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Abstract—This paper investigates a formation control problem
in which a group of kinematic unicycles is made to converge to
a desired formation with parallel heading angles and come to
a stop. A control law is presented which solves this problem
for almost all initial conditions in any given compact set. The
proposed control law is local and distributed, meaning that
each unicycle is only required to sense its relative displacement
measured in its own body frame, and the relative heading angle
with respect to each of its neighbours. No communication between
the unicycles is required. The sensing graph is assumed to be
connected, undirected and time-invariant. The idea used to solve
the above formation control problem is to rigidly attach to
the body frame of each unicycle an appropriate fixed offset
vector. Stabilizing the desired formation amounts to achieving
consensus of the endpoints of the offset vectors, and simulta-
neously synchronizing the unicycles’ heading angles. A control
law achieving this goal is constructed by combining a bounded
translational consensus controller with an attitude synchronizer.
As a special case, the proposed solution solves the full unicycle
synchronization problem, in which the unicycle positions are
made to converge to each other, while the unicycle headings are
made to align.

I. INTRODUCTION

This paper investigates a formation control problem for

kinematic unicycles. For almost all initial conditions in any

given compact set, the objective is to drive the unicycles to a

parallel formation, i.e., one in which the unicycles’ headings

are all parallel, and their relative displacement vectors take

on appropriate values corresponding to a desired geometric

pattern. Moreover, it is required that the unicycles come

to a stop when they meet the formation requirement. The

asymptotic roto-translation of the formation with respect to a
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Note on Previous Publication. A preliminary version of this work has
appeared in the conference paper [1]. With respect to the preliminary version,
we present, in this submission, a significant amount of new material. Firstly,
the control problem in [1] studied formation control for the special class of line

formations and the unicycle heading angles were assumed to start in a common
half circle. In this paper, the result is extended to general formations where
the fixed, relative spacing between unicycles can be chosen arbitrarily and the
stability result is almost semiglobal. Secondly, compared to [1], this paper
provides a more detailed discussion of the control solution in Section IV-D
and of the simulation results in Section V. Finally, the proof presented in this
paper is complete whereas in [1], some details were excluded due to space
limitations. Naturally, there are strong similarities in the overlapping material
between the two papers, and the wording in parts of the introduction, the
notation, the unicycle modelling, and parts of the proof closely resembles, or
is at times identical to, analogous wording in the conference paper [1].

fixed frame depends on the initial conditions of the unicycles.

The utility of static formations is manifest in problems

where vehicles are required to distribute themselves over a

terrain in order, for instance, to form an antenna array or a

sensor network. More generally, the problem investigated in

this paper is a conceptual gateway to the problem of inducing

collective motions in formations.

A key requirement of the problem investigated is that the

unicycles can only sense their relative heading angles and

relative positions with respect to their neighbours in the sensor

graph, which is assumed to be undirected and connected.

Moreover, the unicycles cannot communicate with each other.

A feedback meeting these sensing requirements is called local

and distributed, and from a practical standpoint it has the

beneficial property that it can be implemented on each unicycle

using information deduced from a fixed on-board camera.

As we shall see in a moment, the problem investigated in

this paper, although basic, is essentially open, the sensing

restriction being the key challenge.

Previous work: The majority of the literature on formation

control focuses on single and double-integrator robot models.

A dominant approach for single-integrator formation control

is distance-based [2], [3], [4], where it is required that the

distances between robots take on desired values. Often in

this setting, the feedbacks are deduced from the gradient of

a potential function whose minimum specifies the desired

formation modulo roto-translation. This approach requires the

sensing graph to be infinitesimally rigid. Other approaches

define formations in terms of relative angles between neigh-

bouring robots, instead of distances, [5], [6], or in terms

of a complex Laplacian, [7], [8], [9]. In this latter case,

formations are defined modulo scaling and roto-translations.

Finally, formation flocking of double-integrators is considered

in [10], where the authors stabilize a formation and make

sure that all robots in the formation achieve a common final

velocity. See also [11].

A formation controller for single integrator robots can

be turned into a controller for kinematic unicycles if one

considers a point at a positive distance d in front of each

unicycle. These points behave like single integrators under an

appropriate choice of feedback, and can be driven to a desired

formation using the techniques above. However, although the

points converge to a formation, the unicycles themselves do

not. Choosing a small value of d reduces this error, but requires

large control inputs.

The most relevant literature to the work in this paper

concerns kinematic unicycles. The papers [12], [13] show that

Published in IEEE Transactions on Control Automatic Control, vol. 64, no. 12, pp. 4998–5011, 2019



2

the only possible relative equilibria for unicycles with local

and distributed control laws correspond to either parallel or

circular motions. In [14], the problem of full synchronization

is considered in which both positions and attitudes of the

unicycles are synchronized using a discontinuous distributed

control. The communication graph is allowed to be time-

dependent and assumed to be initially connected. In [15], a

discontinuous controller is presented that stabilizes formations

with synchronized heading directions, but unicycles require a

common sense of direction. In [16], the authors discuss feasi-

bility conditions to achieve various formations of kinematic

unicycles. Time-dependent solutions are presented in each

case. For general geometric patterns, unicycles require a com-

mon sense of direction. Similarly, the solution in [17] is time

dependent and requires measurement of a common direction

in addition to the velocity input of a neighbouring unicycle,

which can only be obtained if the unicycles communicate

with each other. The special case of full synchronization can,

however, be achieved without a common sense of direction.

In [18], the authors present a local and distributed solution

for formation control using a leader-follower approach with

a hierarchical graph structure. In [19], a group of robots is

considered in which at least one follower robot can see a

leader that follows a desired path. The feedback law presented

in the paper attains the desired formation about the leader

in finite time. However, the formation is not invariant under

rotations, and the control law is not local and distributed.

In [20], a leader-follower approach is considered. The analysis

transforms the unicycle model into a system of double inte-

grators through dynamic feedback linearization. The desired

formation is attained for graphs containing a spanning tree,

but each follower robot requires access to the acceleration

of the leader through communication. In [21], each unicycle

estimates its own position using dynamic extension, requiring

communication among unicycles. The unicycles use these

estimated states to attain the desired formation globally. The

rotational control is time-dependent and oscillatory. Finally,

the work in [22] presents a local and distributed control

law making kinematic and dynamic unicycles converge to a

common circle with arbitrary desired ordering and spacing on

the circle.

Contributions of this paper: To the best of our knowledge,

the problem of stabilizing static parallel formations by means

of smooth, local and distributed feedbacks is to date open.

This paper presents an almost semiglobal solution to this

problem, i.e., a solution making the unicycles achieve the

desired objective for almost all initial conditions in any given

compact subset of their collective state space. This solution is

presented in Theorem 2.

The idea we employ to solve the formation control problem

is to attach to the body frame of each unicycle a fixed

offset vector in such a way that the problem of stabilizing

a parallel formation turns into that of achieving consensus

of the end points of the offset vectors, while simultaneously

synchronizing the heading angles. Accordingly, we combine a

uniformly bounded, globally convergent consensus controller

for kinematic integrators with an almost global consensus

controller for kinematic integrators on the n-torus. This latter

controller, a crucial component of our development, was

recently developed by Mallada-Freeman-Tang in [23].

A special case of the setup investigated in this paper is when

the formation is a point, in which case our solution achieves

full synchronization of the unicycles, a problem of note in its

own right. In this special case, our solution is to be compared

to the one in [14], which relies on discontinuous control, but

considers a more general class of sensor graphs than ours.

The results presented in this paper are an enhancement of

preliminary work we presented in the conference paper [1].

In [1], formations were limited to lie on a line, and it was

assumed that the unicycle headings would be initialized in a

common half-plane. In this paper, we extend the ideas in [1]

to general parallel formations and the final result is almost

semiglobal.

Organization of the paper: In Section II, we review basic

notions of set stability. In Section III, we formulate the for-

mation control problem. The solution to the formation control

problem is presented in Section IV. The main theorem of the

paper is Theorem 2, whose proof is presented in Section VI.

In Section V, we test the proposed feedbacks via numerical

simulation. Finally, in Section VII, we end the paper with some

concluding remarks.

Notation: Throughout the paper, we identify column vectors

v = [v1 · · · vn]⊤ in R
n with n-tuples (v1, . . . , vn) in (R)n.

