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Abstract— In this paper, the concept of restricted real per-
turbation values of a complex matrix triplet is introduced,
and a formula for computing lower bounds of these values
is presented. Restricted real perturbation values are a gen-
eralization of the real perturbation values introduced in [1],
which is a key concept in evaluating various robustness radii
found in the control literature, such as the real controlla-
bility/observability radius, the real decentralized fixed-mode
radius, the real minimum-phase radius, etc. The generalization
to restricted real perturbation values is needed for an extension
of these radii to account for more general system perturbation
structures. As an example, we will use the results of this paper
to compute the true value of the structured real controllability
radius of the multi-link inverted pendulum system. Also, we
will numerically investigate cases of when the provided lower
bounds are achievable.

I. INTRODUCTION

The real perturbation values of a complex matrix intro-

duced in [1] is a key concept in computing the real controlla-

bility/observability radius ([2]), the real decentralized fixed-

mode radius ([3]), the real transmission zero at s radius ([4]),

and the minimum-phase radius ([4]) that are found in the

control literature. This class of robustness radii measures the

robustness of the various linear time-invariant (LTI) system

properties in the presence of real parametric perturbations. In

this paper, the concept of real perturbation values is extended

to the restricted real perturbation values, which allows for

more general perturbation structures to be considered when

computing these various robustness radii.

To motivate the study of these robustness radii, consider

the following LTI multivariable system

ẋ = Ax + Bu (1)

y = Cx + Du

where x ∈ R
n, u ∈ R

m, and y ∈ R
r are respectively the

states, inputs, and outputs of the system. Suppose the system

is controllable and observable, then it is well known that

there exists a LTI controller that can assign the eigenvalues of

the closed-loop system to any desirable spectrum. However,

if the system is subjected to real parametric perturbations

(i.e. A → A + ∆A and B → B + ∆B , where ∆A and

∆B are real matrices), which may result from numerical

errors, modeling errors, etc., then the perturbed system may

be uncontrollable. Hence, a continuous real controllability
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radius that can measure how “close” a controllable system

is to an uncontrollable one is more informative than the

traditional ‘yes/no’ controllability metric, which simply de-

termines whether a system is controllable or not. The same

motivation also applies to the other radii with respect to the

various other LTI system properties.

The formulas for computing these radii are all based on

solving the following perturbation problem: given a complex

matrix M and an integer i > 0, find the size of the “smallest”

perturbation, ∆, such that

rank(M − ∆) < i where M is complex (2)

If ∆ can be any complex matrix and the “size” is measured

by the spectral norm, ‖·‖2, then the solution of this problem

is related to the well-known singular values of M . If ∆ is

constrained to be a real matrix, then the solution is related

to [5], and to the real perturbation values of M introduced

in [1].

In a recent paper [6], the concept of real perturbation val-

ues is extended to the generalized real perturbation values,

which are related to the generalized singular values in [7],

[8], where both solve the perturbation problem (2) with an

extended perturbation structure:

rank(M − ∆N) < i where M,N are complex (3)

In this paper, we will consider the problem (2) with an

even more general perturbation structure, namely,

rank(M − L∆N) < i where M,L,N are complex (4)

In view of the restricted singular values of a matrix triplet

(see [9], [10]), which solves (4) for complex ∆, we will

consider (4) for the case when ∆ is real with the introduction

of the so-called restricted real perturbation values (named

as such for obvious reasons).

This paper is organized as follows. In Section II, the

concepts of real perturbation values and restricted singular

values of a complex matrix are reviewed. Then in Section III,

we define the restricted real perturbation values of a matrix

triplet, and present our main result, which is a formula

for computing lower bounds of these values. Finally in

Section IV, we will revisit the pendulum problem in [11],

and apply the results of this paper to compute the true value

of the structured real controllability radius of the multi-link

inverted pendulum. Also, we will numerically show that the

lower bounds provided in this paper are actually achievable

for the cases when L (or N ) has full column (or row) rank

and/or is real.
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II. PRELIMINARIES AND REVIEW

A. Notation

In this paper, the field of real and complex numbers are

denoted by R and C respectively. The i-th singular value of

a matrix M ∈ C
n×m is denoted by σi(M), where σ1(M) ≥

· · · ≥ σmin(n,m)(M). ‖M‖2 denotes the spectral norm of M
and is equal to σ1(M). Also, M and M∗ denote respectively

the complex conjugate, and the complex conjugate transpose

of M . The real and imaginary components of M are given

by Re M and Im M respectively. Lastly, MR denotes the

representation of a complex matrix M ∈ C
n×m in real form

(e.g. see [12]); namely,

MR = Tn

[

M 0
0 M

]

Tm =

[

Re M − Im M
ImM Re M

]

(5)

where we denote Tq := 1√
2

[

Iq iIq

−iIq −Iq

]

, for q ∈ N.

B. Review of real perturbation values

The real perturbation values introduced in [1] are defined

as follows.

