 0 position of the track, with
radius r. The safe set is then given by two inequality
constraints, η1(q) ≤ 0 and η2(q) ≤ 0, with

−η1(q) = (x− l1 sin(θ1))
2 + (h− l1 cos(θ1))

2 − r2 ,

−η2(q) = (x− l1 sin(θ1)− l2 sin(θ1 + θ2))
2

+ (h− l1 cos(θ1)− l2 cos(θ1 + θ2))
2 − r2 .

Since we want the dynamic back-and-forth motion to
happen along the track, we impose a monotonicity con-
straint by setting µ(q) = x. In this case, the inequality
constraint (22) reduces to

−g1,1(σ(s))u1(s)− g2,1(σ(s))u2(s) ≤ 0 .

Next we turn to the dynamic requirements, which in this
case fit the formulation of DP2 because we want the cart
to perform a repetitive motion underneath the obstacle.
We want the oscillations of the constrained dynamics
to be centred around the x = 0 position. To this end,
we set the first component of σ(0) (the x-component)

to zero, and following spec 2 we require Ψ̃1(σ(0)) = 0.
Next, we impose the inequality constraint (23) (we omit
its expression since it is quite complicated).

Finally, for the instantaneous cost, we want to penalize
positions which are away from the upright position, so
we choose

G(q) = αθ21 + βθ22 .

Assembling all this together, we have the optimal control

12
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Fig. 4. The generated constraint for the overhead crane

problem

minimize
u∈U

∫
R

(
αθ21(s) + βθ22(s)

)
∥σ′(s)∥ ds

subject to σ′(s) = f(σ(s)) + g(σ(s))u(s),

σ1(0) = 0,

Ψ̃1(σ(0)) = 0,

− (x− l1 sin(σ2(s)))
2

− (h− l1 cos(σ3(s)))
2 + r2 ≤ 0 ,

− (x− l1 sin(σ2(s))− l2 sin(σ2(s) + σ3(s)))
2

− (h− l1 cos(σ2(s))− l2 cos(σ2(s) + σ3(s)))
2

+ r2 ≤ 0 ,

− g1,1(σ(s))u1(s)− g2,1(σ(s))u(s) ≤ 0 ,

d(Ψ̃1)σ(s)(f(σ(s)) + g(σ(s))u(s)) ≤ 0 .

We solve this problem numerically using direct colloca-
tion. The resulting constraint is shown in Figure 5. As
in the previous example, we can derive some insight into
this constraint with some simple examination. Starting
at the left, we can see that the cart-acrobot is nearly
upright, with the middle “elbow” joint pushed out to
the right. As a result of this, the centre-of-mass of the
system is displaced right of the base. To maintain this
position, the cart must accelerate to the right. As we ap-
proach the centre of the track and the obstacle, the ac-
robot takes on a more crouched pose to pass under the
obstacle, remaining as extended as possible to minimize
the cost, while not violating the obstacle avoidance con-
straint. Moving to the right, the top of the acrobot just
maintains contact with the edge of the obstacle set. At
the centre of the track, the centre-of-mass of the acrobot
is directly over the base, so that Ψ̃1 is zero. Once past the
obstacle, it continues to straighten up, passing through a
kinematic singularity so that the middle joint is pushed
out to the left, mirroring the pose at the left of the track,
and similarly displacing the centre-of-mass towards the
centre of the track. As on the left, the cart must accel-
erate towards the centre of the track to maintain this
pose, leading to the desired oscillatory behaviour.

A dynamic simulation of the cart-acrobot system was
conducted, with the constraint enforced using the con-
troller from [18]. Figure 6 shows the results of this sim-
ulation for the x and ẋ components. The system was
initialized off of the constraint. The controller quickly

drives the cart-acrobot to the constraint, and it subse-
quently adopts the oscillatory behaviour induced by the
constraint, stably oscillating around the x = 0 position.

9 Conclusions

We have proposed a synthesis via optimal control of reg-
ular vhcs meeting both geometric and dynamic speci-
fications. In contrast to most existing methods, our ap-
proach does not rely on the use of Bézier polynomials,
or the explicit use of the full robot dynamics to design
a constraint achieving a motion objective. Most impor-
tantly, built into the proposed approach is the property
that the vhc curves it produces are regular.