If v, w are vectors in R
2, we denote by v · w := v⊤w their

Euclidean inner product. We denote by {e1, e2} the natural

basis of R2, by 1 the vector of ones in R
n, by SO(2) the set

SO(2) := {M ∈ R
2×2 : M−1 = M⊤, det(M) = 1}, and

by S
1 the unit circle, which we identify with the set of real

numbers modulo 2π. By S
n we denote the n-dimensional unit

sphere, and by T
n the n-torus T

n := S
1 × · · · × S

1 (n times).

We denote n := {1, . . . , n} and k :n := {k, . . . , n}.

If (X , g) is a complete Riemannian manifold, d : X ×X →
[0,∞) is the associated Riemannian distance function on X ,

and Γ ⊂ X is a closed subset of X , then we denote by ‖χ‖Γ :=
infψ∈Γ d(χ, ψ) the point-to-set distance of χ ∈ X to Γ. If

ε > 0, we let Bε(Γ) := {χ ∈ X : ‖χ‖Γ < ε} and by N (Γ)
we denote a neighborhood of Γ in X . If I = {i1, . . . , in}
is an index set, the ordered list of elements (xi1 , . . . , xin) is

denoted by (xj)j∈I .

II. PRELIMINARIES

We begin by reviewing the notion of asymptotic stability of

a closed set. Consider a forward complete smooth dynamical

system Σ : χ̇ = f(χ) with state space a Riemannian manifold

X , and let φ(t, χ0) denote the local phase flow on X generated

by Σ. Let Γ ⊂ X be a closed set that is positively invariant for

Σ, i.e., such that, for all χ0 ∈ Γ and all t > 0, φ(t, χ0) ∈ Γ.

Definition 1. The set Γ is stable for Σ if for any ε > 0,

there exists a neighborhood N (Γ) ⊂ X such that, for all

χ0 ∈ N (Γ), φ(t, χ0) ∈ Bε(Γ), for all t > 0 for which φ(t, χ0)
is defined. The domain of attraction of Γ for system Σ is the

set D(Γ) := {χ0 ∈ X : limt→∞ ‖φ(t, χ0)‖Γ = 0}. The set Γ
is attractive for Σ if D(Γ) is a neighborhood of Γ. The set Γ
is globally attractive for Σ if D(Γ) = X . The set Γ is locally
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asymptotically stable (LAS) for Σ if Γ is stable and attractive.

The set Γ is globally asymptotically stable for Σ if Γ is stable

and globally attractive. △

Next we present two variants of the notion of asymptotic

stability of a closed set Γ: almost global and almost semiglobal

asymptotic stability.

Definition 2. The set Γ is almost globally asymptotically

stable for Σ if Γ is asymptotically stable for Σ, and X\D(Γ)
has Lebesgue measure zero. △

Now consider a dynamical system Σ(k) : χ̇ = f(χ, k)
with state space a Riemannian manifold X , where k ∈ R

is a parameter (typically, a control gain), and f is a smooth

vector field on X . In what follows, Dk(Γ) denotes the domain

of attraction of a closed set Γ for system Σ(k)

Definition 3. The set Γ is semiglobally asymptotically stable

with high-gain parameter k for Σ(k) if for each compact set

K satisfying Γ ⊂ K ⊂ X , there exists k⋆ > 0 such that for all

k > k⋆, Γ is asymptotically stable for Σ(k) and K ⊂ Dk(Γ).
△

Definition 4. The set Γ is almost semiglobally asymptotically

stable with high-gain parameter k for Σ(k) if there exists a

set N ⊂ X\Γ of Lebesgue measure zero such that for each

compact subset K satisfying Γ ⊂ K ⊂ (X\N), there exists

k⋆ > 0 such that for all k > k⋆, Γ is asymptotically stable

for Σ(k) and K ⊂ Dk(Γ). △

The difference between global asymptotic stability and

semiglobal asymptotic stability of a closed set Γ is that with

the former, solutions converge to the set Γ from all initial

conditions, while with the latter, the domain of attraction can

be made arbitrarily large within the state-space with increasing

choice of the control gain k. The difference between almost

global asymptotic stability and almost semiglobal asymptotic

stability is that with the former, solutions converge to the set

Γ with domain of attraction D(Γ) of full measure, while with

the latter, the domain of attraction approaches full measure

with increasing control gain k.

III. FORMATION CONTROL PROBLEM

We begin by modelling a group of n kinematic unicycles.

We fix an orthogonal frame I = {ix, iy} in R
2, and attach to

unicycle i an orthogonal body frame Bi = {bix, biy} in such a

way that bix is the heading axis of the unicycle. We pick the

frames so that their y-axes result from the counterclockwise

rotation of their x-axes by angle π/2. We denote by xi ∈ R
2

the position of unicycle i in the coordinates of frame I. The

unicycle’s attitude is represented by a rotation matrix Ri whose

columns are the coordinate representations of bix and biy in

frame I. Letting θi ∈ S
1 be the angle between vectors ix and

bix, we have

Ri =

[

cos θi − sin θi
sin θi cos θi

]

.

With these conventions, the model of unicycle i is

ẋi = uiRie1 (1)

θ̇i = ωi, i ∈ n, (2)

where the pair (ui, ωi), the linear and angular speeds of

unicycle i, is the control input. We let x := (xi)i∈n and

θ := (θi)i∈n.

The relative displacement of robot j with respect to robot

i is xij := xj − xi while the relative angles are given by

θij = θj − θi. The rotation of robot j with respect to frame i
is defined by Rij := (Ri)

−1Rj , and it is a function of θij . If

v ∈ R
2 is the coordinate representation of a vector in frame I,

then we denote by vi := R−1
i v the coordinate representation

of v in body frame Bi.

We define the undirected sensor graph G = (V, E), where

each node in the node set V represents a robot, and an edge

in the edge set E between node i and node j indicates that

robot i can sense robot j and vice versa. We assume that G
has no self-loops and is time-invariant. Given a node i, its set

of neighbours Ni represents the set of vehicles that robot i can

sense. If j ∈ Ni, then we say that robot j is a neighbour of

robot i. If this is the case, then robot i can sense the relative

displacement of robot j in its own body frame, i.e., the quantity

xiij , as well as the relative heading angle θij between unicycles

i and j.

We now define the notion of local and distributed feed-

back. Define vectors yi := (xij)j∈Ni
, yii := (xiij)j∈Ni

,

and ϕi := (θij)j∈Ni
. The relative displacements and angles

available to robot i are contained in the vector (yii , ϕi). A

local and distributed feedback for robot i is a locally Lipschitz

function (yii , ϕi) 7→ (ui, ωi). Relative positions and angles can

be practically measured using cameras fixed on-board each

robot. In particular, robot i can use its camera to observe tags

(e.g., AprilTags) attached to the body frames of its neighbors

to accurately compute, using detection software, its relative

position and orientation.

The objective of the formation control problem considered

in this paper is to design local and distributed feedbacks to

drive a group of unicycles, each modelled by (1), (2), to a

desired formation. A formation is a geometric pattern defined

modulo roto-translation by means of desired inter-agent dis-

placements. In this paper we consider parallel formations, i.e.,

formations in which the unicycles’ headings are parallel to

each other: θij = 0 for all i, j ∈ n.

To precisely define a parallel formation, we draw the

unicycles in formation with parallel headings, as in Figure 1,

and label the unicycles {1, . . . , n}. The roto-translation of

the formation in the drawing is irrelevant. The labelling of

the unicycles is done solely for the purpose of defining the

formation, and does not imply any attribution of priority to

the unicycles. We let x̄i denote the position of unicycle i in

the drawing, and d11i ∈ R
2 denote the displacement of unicycle

i relative to unicycle 1, measured in the frame of unicycle 1:

d11i := R−1
1 (x̄i − x̄1). The labelling of unicycles is chosen

such that unicycle 1 is at the front of the formation, i.e., it is

such that d11i · e1 ≤ 0 for all i ∈ 2 :n.

We collect the above relative displacements in a vector

d := (d11i)i∈2 :n. We will say that the vector d is a parallel

formation, and the set

F := {d = (d11i)i∈2 :n ∈ R
2(n−1) : d11i · e1 ≤ 0, i ∈ 2 :n}
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Fig. 1: Parallel formation represented in terms of fixed relative

displacement vectors d11i, i ∈ 2 :n represented in frame B1.

represents the set of all parallel formations of n unicycles. A

formation specification d ∈ F specifies a formation modulo

roto-translation because it is defined in terms of relative

displacements d11i expressed in the coordinates of frame B1.