Definition 2.1 (Real perturbation values [1]): Given

M ∈ C
n×m, the i-th real perturbation values1 of M , for

i = 1, . . . ,min(n,m), are defined as:

τi(M) := inf
∆∈Rn×m

{‖∆‖2 | rank(M − ∆) < i} (6)

Remark 2.1: Given a matrix M ∈ C
n×m, the singular

values of M satisfy (e.g. see [13]):

σi(M) = inf
∆∈Cn×m

{‖∆‖2 | rank(M − ∆) < i} (7)

for i = 1, . . . ,min(n,m). As mentioned earlier, the real

perturbation values are closely related to the singular values.

Here we see this more closely by comparing (6) with (7).

The real perturbation values can be computed by the

following formula [1].

Theorem 2.1 ([1]): Given M ∈ C
n×m and i =

1, . . . ,min(n,m),

τi(M) = sup
γ∈(0,1]

σ2i−1

([

Re M −γ ImM
γ−1 Im M Re M

])

(8)

= sup
γ∈(0,1]

σ2i−1

([

γI 0
0 I

]

MR

[

γ−1I 0
0 I

])

For ease of presentation, we will use the following notation

in the remainder of the paper. Given MR, then:

MR

γ :=

[

γI 0
0 I

]

MR

[

γ−1I 0
0 I

]

(9)

1The definition of the real perturbation values used in this paper corre-
sponds to the real perturbation values of the second kind defined in [1].

C. Review of restricted singular values

The restricted singular values of a matrix triplet was

introduced in [9].

Definition 2.2 (Restricted singular values [9]): Given

M ∈ C
n×m, L ∈ C

n×l, and N ∈ C
p×m, the restricted

singular values of the triplet (M,L,N) are defined as:

σi(M,L,N) := inf
∆∈Cl×p

{‖∆‖2 | rank(M − L∆N) < i}

for i = 1, . . . ,min(n,m).
Remark 2.2: In this paper, σ will be used to denote the

singular values of a matrix, where it will be clear from the

number of arguments which specific type it is referring to;

i.e. σi(M), σi(M,N), and σi(M,L,N) refer to the ordi-

nary, generalized, and restricted singular values, previously

discussed in (2), (3), and (4) respectively.

The restricted singular values of a given matrix triplet can

be obtained by the restricted singular value decomposition

(see [9], [10]).

Theorem 2.2 (Restricted singular value decomposition):

Given M ∈ C
n×m, L ∈ C

n×l, and N ∈ C
p×m, there exist

nonsingular matrices X ∈ C
n×n and Y ∈ C

m×m, and

unitary matrices U ∈ C
l×l and V ∈ C

p×p such that

X−1MY −1 =

k1 k2 k3 µ
k1

k2

k3

ν













I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 SM 0
0 0 0 0 0













X−1LU∗ =

k2 ν
k1

k2

k3

ν













0 0 0
0 I 0
0 0 0
0 0 I
0 0 0













(10)

V ∗NY −1 =

k1 k2 k3 µ

k3

µ





0 0 0 0 0
0 0 I 0 0
0 0 0 I 0





where SM =

[

Σ 0
0 0

]

with Σ being a real positive

diagonal matrix.

From Theorem 2.2, it can be seen that the re-

stricted singular values of a matrix triplet (M,L,N)
can be infinite, finite, or undefined (i.e. trivial). In par-

ticular, there are k1 + k2 + k3 infinite restricted sin-

gular values, min(ν, µ) finite restricted singular values

corresponding to the diagonal elements of SM , and

min (n − k1 − k2 − k3 − ν,m − k1 − k2 − k3 − µ) trivial

restricted singular values.

III. MAIN RESULT

A. Restricted real perturbation values

The following generalization is made.

Definition 3.1 (Restricted real perturbation values):

Given M ∈ C
n×m, L ∈ C

n×l, and N ∈ C
p×m, the i-th
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restricted real perturbation value of the matrix triplet

(M,L,N) is defined as:

τi(M,L,N) := inf
∆∈Rl×p

{‖∆‖2 | rank(M − L∆N) < i}

where i = 1, . . . ,min(n,m). If there exists no real matrix

∆ such that rank(M − L∆N) < i, then τi(M,L,N) = ∞.

In terms of notation, τ will be used to denote the real

perturbation values of a matrix, and again it will be clear

from the number of arguments which type it is referring

to (e.g. see Remark 2.2); namely, τi(M), τi(M,N), and

τi(M,L,N) refer to the ordinary, generalized, and restricted

real perturbation values respectively.

Remark 3.1: If L and N are nonsingular, then the re-

stricted real perturbation value problem can be reduced to the

ordinary real perturbation value problem (see Definition 2.1)

of the single matrix L−1MN−1. This is because

rank(M − L∆N) = rank
(

L−1MN−1 − ∆
)

Similarly, if only L is nonsingular, then the problem can be

reduced to the generalized real perturbation value problem of

the matrix pair (L−1M,N) (see [6]). In this paper, L and N
will be general matrices with no assumptions on invertibility.

B. Lower bounds of the restricted real perturbation values

The following theorem presents a formula for computing

lower bounds of the restricted real perturbation values of a

matrix triplet.