The focus of this paper is the synthesis of regular vhcs
satisfying certain properties. Once avhc has been found,
one can either enforce it using input-output lineariza-
tion as in [18], or simply stabilize one of the orbits on
the constraint manifold using transverse linearization as
in [29].

The approach we have presented has many open avenues
for future work. For example, the application of more ad-
vanced motion planning techniques would allow for the
design of constraints for systems with complex obstacle
sets. How to exploit the techniques described here to de-
sign families of constraints for achieving more complex
motion control tasks, and how to best integrate tech-
niques to stabilize particular orbits of a constraint, are
also important questions to explore.

A Proofs of Propositions 3 and 4

Proof of Proposition 3. First, we show that if (11) is a
vcg, then for all smooth functions α : Q → R\{0},K1 :
Q → Rm andK2 : Q → GL(n−1;R), system (15) is also

a vcg. Equivalently, letting f̃(q) = α(q)f(q)+g(q)K1(q)
and g̃(q) = g(q)K2(q), we need to show that properties
(i) and (ii) presented below Definition 1 hold. Property
(i) holds because

[
f̃ g̃

]
=

[
f g

] [ α 01×(n−1)

K1 K2

]
,

13
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Fig. 5. The generated constraint for the cart-acrobot
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Fig. 6. The x and ẋ components of a dynamic simulation
of the cart-acrobot with a controller enforcing the designed
constraint are shown in blue. The cart-acrobot is initialized
off the constraint, and the controller drives the system to a
stable oscillation around the x = 0 position. In orange are
shown the constrained dynamics of the constraint.

and the matrix
[
f g

]
is invertible by the assumption

that (11) is a vcg, while the second matrix on the right-
hand side of the above identity is invertible because α ̸=
0 and K2 is invertible. As for property (ii), we have that

Im(g̃) = Im(gK2) = Im(g) = ∆,

where the second identity follows from the invertibil-
ity of K2, while the third identity follows from the fact
that (11) is a vcg.

Next, we show that if

dq

ds
= f̃(q) + g̃(q)v (A.1)

is a vcg for system (2), then there exist smooth func-
tions α : Q → R \ {0}, K1 : Q → Rm and K2 : Q →
GL(n − 1;R) such that f̃ = αf + gK1 and g̃ = gK2.
Since both (11) and (A.1) are vcgs, for each q ∈ Q the

matrices
[
f(q) g(q)

]
and

[
f̃(q) g̃(q)

]
are invertible, and

thus the matrix

M(q) =
[
f(q) g(q)

]−1 [
f̃(q) g̃(q)

]
is also invertible. Partitioning M(q) as follows

M(q) =

M11(q) M12(q)

M21(q) M22(q)

 ,

with dim(M11(q)) = 1 and dim(M22(q)) = (n−1)×(n−
1), we use the fact that (11) and (A.1) are vcgs to deduce
that Im(g(q)) = Im(g̃(q)), which implies that M12(q) ≡
0. Now letting α(q) = M11(q), K1(q) = M21(q), and
K2(q) = M22(q), we have shown that

[
f̃ g̃

]
=

[
f g

]
M =

[
f g

] [ α 01×(n−1)

K1 K2

]
,

and thus f̃ = αf + gK1 and g̃ = gK2, as required.

Proof of Proposition 4. By Proposition 3, system (16)
is a vcg. Let σ(s) be a solution of the vcg (11) with
input signal u = ū(s) such that the curve q = σ(s) is
a closed embedded submanifold of Q. By Theorem 2,
q = σ(s) is a parametric vhc. For a reparametrization
σ̃(s̃) = σ(µ(s̃)), we have

dσ̃

ds̃
= µ′(s̃)f(σ̃(s̃)) + g(σ̃(s̃))ū(µ(s̃))µ′(s̃). (A.2)

Since the set Im(σ) is a closed embedded submanifold of
Q, by [17, Lemma 5.34], there exists a smooth function
α : Q → R such that α(σ(s̃)) = µ′(s̃). By definition
of reparametrization, |µ′| > ε > 0 and so

∣∣α|σ(R)∣∣ >
ε > 0. There is no loss of generality in assuming that
α ̸= 0 on Q, for if it is not, one can use partitions of
unity to modify α outside of σ(R) and guarantee that the
resulting function is nonvanishing. With this choice of
function α, from (A.2) we deduce that σ̃(s̃) is a solution
of (16) with virtual control signal u = ū(µ(s̃))µ′(s̃), as
claimed.
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Next, for each smooth function α : Q → R \ {0}, each
solution σ̃(s̃) of (16) satisfies