For a given parallel formation d ∈ F, we define the

formation manifold Γ(d) as,

Γ(d) :=
{

(xi, θi)i∈n ∈ R
2n × T

n :

x1i = R1d
1
1i, θ1i = 0, i ∈ 2 :n

}

.
(3)

The formation manifold Γ(d) is the subset of the unicycles’

collective state space on which the unicycles have parallel

headings, and their relative displacements meet the formation

specification. Now the problem investigated in this paper.

Formation Control Problem: Consider the collection of n
unicycles in (1)-(2), and an undirected, connected sensor graph

G. For any parallel formation d ∈ F, find local and distributed

feedbacks (u⋆i , ω
⋆
i ) : (y

i
i , ϕi) 7→ (ui, ωi) rendering the forma-

tion manifold Γ(d) almost semiglobally asymptotically stable

and such that (u⋆i , ω
⋆
i )|Γ(d) = (0, 0). △

The requirement (u⋆i , ω
⋆
i )|Γ(d) = (0, 0) means that the

unicycles do not move when they are in formation.

IV. SOLUTION OF THE FORMATION CONTROL PROBLEM

In this section we present a class of feedbacks solving

the formation control problem stated above. Our solution

combines uniformly bounded consensus controllers for single-

integrators with Kuramoto-like consensus controllers on T
n

developed recently by Mallada-Freeman-Tang in [23]. In Sec-

tion IV-A, we define a uniformly bounded consensus controller

for single-integrators. In Section IV-B, we review the rotation

control law by Mallada-Freeman-Tang in [23]. Finally, in

Section IV-C, we combine these two controllers to design the

unicycle control inputs ui and ωi.

A. Single Integrator Consensus

Consider n single integrators on R
2,

żi = vi, i ∈ n, (4)

where zi ∈ R
2 and sensor graph as in Section III. A feedback

vi = fi((zij)j∈Ni
) :=

∑

j∈Ni

aij
f(‖zij‖)

‖zij‖
zij , (5)

where zij := zj − zi, is a bounded integrator consensus

controller if aij = aji > 0 and f : R → R, the interaction

function, is a locally Lipschitz function satisfying:

A1: sf(s) > 0 for all s 6= 0, f(0) = 0, and there exist

c1, c2 > 0 such that |f(s)| > c1 for all |s| > c2.

A2: sup |f(s)| <∞.

Each element (zij/‖zij‖)f(‖zij‖) of the sum in (5) is con-

tinuous at zij = 0 because f(s) is a continuous function and

f(0) = 0 by assumption A1. We will omit the easy proof of

the fact that each fi((zij)j∈Ni
) is Lipschitz continuous.

Examples of suitable interaction functions are f(s) =
tanh(s) and

f(s) =

{

s, if |s| ≤ 1

s/|s| if |s| > 1.
(6)

In the latter case, feedback (5) reduces to

fi((zij)j∈Ni
) =

{

zij , if ‖zij‖ ≤ 1

zij/‖zij‖, if ‖zij‖ > 1.
(7)

As we shall see in Section VI-A, feedback (5) globally

asymptotically stabilizes the consensus subspace {z ∈ R
2n :

zi = zj , ∀i, j ∈ n} for any connected, undirected sensor

graph G. We do not claim originality of this result.

B. Attitude Synchronization

Now consider a collection of rotational integrators

ψ̇i = wi, i ∈ n, (8)

where ψi ∈ S
1. A feedback

wi = gi((ψij)j∈Ni
, η) := ηi

∑

j∈Ni

bijg(ψij), (9)

where ψij := ψj − ψi is an attitude synchronizer if ηi > 0,

bij = bji > 0, and g : S
1 → R is a continuously dif-

ferentiable interaction function satisfying the following three

assumptions [23]:

B1: sg(s) > 0 for all s ∈ (−π, π)\0, g(0) = g(π) = 0.

B2: g(s) is an odd function: g(−s) = −g(s) for s ∈ (−π, π).
B3: ġ(s) > 0, ∀s ∈ (− π

n−1 ,
π
n−1 ) and ġ(s) < 0, ∀s ∈

(−π,− π
n−1 ) ∪ ( π

n−1 , π).

A sample interaction function satisfying B1-B3 is shown in

Figure 2.

Fig. 2: Illustration of properties B1, B2 and B3.

The well-known Kuramoto model for attitude synchro-

nization of angles in S
1 with zero natural frequencies [24]

corresponds to the choice ηi = 1 and g(s) = sin(s), and

it satisfies properties B1-B2, but does not satisfy property

B3. In [23], Mallada-Freeman-Tang showed that a feedback
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enjoying properties B1-B3 almost globally stabilizes the set

{ψ ∈ T
n : ψi = ψj , ∀i, j ∈ n} for almost all gains

bij = bji > 0. The following result is a special case of

Theorem 2 in [23].

Theorem 1 ([23]). Consider system (8) with feedback (9)

satisfying assumptions B1-B3, and assume that the sensor

graph G is undirected and connected. There exists a set

Nb ⊂ (R>0)
|E| of Lebesgue measure zero such that for any

collection of gains (bij)(i,j)∈E ∈ (R>0)
|E|\Nb, and for any

ηi > 0, i ∈ n, the set {ψ ∈ T
n : ψi = ψj , ∀i, j ∈ n} is

almost globally asymptotically stable.

The above result follows from Theorem 2 in [23]. In

particular, system (8) with feedback (9) satisfies the model

in equations (14)-(16) in [23] by letting χi(s) = ηis, letting

ζ be the identity function, and eliminating the integrator state

γi.
The main difference here compared to the solution in [23,

Theorem 2] is that, in [23], each system has an additional

constant bias. The integrator state γi is used in [23] to

compensate for this bias. In this paper, system (8) has zero

bias, so the integrator state γi is not needed. Accounting for

this small difference, the proof of Theorem 1 follows from

minimal modifications to the proof of [23, Theorem 2].

C. Solution to the Formation Control Problem

In this section we present a solution to the formation

control problem. Let ᾱ > 0 be a design parameter, and

d = (d1i1)i∈{2,...n} ∈ F be a desired parallel formation. Define

α1 := ᾱ, β1 := 0,

αi := −d11i · e1 + ᾱ, βi := −d11i · e2, i ∈ 2 :n.
(10)

Referring to Figure 3, attach the offset vector δi := αiRie1 +
βiRie2 to the body frame of unicycle i, and let x̂i := xi + δi
be the endpoint of the offset vector in the coordinates of frame

I. Define further

x̂ij := x̂j − x̂i,

ŷi := (x̂ij)j∈Ni
, ŷki := (x̂kij)j∈Ni

.

Fig. 3: Representation of the offset vector δi.

We now show that the formation control problem reduces to

synchronizing the unicycles’ heading angles and the endpoints

x̂i. To this end, suppose that θij = 0 and x̂ij = 0 for all

i, j ∈ n. Then,

0 = x̂i1i = [(xi + δi)− (x1 + δ1)]
i

= xi1i + (δi − δ1)
i

= xi1i − d11i = x11i − d11i.

The last identity follows from the fact that Ri = R1. We

conclude that θij = 0 and x̂ij = 0 for all i, j ∈ n implies

x11i = d11i, so that the unicycles satisfy the parallel formation

requirement. Vice versa, it is clear that if the unicycles form

a parallel formation, then θij = 0 and x̂ij = 0 for all i, j ∈ n.

We have thus shown that the formation control problem

amounts to the simultaneous synchronization of the headings

θi and the endpoints x̂i. We now present feedbacks that do just

that. Let fi(·) be a bounded integrator consensus controller as

in (5), and gi(·) be an attitude synchronizer as in (9). The

feedbacks for unicycle i are defined as follows,

u⋆i (y
i
i , ϕi) = fi(ŷ

i
i) · e1 + βiωi,

ω⋆i (y
i
i , ϕi) =

1

αi

(

fi(ŷ
i
i) · e2 + kgi(ϕi, η)

)

, i ∈ n,
(11)

where k > 0 is a high-gain parameter, and η = (η1, . . . , ηn),
ηi := 1/αi. Now the main result of this paper.

Theorem 2 (Main Result). Consider the collection of n
unicycles in (1), (2) with controller (11), where the functions

fi(·), gi(·) are defined in (5), (9) and enjoy properties A1, A2

and B1-B3. Assume that sensor graph G is undirected and

connected. For any parameters aij = aji > 0 in (5) and

any parameters bij = bji > 0 in (9) satisfying (bij)(i,j)∈E ∈
(R>0)

|E|\Nb as in Theorem 1, there exists α⋆ > 0 such that

for any parallel formation d = (d11i)i∈2 :n ∈ F, choosing

ᾱ > α⋆maxi∈2 :n (−d11i · e1) in (10), the formation manifold

Γ(d) is almost semiglobally asymptotically stable with high-

gain parameter k.

The proof is presented in Section VI. Roughly speaking,

the theorem states that letting the offset ᾱ in (10) grow

proportionally to the length of the formation (the quantity

maxi (−d
1
1i · e1)), and choosing k in (11) to be sufficiently

large, the controller (11) ensures that almost all initial condi-

tions in any given compact set are contained in the domain of

attraction of the formation manifold Γ(d). Another property

of controller (11) is that (u⋆i , ω
⋆
i )
∣

∣

Γ(d)
= 0 for all i ∈ n, and

therefore the unicycles come to a stop as Γ(d) is approached,

as required in the statement of the formation control problem

in Section III. In the next section we further discuss the

controller (11).

D. Discussion of the Control Solution

As we mentioned earlier, the philosophy behind con-

troller (11) is to convert the formation control problem into a

synchronization problem in which we make the offset vectors

x̂i and the heading angles θi converge to one another. This is

illustrated in Figure 4, where the vectors x̂i, i ∈ n all meet

at a common point at a distance ᾱ in front of the formation,

and all heading directions are aligned.
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Fig. 4: Parallel formation where offset vectors x̂i meet at a

common point at a distance ᾱ in front of the formation.

Position
Consensus

Attitude
Synchroniztion

Offset
Extraction

Fig. 5: Block diagram of the formation control system for

robot i.

In (11), the terms containing fi(ŷ
i
i) aim to achieve con-

sensus on the endpoints of the offset vectors x̂i, while the

terms containing gi(ϕi, η) aim to achieve consensus on the

unicycle angles. It will be shown in Section VI that the choice

of (11) achieves both these, at times competing, objectives

simultaneously by making use of gradient properties of the

systems (4) and (8) with inputs (5) and (9) respectively.

The block diagram in Figure 5 summarizes the design of

feedbacks (ui, ωi)i∈n. From its sensors, unicycle i obtains

the vector (yii , ϕi) of its heading and displacement relative

to its neighbours. These quantities can be measured locally in

unicycle i’s body frame using, for example, on-board cameras.

The offset extraction block takes as input the vector (yii , ϕi)
and outputs (ŷii , ϕi), where each component of ŷii = (x̂iij)j∈Ni

is computed as,

x̂iij = xiij + αjR
i
je1 + βjR

i
je2 −

[

αi βi
]

⊤. (12)

This computation requires that, in addition to (yii , ϕi),
unicycle i has access to the formation parameters (αj , βj)j∈Ni

of its neighbours. These quantities must be stored in memory

on-board unicycle i before deployment. Moreover, in order to

compute x̂iij in (12), unicycle i must be able to identify its

neighbours so as to use, for each j ∈ Ni, the appropriate

bias constants (αj , βj). Such identification can be achieved,

for instance, by means of visual markers. A consequence of

using the constants (αj , βj) is that the unicycle feedbacks

are not identical and the formation is not invariant to a

relabelling of the agents. This is hardly surprising because, in

our formulation of the formation control problem, we allow

for general, non-symmetric formations.

An important property of the feedback in (11) is that it

is local and distributed, since u⋆i and ω⋆i depend on (yii , ϕi).
As a consequence of this feature, the asymptotic position and

orientation of the formation with respect to the inertial frame

depend only on the initial configuration of the unicycles.

E. Special cases: Line formations and full synchronization

As a by-product of the formation control solution, we

present corresponding solutions for the special cases of parallel

line formations and full synchronization.

A parallel line formation is a parallel formation satisfying

d11i · e1 = 0 (and hence αi = ᾱ for all i ∈ 2 :n). The set of

all such formations will be denoted LF. Clearly, LF ⊂ F. In

the case of full synchronization, the unicycles have the same

position and orientation with respect to the inertial frame, i.e.,

d11i = 0 for all i ∈ 2 :n (and therefore αi = ᾱ and βi = 0 for

all i ∈ n). Full synchronization, therefore, corresponds to the

formation 0 ∈ F. Examples of a parallel line formation and

full synchronization are illustrated in Figure 6.

According to Theorem 2, in both of these cases it suffices

that ᾱ satisfies the less strict condition ᾱ > 0. This is

advantageous, as it will be discussed in Section V that large

values of ᾱ can slow down the rate of convergence of the

unicycles to the formation. Arbitrarily choosing ᾱ = 1, the

corresponding controller in (11) reduces to,

u⋆i (y
i
i , ϕi) = fi(ŷ

i
i) · e1 + βiωi,

ω⋆i (y
i
i , ϕi) = fi(ŷ

i
i) · e2 + kgi(ϕi, η), i ∈ n,

(13)

in which, x̂iij = xiij + Rije1 − e1 + βjR
i
je2 − βie2 and η =

(1, . . . , 1). Since the values αi = ᾱ = 1 for all i ∈ n are equal,

unicycle i only needs to store the quantities (βj)j∈Ni
of its

neighbours on-board. The next corollary is a specialization of

Theorem 2 to parallel line formations.

Fig. 6: (a) shows an example of a parallel line formation while

(b) shows an example of full synchronization, a special case

of a parallel line formation.

Corollary 1 (Parallel Line Formations). Consider the col-

lection of n unicycles in (1), (2) with controller (13), where

the functions fi(·), gi(·) are defined as in (5), (9) and enjoy

properties A1, A2 and B1-B3. Assume that sensor graph G is

undirected and connected. For any parameters aij = aji > 0
in (5), any parameters bij = bji > 0 in (9) satisfying

(bij)(i,j)∈E ∈ (R>0)
|E|\Nb as in Theorem 1, and any parallel

line formation d ∈ LF, the formation manifold Γ(d) is almost

semiglobally asymptotically stable with high-gain parameter

k.

In the special case of full synchronization, βi = 0 for all

i ∈ n, and the controller in (13) reduces to

u⋆i (y
i
i , ϕi) = fi(ŷ

i
i) · e1,

ω⋆i (y
i
i , ϕi) = fi(ŷ

i
i) · e2 + kgi(ϕi, η), i ∈ n,

(14)
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in which, x̂iij = xiij+R
i
je1−e1 and η = (1, . . . , 1). Since the

αi and βi parameters are equal for all agents, unicycle i does

not need to store any parameters of its neighbours on-board,

the control inputs are identical for all unicycles, so that in this

case the configuration is invariant to relabelling of agents. This

is hardly surprising since the formation is symmetric in this

case. The controller in (14) can be viewed as an extension of

our previous result for unicycle rendezvous [25] (also closely

related to our work on rendezvous of underactuated rigid

bodies in three dimensions in [26]). In [25] the controller was

given as

u⋆i (y
i
i , ϕi) = ‖fi(y

i
i)‖fi(y

i
i) · e1,

ω⋆i (y
i
i , ϕi) = −kfi(y

i
i) · e2, i ∈ n,

(15)

in which fi(·) is a linear single-integrator consensus controller,

fi(y
i
i) =

∑

j∈Ni
aijx

i
ij .

While the controller in (15) guarantees global rendezvous,

in which only the unicycle positions are synchronized, the

controller in (14) guarantees almost semiglobal full synchro-

nization where both positions and angles of the unicycles are

synchronized. The control inputs in (14) and (15) are similar in

structure. The main difference is that the full synchronization

controller in (14) has an additional term kgi(ϕi, η) responsible

for aligning the unicycle heading angles, not required for

rendezvous. In fact, for unicycle i, (14) depends on (yii , ϕi)
while (15) depends only on yii .

V. SIMULATION RESULTS

This section presents simulations for a group of five uni-

cycles to illustrate our results and analyses the effect of the

choice of the feedback gains on the system behaviour. The

interaction function f(s) for the bounded integrator consensus

control is chosen as in (6) while the interaction function for

the attitude synchronizer is chosen satisfying assumptions B1,

B2 and B3 as in Figure 2. The sensing graph is cyclic with

connections as shown in Figure 7 and the desired triangular

formation is specified by (αi)i∈1 : 5 = (5, 15, 15, 25, 25) (cor-

responding to ᾱ = 5) and (βi)i∈1 : 5 = (0, 5,−5, 10,−10) as

illustrated in Figure 8. Let aij = 30 and bij = αi+αj for all

j ∈ Ni and ηi = 1/αi.