σ̃′(s̃) = α(σ̃(s̃))f(σ̃(s̃)) + g(σ̃(s̃))ũ(s̃) , (A.3)

for some smooth signal ũ : R → Rn−1. Since (16) is avcg
and since q = σ(s) is a parametric vhc, by Theorem 2,
there exists a function µ such that σ(µ(s̃)) is a solution
of (16), and thus using (A.3) we have

σ′(µ(s̃))µ′(s̃) = α(σ(µ(s̃)))f(σ(µ(s̃)))+g(σ(µ(s̃)))ũ(s̃) ,

for some smooth signal ũ : R → Rn−1. Since σ is a
solution of (11), we can expand the term on the left-hand
side to get

[f(σ(µ(s̃))) + g(σ(µ(s̃)))ū(µ(s̃))]µ′(s̃)

= α(σ(µ(s̃)))f(σ(µ(s̃))) + g(σ(µ(s̃)))ũ(s̃) .

Letting ũ(s̃) = α(σ(µ(s̃)))ū(µ(s̃)), the right-hand side
becomes after factoring

α(σ(µ(s̃))) [f(σ(µ(s̃))) + g(σ(µ(s̃))ū(µ(s̃))] .

Since the bracketed terms are identical, we conclude
µ′(s̃) = α(σ(µ(s̃))), so that µ(s̃) is the unique solution to
the differential equation x′ = α(σ(x)) with initial con-
dition x(0) = µ(0), as claimed.

References

[1] J.E. Bobrow, S. Dubowsky, and J.S. Gibson. Time-Optimal
Control of Robotic Manipulators Along Specified Paths.
The International Journal of Robotics Research, 4(3):3–17,
September 1985.

[2] Francesco Bullo and Kevin M. Lynch. Kinematic
controllability for decoupled trajectory planning in
underactuated mechanical systems. IEEE Transactions on
Robotics and Automation, 17(4):402–412, August 2001.

[3] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R.
Westervelt, C. Canudas-de Wit, and J. W. Grizzle. Rabbit: A
testbed for advanced control theory. IEEE Control Systems
Magazine, 23(5):57–79.

[4] Christine Chevallereau, J. W. Grizzle, and Ching-Long Shih.
Asymptotically Stable Walking of a Five-Link Underactuated
3-D Bipedal Robot. IEEE Transactions on Robotics,
25(1):37–50, February 2009.

[5] L. Consolini, A. Costalunga, and M. Maggiore. A coordinate-
free theory of virtual holonomic constraints. Journal of
Geometric Mechanics, 10(4):467–502, 2018.

[6] L. Consolini and M. Maggiore. Virtual holonomic constraints
for Euler-Lagrange systems. In Symposium on Nonlinear
Control Systems (NOLCOS), Bologna, Italy, September
2010.

[7] Luca Consolini, Manfredi Maggiore, Christopher Nielsen, and
Mario Tosques. Path following for the PVTOL aircraft.
Automatica, 46(8):1284–1296, August 2010.

[8] X. Da, R. Hartley, and J. W. Grizzle. Supervised learning
for stabilizing underactuated bipedal robot locomotion,
with outdoor experiments on the wave field. In 2017
IEEE International Conference on Robotics and Automation
(ICRA), pages 3476–3483, May 2017.

[9] Xingye Da and Jessy Grizzle. Combining trajectory
optimization, supervised machine learning, and model
structure for mitigating the curse of dimensionality in the
control of bipedal robots. The International Journal of
Robotics Research, 38(9):1063–1097, August 2019.

[10] Jessy W. Grizzle, Gabriel Abba, and Franck Plestan.
Asymptotically stable walking for biped robots: Analysis
via systems with impulse effects. IEEE Transactions on
Automatic Control, 46(1):51–64, 2001.

[11] J.W. Grizzle, Christine Chevallereau, and Ching-Long Shih.
HZD-based control of a five-link underactuated 3D bipedal
robot. In 2008 47th IEEE Conference on Decision and
Control, pages 5206–5213, December 2008.