1

2

3

5

4

Fig. 7: Graph G under

consideration in the sim-

ulation results.

Fig. 8: Triangular formation

specified by (αi)i∈1 : 5 =
(5, 15, 15, 25, 25) and

(βi)i∈1 : 5 = (0, 5,−5, 10,−10).

We have chosen random initial unicycle positions on a 40m

× 40m area with random initial angles. The corresponding

plot of a simulation run is shown in Figure 9. We observe that

the unicycles slow down rapidly as the formation is achieved,

and seem to drift a finite distance.

-50 0 50

x (m)

-20

0

20

40

60

80

y
 (

m
)

Fig. 9: Simulation for a tri-

angle formation. Initial posi-

tions are indicated with ◦ and

final positions are indicated

with ×.

Fig. 10: Simulation result in

the presence of disturbances

and saturation.

TABLE I: Values of maxi∈2 :n(‖x̂1i‖) and maxi∈2 :n(|θ1i|)
at the simulation termination time (400s).

case maxi∈2 :n(‖x̂1i‖) (m) maxi∈2 :n(|θ1i|) (rad)

(i) 0.2150 0.2001
(ii) 13.2168 0.2588
(iii) 7.1762 0.0998

Next, for the same formation considered in Figure 9, we

study the effect of increasing the gains ᾱ and k. This is done

to illustrate potential drawbacks of the high-gain requirement

in Theorem 2. In Figure 11 we plot ‖x̂1i‖ versus time and θ1i
versus time for all i ∈ 2 :5 and for three different scenarios:

(i) nominal (ᾱ = 5, k = 5), (ii) high ᾱ (ᾱ = 55, k = 5), (iii)

high k (ᾱ = 5, k = 50). Then in Table I we list the values

of maxi∈2 :n(‖x̂1i‖) and maxi∈2 :n(|θ1i|) at the simulation

termination time (400s) for each case.

We observe that the effect of increasing ᾱ (case (ii)), is a

slow convergence of both x̂1i and θ1i quantities for i ∈ 2 :n
compared to case (i), clearly negatively affecting the system

response in all aspects. In case (iii), increasing the gain k
causes the rotational terms in (11), gi(ϕi, η), to dominate

the translational terms, fi(ŷ
i
i). We can see in the simulation

results that while the rotational quantities θ1i converge faster

than in case 1, this has been at the expense of significantly

slower convergence of the quantities x̂1i for i ∈ 2 :n, so

much so that the overall performance of attaining formation

degrades significantly. This illustrates the conflict between the

translational and rotational terms, trying to accomplish the,

often, competing objectives of driving x̂1i and θ1i to zero. For

optimal performance, one is required to balance the strength

of gains on the translational and rotational terms such as in

case (i).

We have also performed a simulation to study the effective-

ness of our control solution with sensor and input uncertainties

by applying:

• an additive random noise with maximum magnitude of

0.25m/s on the input ui;
• an additive random noise with maximum magnitude of

0.25 rad/s on the input ωi;
• an additive random noise with maximum magnitude of

0.25 rad on the quantity gi((θij)j∈Ni
, η) accounting for

errors in measurements of relative headings;

• an additive random noise on the quantity fi(ŷ
i
i) account-
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Fig. 11: Simulation results for 3 cases. (i) ᾱ = 5, k = 5; (ii)

ᾱ = 55, k = 5; (iii) ᾱ = 5, k = 50. For each case, there are

two plots: (a) ‖x̂1i‖ versus time for i ∈ 2 :5; (b) θ1i versus

time for i ∈ 2 :5.

ing for errors in measurements of relative displacements

of the vehicles. The direction of this vector has been ro-

tated within 0.25 rad and the magnitude is scaled between

0.75 to 1.25 times the actual magnitude.

Each unicycle samples its input 100 times per second. More-

over, the inputs ui and ωi are saturated by 5m/s and π/2 rad/s

respectively. The result of the simulation, presented in Fig-

ure 10, suggests that the proposed control strategy is robust

with respect to perturbations and input saturations.

It is worth noticing that our control objective does not

take into account collision avoidance. For the same triangular

formation as before, we have run extensive simulations with

random initial unicycle positions on a 60m × 60m area with

random initial angles. Assuming unicycles have a 1m diameter,

we have observed that there is a collision in roughly 68 percent

of the 200 simulation trials run and that the colliding agents

are precisely those sharing common αi values. To avoid this,

one possible solution would be to design a high level collision

avoidance layer.

VI. PROOF OF THEOREM 2

We divide the proof of Theorem 2 in several steps. We

begin, in Section VI-A, by presenting preliminary results

regarding the bounded integrator consensus controller in (5).

Then in Section VI-B, we derive the closed-loop dynamics

in (x̂i, θi)i∈n coordinates. In Sections VI-C and VI-D, we

propose a Lyapunov function V for the closed-loop system,

and carry out a Lyapunov analysis yielding the property

V̇ ≤ 0. In Section VI-E, we show that, for sufficiently large

ᾱ > 0, the zero level set of V̇ coincides with the formation

manifold Γ(d) on a neighbourhood of Γ(d). This result will

imply, via Lyapunov’s direct method, asymptotic stability of

Γ(d). A further Lyapunov analysis is employed to show that

Γ(d) is in fact almost semiglobally asymptotically stable with

high-gain parameter k. Each step of the proof will be presented

in its own subsection.

A. Properties of Bounded Integrator Consensus Controller

Lemma 1. Consider system (4) with feedback (5). Assume that

f(s) satisfies assumptions A1 and A2 and the sensor graph G
is undirected and connected. For any parameters aij = aji >
0, the consensus set {z ∈ R

2n : (∀i, j ∈ n) zi = zj} is

globally asymptotically stable.

Proof. Consider system (4) with feedback (5). The feedback

fi in (5) for unicycle i points into the convex hull formed by

its neighbours. By Corollary 3.9 in [27] the group of unicycles

for system (4) achieves global consensus. �

Lemma 2. If the sensor graph G is undirected and connected,

then for any parameters aij = aji > 0, system (4) with

feedback (5), where f(s) satisfies assumptions A1 and A2,

is a gradient system, ż = −∇Vt(z), with nonnegative storage

function

Vt(z) =
1

2

n
∑

i=1

∑

j∈Ni

aij

∫ ‖zij‖

0

f(s)ds. (16)

Moreover, V −1(0) = {z ∈ R
2n : (∀i, j ∈ n) zi = zj}.

Proof. Assumption A1 implies that the function zij 7→
∫ ‖zij‖

0
f(s)ds is nonnegative, and it attains its global minimum

when zij = 0. Since G is connected, Vt attains a global

minimum when zij = 0 for all i, j ∈ n, and therefore Vt
is positive definite. We now show the gradient property, i.e.,

(∂/∂zi)Vt = −fi((zij)j∈Ni
)⊤. We have

∂Vt
∂zi

=
1

2

∑

j∈Ni

aij
∂

∂‖zij‖

(

∫ ‖zij‖

0

f(s)ds

)

∂‖zij‖

∂zij

∂zij
∂zi

+
1

2

∑

j∈Ni

aji
∂

∂‖zji‖

(

∫ ‖zji‖

0

f(s)ds

)

∂‖zji‖

∂zji

∂zji
∂zi

=
1

2

∑

j∈Ni

aijf(‖zij‖)

(

zij
⊤

‖zij‖

)

(−1)

+
1

2

∑

j∈Ni

ajif(‖zji‖)

(

zji
⊤

‖zji‖

)

(1)

= −
∑

j∈Ni

aij
f(‖zij⊤‖)

‖zij‖
zij = −fi((zij)j∈Ni

)⊤.

�

Lemma 3. Assume G is undirected and connected, and

consider system (4) with feedback (5), where f(s) satisfies

assumptions A1 and A2. For any parameters aij = aji > 0,

the following three properties hold:

(i) R−1
k fi((zij)j∈Ni

) = fi((z
k
ij)j∈Ni

) for all i, j, k ∈ n.

(ii) {z ∈ R
2n : fi((zij)j∈Ni

) = 0, ∀i ∈ n} = {z ∈ R
2n :

zi = zj , ∀i, j ∈ n}.

(iii)
∑

i fi(·) = 0.
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Proof. To show (i), we use the fact that ‖zkij‖ = ‖R−1
k zij‖ =

‖zij‖. Then,

R−1
k fi(·) =

∑

j∈Ni

aij
f(‖zkij‖)

‖zkij‖
R−1
k zij = fi((z

k
ij)j∈Ni

).

To show (ii), assume fi((zij)j∈Ni
) = 0 for all i ∈ n. Then

system (4) is at a fixed point. By Lemma 1, the set {z ∈
R

2n : zi = zj , ∀i, j ∈ n} is globally asymptotically stable, so

it contains all fixed points. Therefore, zij = 0 for all i, j ∈ n.

Conversely, if zij = 0 for all i, j ∈ n, then it follows by

definition that fi = 0 for all i ∈ n. Finally, property (iii)

follows by summing over the functions fi in (5) and using the

identities aij = aji, zij = −zji. �

B. System dynamics in (x̂i, θi)i∈n coordinates

To simplify the analysis, we consider new coordinates

(x̂, θ) = (x̂i, θi)i∈n under the diffeomorphism F : (x, θ) 7→
(x̂, θ) given by F ((xi, θi)i∈n) = (xi+ δ(θi), θi)i∈n. Comput-

ing the time derivative of x̂i yields,

˙̂xi = uiRie1 +Ri

[

0 − ωi
ωi 0

]

(αie1 + βie2)

= uiRie1 + αiωiRie2 − βiωiRie1

= (ui − βiωi)Rie1 + αiωiRie2,

from which we get

˙̂xi = (ui − βiωi)Rie1 + αiωiRie2

θ̇i = ωi, i ∈ n.
(17)

Using Lemma 3(i) and the fact that the dot product is

invariant to rotations, i.e, R−1
i fi(ŷi) · e1 = fi(ŷi) · Rie1, the

feedbacks in (11) can be expressed as follows:

u⋆i (y
i
i , ϕi) = fi(ŷi) ·Rie1 + βiωi,

ω⋆i (y
i
i , ϕi) =

1

αi
(fi(ŷi) ·Rie2 + kgi(ϕi, η)) .

(18)

Substituting ui = u⋆i (y
i
i , ϕi) and ωi = ω⋆i (y

i
i , ϕi) from (18)

into (17) and using the fact that fi(ŷi) = (f(ŷi) ·Rie1)Rie1+
(f(ŷi)·Rie2)Rie2 yields the closed-loop system in (x̂i, θi)i∈n

coordinates,

˙̂xi = fi(ŷi) + kgi(ϕi, η)Rie2

θ̇i =
1

αi
(fi(ŷi) ·Rie2 + kgi(ϕi, η)) , i ∈ n.

(19)

Notice that the control inputs in (18) are defined precisely in

terms of (x̂, θ) and so the equations of motion in (19) consti-

tute a dynamical system. The parallel formation manifold Γ
in (3) in (x̂, θ) coordinates becomes,

Γ̂ :=
{

(x̂, θ) ∈ R
2n × T

n : x̂1i = 0, θ1i = 0, i ∈ n
}

.
(20)

C. Lyapunov analysis

From Lemma 2, system (4) is gradient with nonnegative

storage function Vt. Inspired by [23], define a Lyapunov

function Vr(θ) as,

Vr(θ) :=
1

2

n
∑

i=1

∑

j∈Ni

bij

∫ θij

0

g(s)ds. (21)

Since G is connected, we have that Vr ≥ 0 and V −1
r (0) =

{θ ∈ T
n : (∀i, k ∈ n) θi = θj}. Next, combine Vt(x̂) and

Vr(θ) as follows:

V (x̂, θ) := Vt(x̂) + kVr(θ).

Since Vt and Vr are nonnegative, V is nonnegative and

V −1(0) = Γ̂.

Using (19), the time derivative of Vt(x̂) is given by,

V̇t =

n
∑

i=1

−fi · (fi + kgiRie2)

=

n
∑

i=1

(

−‖fi‖
2 − (fi ·Rie2)kgi

)

.

(22)

Since g(θij) = −g(θji), we have

∂Vr
∂θi

=
1

2

∑

j∈Ni

bij
∂

∂θij

(

∫ θij

0

g(s)ds

)

∂θij
∂θi

+
1

2

∑

j∈Ni

bji
∂

∂θji

(

∫ θji

0

g(s)ds

)

∂θji
∂θi

= −
∑

j∈Ni

bijg(θij).

(23)

Using the above, identity (9), and the fact that ηi = 1/αi, we

obtain

V̇r = −
n
∑

i=1

∑

j∈Ni

bij
αi
g(θij) (fi ·Rie2 + kgi)

=

n
∑

i=1

−gi (fi ·Rie2 + kgi)

=

n
∑

i=1

(−(fi ·Rie2)gi − kg2i ).

(24)

Combining (22) and (24), we get

V̇ = V̇t + kV̇r

=
n
∑

i=1

(

−‖fi‖
2 − 2(fi ·Rie2)(kgi)− (kgi)

2
)

=

n
∑

i=1

(

−‖fi ·Rie1‖
2 − ‖fi ·Rie2 + kgi‖

2
)

≤ 0.

(25)

D. Lyapunov analysis in relative coordinates

To further simplify the stability analysis, we perform an-

other coordinate transformation with the intention of quotient-

ing out the dynamics of unicycle 1. More precisely, consider

the diffeomorphism

F : R2n × T
n → R

2(n−1) × R
2 × T

(n−1) × S
1,

F (x̂, θ) = (x̃, x̂11, θ̃, θ1),
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where x̃ := (x̂11i)i∈2 :n, θ̃ := (θ1i)i∈2 :n. Using Lemma 3(i)

and the fact that fi(ŷi) · Rie2 = fi(ŷ
1
i ) · R

1
i e2, the dynamics

in (19) can be written in new coordinates as,

˙̂x11i =
[

fi(ŷ
1
i ) + kgi(ϕi, η)R

1
i e2 − f1(ŷ

1
1)− kg1(ϕ1, η)e2

]

−

(

1

α1

(

f1(ŷ
1
1) · e2 + kg1(ϕ1, η)

)

)×

x̂11i

θ̇1i =
1

αi

(

fi(ŷ
1
i ) ·R

1
i e2 + kgi(ϕi, η)

)

−
1

α1

(

f1(ŷ
1
1) · e2 − kg1(ϕ1, η)

)

(26)
˙̂x11 =f1(ŷ

1
1) + kg1(ϕ1, η)e2 − ω×

1 x̂
1
1

θ̇1 =
1

α1

(

f1(ŷ
1
1) · e2 − kg1(ϕ1, η)

)

,

where i ∈ 2 :n, and for v ∈ R we denote

v× :=

[

0 − v
v 0

]

.

We remark that ŷ1i = (x̂1ij)j∈Ni
= (x̂11j − x̂11i)j∈Ni

,

ϕi = (θij)j∈Ni
= (θ1j − θ1i)j∈Ni

and R1
i are functions

of the relative quantities (x̃, θ̃), and do not depend on the

absolute quantities x̂11 and θ1. It follows that system (26) has

a decoupled subsystem with state (x̃, θ̃) ∈ R
2(n−1) × T

n−1.

Moreover, Γ(d) in new coordinates is given by
{

(x̃, x̂11, θ̃, θ1) : x̂
1
1i = 0, θ1i = 0, ∀ i ∈ 2 :n

}

, (27)

which is also independent of absolute quantities x̂11 and θ1.

Based on these considerations, the variables x̂11 and θ1
may be dropped, yielding a new dynamical system with

state (x̃, θ̃) ∈ R
2(n−1) × T

n−1. Proving almost semiglobal

asymptotic stability of Γ(d) for system (19) is equivalent to

proving that the equilibrium

Γ̃ :=
{

(x̃, θ̃) = (0, 0) ∈ R
2(n−1) × T

(n−1)
}

(28)

is almost semiglobally asymptotically stable for the (x̃, θ̃)
subsystem.

We now return to the Lyapunov analysis of Section VI-C,

expressing V in relative coordinates (x̃, θ̃). Using the fact that

‖x̂ij‖ = ‖R−1
1 x̂ij‖ = ‖R−1

1 (x̂1j − x̂1i)‖ = ‖x̂11j − x̂11i‖, and

θij = θ1j − θ1i, we have

Ṽt(x̃, θ̃) := Vt|(x̂,θ)=F−1(x̃,x̂1

1
,θ̃,θ1)

=
1

2

n
∑

i=1

∑

j∈Ni

aij

∫ ‖x̂1

1j−x̂
1

1i‖

0

f(s)ds

Ṽr(x̃, θ̃) := Vr|(x̂,θ)=F−1(x̃,x̂1

1
,θ̃,θ1)

=
1

2

n
∑

i=1

∑

j∈Ni

bij

∫ θ1j−θ1i

0

g(s)ds.