[12] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D.
Ames. 3D dynamic walking with underactuated humanoid
robots: A direct collocation framework for optimizing hybrid
zero dynamics. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 1447–1454, May
2016.

[13] A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames.
Dynamic Humanoid Locomotion: A Scalable Formulation for
HZD Gait Optimization. IEEE Transactions on Robotics,
34(2):370–387, April 2018.

[14] A. Hereid, S. Kolathaya, and A. D. Ames. Online optimal
gait generation for bipedal walking robots using legendre
pseudospectral optimization. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 6173–6179, December
2016.

[15] John M. Hollerbach. Dynamic Scaling of Manipulator
Trajectories. In 1983 American Control Conference, pages
752–756, June 1983.

[16] Steven M. LaValle and James J. Kuffner. Randomized
Kinodynamic Planning. The International Journal of
Robotics Research, 20(5):378–400, May 2001.

[17] J.M. Lee. Introduction to Smooth Manifolds. Springer, second
edition, 2013.

[18] M. Maggiore and L. Consolini. Virtual holonomic constraints
for Euler-Lagrange systems. IEEE Transaction on Automatic
Control, 58(4):1001–1008, 2013.

[19] A. Mohammadi, M. Maggiore, and L. Consolini. On the
Lagrangian structure of reduced dynamics under virtual
holonomic constraints. ESAIM: Control, Optimisation and
Calculus of Variations, 23(3):913–935, 2017.

[20] A. Mohammadi, M. Maggiore, and L. Consolini. Dynamic
virtual holonomic constraints for stabilization of closed orbits
in underactuated mechanical systems. Automatica, 94:112–
124, 2018.

[21] A. Mohammadi, E. Rezapour, M. Maggiore, and K. Y.
Pettersen. Maneuvering Control of Planar Snake Robots
Using Virtual Holonomic Constraints. IEEE Transactions
on Control Systems Technology, 24(3):884–899, May 2016.

[22] Rein Otsason and Manfredi Maggiore. On the Generation of
Virtual Holonomic Constraints for Mechanical Systems with
Underactuation Degree One. In 58th IEEE Conference on
Decision and Control, 2019.

[23] Rein Dylan Otsason. Virtual Constraint Generation. Thesis,
University of Toronto, Toronto, Canada, June 2020.

15



[24] F. Pfeiffer and R. Johanni. A concept for manipulator
trajectory planning. IEEE Journal on Robotics and
Automation, 3(2):115–123, April 1987.

[25] Kang Shin and N. McKay. Minimum-time control of
robotic manipulators with geometric path constraints. IEEE
Transactions on Automatic Control, 30(6):531–541, June
1985.

[26] A. Shiriaev, A. Robertsson, J. Perram, and A. Sandberg.
Periodic motion planning for virtually constrained
Euler–Lagrange systems. Systems & Control Letters,
55(11):900–907, November 2006.

[27] A. S. Shiriaev, L. B. Freidovich, A. Robertsson, R. Johansson,
and A. Sandberg. Virtual-Holonomic-Constraints-Based
Design of Stable Oscillations of Furuta Pendulum: Theory
and Experiments. IEEE Transactions on Robotics,
23(4):827–832, August 2007.

[28] Anton S Shiriaev, Leonid B Freidovich, and Sergei V Gusev.
Transverse linearization for controlled mechanical systems
with several passive degrees of freedom. IEEE Transactions
on Automatic Control, 55(4):893–906, 2010.

[29] A.S. Shiriaev, J.W. Perram, and C. Canudas-de-Wit.
Constructive tool for orbital stabilization of underactuated
nonlinear systems: Virtual constraints approach. IEEE
Trans. Automat. Contr., 50(8):1164–1176, August 2005.

[30] E. R.Westervelt, J. W. Grizzle, and D. E. Koditschek. Hybrid
zero dynamics of planar biped walkers. IEEE Transactions
on Automatic Control, 48(1):42–56, January 2003.

[31] E.R. Westervelt, C. Chevallereau, J.H. Choi, B. Morris, and
J.W. Grizzle. Feedback control of dynamic bipedal robot
locomotion. CRC press, 2007.

[32] E.R. Westervelt, J.W. Grizzle, and D.E. Koditschek. Hybrid
zero dynamics of planar biped robots. IEEE Transactions
on Automatic Control, 48(1):42–56, 2003.

16