(29)

The identities in (29) imply that V can indeed be expressed in

terms of relative quantities (x̃, θ̃), and in these coordinates it

is given by Ṽ (x̃, θ̃) := Ṽt(x̃, θ̃) + kṼr(x̃, θ̃). Since V −1(0) =
Γ̂, it follows that Ṽ −1(0) = Γ̃ and therefore Ṽ is positive

definite at (x̃, θ̃) = (0, 0). For any c > 0, the sublevel set

Ṽc = {(x̃, θ̃) ∈ R
2(n−1) × T

(n−1) : Ṽ ≤ c} is closed since Ṽ
is continuous. Next we show that Ṽc is bounded, and hence

compact. In the set Ṽc,

aij

∫ ‖x̂1

ij‖

0

f(s)ds ≤ c,

for all i ∈ n, j ∈ Ni. If ‖x̂1ij‖ > c2 where c2 is defined in A1,

then this implies that aijc1(‖x̂
1
ij‖−c2) ≤ c where c1 is defined

in A1 and therefore ‖x̂1ij‖ ≤ (c/c1aij)+ c2 is bounded. Since

the undirected graph is connected, this proves boundedness of

(x̃, θ̃). Moreover, using a standard result in [28, Proposition

8.16], the time derivative of Ṽ satisfies,

˙̃V = V̇ |(x̂,θ)=F−1(x̃,x̂1

1
,θ̃,θ1)

=

n
∑

i=1

(

−‖fi(ŷ
1
i ) ·R

1
i e1‖

2 − ‖fi(ŷ
1
i ) ·R

1
i e2 + kgi(ϕi, η)‖

2
)

.

Once again, since ŷ1i , ϕi and R1
i are functions of (x̃, θ̃),

˙̃V (x̃, θ̃) is independent of x̂11 and θ1. In light of (25),
˙̃V ≤ 0, with equality if and only if fi(ŷ

1
i ) · R

1
i e1 = 0 and

fi(ŷ
1
i ) · R

1
i e2 = −kgi(ϕi, η) for all i ∈ n. Together, these

conditions imply that on the set E := {(x̃, θ̃) : ˙̃V (x̃, θ̃) = 0}
it holds that

fi(ŷ
1
i ) = −kgi(ϕi, η)R

1
i e2, ∀i ∈ n. (30)

E. Local asymptotic stability of Γ̃

In this section we show that there exists ǫ > 0 such that

E ∩ {(x̃, θ̃) : ‖θ̃‖ ≤ ǫ} = Ṽ −1(0) = Γ̃, implying that
˙̃V

is negative definite, and Γ̃ is locally asymptotically stable by

Lyapunov’s direct method.

Let (x̃, θ̃) ∈ E be arbitrary. By Lemma 3(iii), we have

0 =
∑n
i=1 fi(ŷ

1
i ) = R−1

1

∑n
i=1 fi(ŷi) = 0. Using (30), we

get −
∑n
i=1 gi(ϕi, η)R

1
i e2 = 0, and using (9), we get

−
n
∑

i=1

ηi
∑

j∈Ni

bijg(θij)R
1
i e2 = 0.

We have R1
i e2 =

[

− sin(θ1i) cos(θ1i)
]

⊤, so

−
n
∑

i=1

ηi
∑

j∈Ni

bijg(θij)

[

− sin(θ1i)
cos(θ1i)

]

= 0.

The first component of the above identity gives

n
∑

i=1

ηi
∑

j∈Ni

bijg(θij) sin(θ1i) = 0, (31)

which depends solely on relative angles θ̃. Expanding g(s)
and sin(s) about s = 0, we get

g(s) = ġ(0)s+ h1(s)s

sin(s) = s+ h2(s)s,

where lims→0 h1(s) = 0 and lims→0 h2(s) = 0. Moreover,

ġ(0) > 0 by B3. Using the above identities in (31) we get

n
∑

i=1

ηi
∑

j∈Ni

bij [ġ(0)θijθ1i + ġ(0)h2(θ1i)θijθ1i

+h1(θij)θijθ1i + h1(θij)h2(θ1i)θijθ1i] = 0.

(32)
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Dividing by ġ(0), we have

n
∑

i=1

ηi
∑

j∈Ni

bijθijθ1i [1 + h2(θ1i)

+
h1(θij)

ġ(0)
+
h1(θij)h2(θ1i)

ġ(0)

]

= 0.

(33)

Ignoring, for now, higher order terms h1(θij), h2(θ1i) in (33)

and substituting in ηi = 1/αi, we get

n
∑

i=1

(θ1i/αi)
∑

j∈Ni

bij [θ1j − θ1i] = 0. (34)

Define a weighted Laplacian matrix L by L(i, j) = −bij
for i 6= j and L(i, i) =

∑

j∈Ni
bij . Then L is a symmetric

Laplacian for the connected graph G, and therefore kerL =
span{1}. Next, let

λi(ᾱ, d) :=
maxi αi
αi

=
ᾱ+maxi(−d

1
1i · e1)

ᾱ− d11i · e1
,

λ = (λ1, . . . , λn),

(35)

and

D(λ) := diag
(

λi
)

i∈n
.

The identity in (34) can now be rewritten as

−
1

maxi αi

[

0 θ̃⊤
]

D(λ(ᾱ, d))L

[

0

θ̃

]

= 0. (36)

Letting

L̃(λ) := P⊤D(λ)LP, P =

[

01×(n−1)

I(n−1)

]

,

identity (36) implies

θ̃⊤L̃(λ(ᾱ, d))θ̃ = 0. (37)

Denoting by M(λ) := (L̃(λ) + L̃(λ)⊤)/2 the symmetric part

of L̃, identity (37) becomes

θ̃⊤M(λ(ᾱ, d))θ̃ = 0. (38)

We will show that for large ᾱ > 0, M(λ(ᾱ, d)) is positive

definite. Referring to the definition of λi in (35), note that

λi(ᾱ, d) → 1 as
ᾱ

maxi(−d11i · e1)
→ ∞, (39)

and λi(ᾱ, d) = 1 when − d11i · e1 = 0 for all i ∈ n. In light

of this observation, consider first the case in which λ = 1,

so that D(λ) = D(1) = In, the identity matrix. Then (36)

reduces to
[

0 θ̃⊤
]

L

[

0

θ̃

]

≥ 0,

with equality if and only if
[

0 θ̃⊤
]

∈ span{1} (since

kerL = span{1}), which can occur only if θ̃ = 0. Owing to

the equivalence of (36) and (38), we have that θ̃⊤M(1)θ̃ ≥ 0,

with equality holding if and only if θ̃ = 0, and thus M(1)
is positive definite and, since M(λ) is symmetric, all its

principal leading minors mi(λ), i ∈ n, have the property that

mi(1) > 0, i ∈ n. Since the functions mi(λ) are continuous,

there exists ε > 0 such that for all λ ∈ R
n such that

‖λ − 1‖ < ε, mi(λ) > 0, i ∈ n. From (39), we deduce

that there exists α⋆ > 0 such that

ᾱ

maxi(−d11i · e1)
> α⋆ =⇒ ‖λ(ᾱ, d)− 1‖ < ε

=⇒ mi(λ(ᾱ, d)) > 0 i ∈ n.

We have thus established the existence of α⋆ > 0 such that, for

all ᾱ > α⋆maxi(−d
1
1i ·e1), the matrix M(λ(ᾱ, d)) is positive

definite.

Now assuming that ᾱ satisfies the above bound so that

M(λ(ᾱ, d)) is positive definite, we return to identity (33)

including higher-order terms, and rewrite it as

θ̃⊤M(λ(ᾱ, d))θ̃ + r(θ̃) = 0, (40)

where M(·) is as before and

r(θ̃) =

n
∑

i=1

ηi
∑

j∈Ni

bijθijθ1i [h2(θ1i)

+
h1(θij)

ġ(0)
+
h1(θij)h2(θ1i)

ġ(0)

]

.

We will show, using similar arguments to [29, Proof of

Theorem 6.1], that there exists ǫ > 0 such that in an ǫ-
neighborhood of θ̃ = 0, identity (40) holds only if θ̃ = 0.

Condition (40) holds only if ‖θ̃⊤M(·)θ̃‖ = ‖r(θ̃)‖. Suppose

for a moment that

lim
θ̃→0

‖r(θ̃)‖

‖θ̃⊤M(·)θ̃‖
= 0. (41)

Then for sufficiently small θ̃, ‖r(θ̃)‖ ≤ ‖θ̃⊤M(·)θ̃‖/2, and the

unique solution to (40) is θ̃ = 0, as desired. To show that (41)

holds, express θ̃ as θ̃ = ‖θ̃‖φ where φ = (φ1i)i∈2 :n ∈ S
n−1 is

a unit vector. Correspondingly, θ1i = ‖θ̃‖φ1i for all i ∈ 2 :n.

One can then write,

θ̃⊤M(·)θ̃ =‖θ̃‖2φ⊤M(·)φ,

r(θ̃) =‖θ̃‖2
n
∑

i=1

∑

j∈Ni

bijηiφijφ1i [h2(θ1i)

+
h1(θij)

ġ(0)
+
h1(θij)h2(θ1i)

ġ(0)

]

= ‖θ̃‖2h(θ̃, φ),

where h(·, ·) has the property that limθ̃→0 h(θ̃, φ) = 0. Then,

lim
θ̃→0

‖r(θ̃)‖

‖θ̃⊤M(·)θ̃‖
= lim
θ̃→0

‖h(θ̃, φ)‖

φ⊤M(·)φ
= 0,

since limθ̃→0 h(θ̃, φ) = 0 and minφ∈Sn−1(φ⊤M(·)φ) > 0
because M(·) positive definite and φ is a unit vector.

To summarize, there exists ǫ > 0 such that if ‖θ̃‖ ≤ ǫ,
then (33) is zero only if θ̃ = 0, implying that gi = 0 for all

i ∈ n. By (30) this implies that fi = 0 for all i ∈ n and

therefore, by Lemma 3(ii), x̂i = x̂j for all i, j ∈ n. It follows

that E ∩ (R2(n−1) × {θ̃ : ‖θ̃‖ ≤ ǫ}) = Γ̃.

To summarize our findings so far, we have shown that Ṽ
is positive definite, Ṽ −1(0) = {(x̃, θ̃) = (0, 0)} = Γ̃, and
˙̃V = 0 is negative definite on (R2(n−1) × {θ̃ : ‖θ̃‖ ≤ ǫ}),

a neighbourhood of Γ̃. By Lyapunov’s stability theorem, the

equilibrium Γ̃ is locally asymptotically stable for the (x̃, θ̃)
subsystem.



12

F. Almost semiglobal asymptotic stability of Γ̃

Having established that for ᾱ > 0 sufficiently large, the

equilibrium Γ̃ is asymptotically stable for the (x̃, θ̃) subsystem,

we now prove that Γ̃ is almost semiglobally asymptotically

stable with high-gain parameter k. The idea is to show that,

for sufficiently large k, for almost all initial conditions in any

given compact set the solutions of the (x̃, θ̃) subsystem enter

in finite time and remain inside the set (R2(n−1)×{θ̃ : ‖θ̃‖ ≤

ǫ}) on which
˙̃V is negative definite, which implies that they

converge to Γ̃.

Rewrite the dynamics of the θ̃ subsystem in (26) as,

˙̃
θ = kF (θ̃) + ∆(x̃, θ̃), (42)

where

Fi(θ̃) :=

(

1

αi
gi(ϕi, η)−

1

α1
g1(ϕ1, η)

)

∆i(x̃, θ̃) :=
1

αi
fi(ŷ

1
i ) ·R

1
i e2 −

1

α1
f1(ŷ

1
1) · e2.

After the time scaling τ = kt, system (42) reads as

θ̃′ = F (θ̃) +
1

k
∆(x̃, θ̃), (43)

where prime denotes differentiation with respect to τ . In what

follows, we denote by Σ(0) the nominal system θ̃′ = F (θ̃),
and by Σ(k) the perturbed system (43).

The vector field F coincides with the attitude synchroniza-

tion dynamics of the collection of rotational integrators in (8)

with feedback (9), expressed relative to integrator 1. Therefore,

by Theorem 1, the equilibrium θ̃ = 0 is almost globally

asymptotically stable for Σ(0). Let D(0) be the domain of

attraction of θ̃ = 0 for Σ(0), a set of full-measure.

The term (1/k)∆ acts as a perturbation in (43). Since, by

assumption A2, the functions fi(ŷ
1
i ) · R

1
i e2 and f1(ŷ

1
1) · e2

are uniformly bounded, the map ∆ is uniformly bounded, i.e.,

there exists ∆̄ > 0 such that sup ‖∆‖ < ∆̄. The uniform

bound on the perturbation (1/k)∆ tends to zero as k → ∞.

Since θ̃ = 0 is asymptotically stable for Σ(0), there exists

r > 0 and a C1 positive definite Lyapunov function W :
Br(0) → R whose derivative along Σ(0), LFW : Br(0) → R,

is negative definite. We may assume, without loss of generality,

that r ≤ ǫ. Let c > 0 be such that the sublevel set Wc := {θ̃ :
W (θ̃) < c} is contained in Br(0) ⊂ Bǫ(0), and let ǫ′ > 0 be

such that Bǫ′(0) ⊂ Wc ⊂ Bǫ(0). Since LFW
∣

∣

∂Wc
< 0, Wc

is positively invariant for Σ(0). Moreover, letting

k0 =
max∂Wc

‖∂W/∂θ̃‖

min∂Wc
|LFW |

∆̄,

we have that for all k > k0 it holds that LF+(1/k)∆W
∣

∣

∂Wc
<

0, and thus Wc is positively invariant for the perturbed system

Σ(k) in (43).

Let θ̄ ∈ D(0) be arbitrary. Then the solution of Σ(0)
through θ̄ converges to 0, and let T > 0 be the first time when

such solution enters Bǫ′(0). By continuity of solutions with

respect to initial conditions and bounded perturbations [30,

Theorem 3.4], there exists µ > 0 and k̄ ≥ k0 such that for

all k > k̄, all solutions of Σ(k) through initial conditions in

Bµ(θ̄) are contained in Wc at time T . Since Wc is positively

invariant for Σ(k) and contained in Bǫ(0), all solutions of

Σ(k) through Bµ(θ̄) enter in finite time and remain inside the

set Bǫ(0), for all k > k̄.

Let K ⊂ D(0) be an arbitrary compact set. The arguments

above yield an open cover of K by balls Bµ(θ̄) and associated

gains k̄, where µ and k̄ depend on θ̄. Taking a finite subcover,

we obtain points {θ̄i, i ∈ k} ⊂ T
n−1, associated balls Bµi

(θ̄i),
and gains k̄i, i ∈ k. Letting k⋆ = maxi∈k k̄i, for all k > k⋆

all solutions of Σ(k) through points in K enter and remain

inside Bǫ(0).
Returning to the (x̃, θ̃) dynamics, the x̃ subsystem has no

finite escape times because Ṽ is proper and nonincreasing

along solutions. Then, from the results just obtained we have

that, for any compact subset K of D(0) (a set of full-measure

in T
n−1), there exists k⋆ > 0 such that, for all k > k⋆, all

solutions of the (x̃, θ̃) subsystem through initial conditions

in R
2(n−1) × K enter in finite time and remain inside the

closed set R2(n−1) × {θ̃ : ‖θ̃‖ ≤ ǫ}. For any c > 0, the set

Ṽc∩(R
2(n−1)×{θ̃ : ‖θ̃‖ ≤ ǫ}) is compact because the sublevel

set Ṽc is compact. Since
˙̃V is negative definite on this set, all

solutions through R
2(n−1)×K converge to Γ̃. This proves that

Γ̃ is almost semiglobally asymptotically stable.

VII. CONCLUSION

We have presented a class of local and distributed control

laws to drive a group of kinematic unicycles to a desired

parallel formation in which all unicycles have a common

heading direction and achieve a desired predefined spacing

between their positions. While converging to the formation,

the unicycles come to a stop. In our setup, the sensor graph

is assumed to be undirected and connected. As a special

case, we solved the full synchronization problem where both

the unicycle heading directions and positions coincide. The

formations in this paper are invariant under rigid translations

and rotations. We presented simulation results that validate the

results in this paper. Some drawbacks of the approach are the

requirement of a high-gain parameter and the assumption of

fixed, undirected graphs. In future work, one could consider

extending the current approach to directed, time-dependent

or state-dependent graphs and relax the high gain parameter

requirement.
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