Theorem 3.1: Given M ∈ C
n×m, L ∈ C

n×l, N ∈ C
p×m,

and i = 1, . . . ,min(n,m), then

τi(M,L,N) ≥ sup
γ∈(0,1]

σ2i−1

(

MR

γ , LR

γ , NR

γ

)

(11)

where MR
γ , LR

γ and NR
γ are defined by (9).

Proof: We will prove Theorem 3.1 by showing that

τi(M,L,N) ≤ τ ⇒ sup
γ∈(0,1]

σ2i−1

(

MR

γ , LR

γ , NR

γ

)

≤ τ (12)

is true for any real τ ≥ 0 and i = 1, . . . ,min(n,m); i.e.

if τi(M,L,N) ≤ τ , then there exists ∆ ∈ R
l×p such that

‖∆‖2 ≤ τ and rank(M − L∆N) < i, or equivalently,

rank

(

MR − LR

[

∆ 0
0 ∆

]

NR

)

< 2i − 1 (13)

where the inequality is true because the rank of a matrix

belongs to the set of nonnegative integers. Pre- and post-

multiplying the left-hand side of (13) by

[

γI 0
0 I

]

and
[

γ−1I 0
0 I

]

respectively, for γ ∈ (0, 1], we obtain:

rank

(

MR

γ − LR

γ

[

∆ 0
0 ∆

]

NR

γ

)

< 2i − 1

Hence

[

∆ 0
0 ∆

]

is a perturbation to
(

MR
γ , LR

γ , NR
γ

)

. So

recalling the definition of restricted singular values (i.e.

Definition 2.2), we see that

σ2i−1

(

MR

γ , LR

γ , NR

γ

)

≤

∥

∥

∥

∥

[

∆ 0
0 ∆

]∥

∥

∥

∥

2

= ‖∆‖2 ≤ τ

for γ ∈ (0, 1]. Hence (12) follows immediately.

Remark 3.2: Since the set of real matrices is a subset of

the set of complex matrices, one can see from Definition 2.2

and 3.1 that the restricted singular values of (M,L,N) can

also be used as lower bounds for the restricted real pertur-

bation values of (M,L,N); i.e. for i = 1, . . . ,min(n,m),

τi(M,L,N) ≥ σi(M,L,N) (14)

The following theorem shows that the lower bounds provided

by Theorem 3.1 are in fact tighter than the lower bounds

given in (14), and we will see in the second example of

Section IV that the difference can indeed be quite large.

Theorem 3.2: Given M ∈ C
n×m, L ∈ C

n×l, N ∈ C
p×m,

and i = 1, . . . ,min(n,m),

σi(M,L,N) ≤ sup
γ∈(0,1]

σ2i−1

(

MR

γ , LR

γ , NR

γ

)

(15)

Proof: Let the following be true for any real τ ≥ 0 and

i = 1, . . . ,min(n,m):

sup
γ∈(0,1]

σ2i−1

(

MR

γ , LR

γ , NR

γ

)

≤ τ

Then, σ2i−1

(

MR, LR, NR
)

≤ τ , or equivalently, there

exists ∆ ∈ C
2l×2p such that ‖∆‖2 ≤ τ and

rank
(

MR − LR∆NR
)

< 2i − 1. By (5), this is equivalent

to

rank

([

M 0
0 M

]

−

[

L 0
0 L

]

Tl∆Tp

[

N 0
0 N

])

< 2i − 1

Since Tl and Tp are unitary, then ‖Tl∆Tp‖2 = ‖∆‖2 ≤ τ .

Therefore,

σ2i−1

([

M 0
0 M

]

,

[

L 0
0 L

]

,

[

N 0
0 N

])

≤ τ

which implies that σi(M,L,N) ≤ τ .

u 

θθθθ1 

θθθθ2 

θθθθv 

m1 

m2 

mv 

l1 

lv 

l2 

Fig. 1. Model of a multi-link inverted pendulum with v links ([11]).

IV. APPLICATIONS

In this section, we will use the restricted real perturbation

values to study two numerical examples. First, we will revisit

the pendulum problem in [11] and using the results of this

paper, compute a lower bound of the true structured real
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controllability radius of the multi-link inverted pendulum. In

the second example, we will study cases of when the lower

bounds provided by Theorem 3.1 are actually achievable.

A. Structured real controllability radius of the pendulum

In [11], the real controllability radius was used to study

the difficulty of balancing the multi-link inverted pendulum

system with v links (see Figure 1), for v = 1, 2, . . ., whose

linear state space model is given in [11] as:

A =

[

0 I

(MvLv)
−1

Ma 0

]

, B =

[

0

(MvLv)
−1

Mb

]

C =
[

1 0 . . . 0
]

,D = 0 (16)

where Ma = diag

(

g

v
∑

i=1

mi, g

v
∑

i=2

mi, · · ·,mvg

)

, Mb =





1
l1

0
...
0



, Mv =





m1 m2 ··· mv

0 m2 ··· mv

...
...

. . .
...

0 0 ··· mv



, and Lv =





l1 0 ··· 0
l1 l2 ··· 0

...
...

. . . 0
l1 l2 ··· lv



. In

particular, it was claimed in [11] that the difficulty is related

to the pendulum’s controllability robustness, and it was

numerically shown that as the number of links increases, the

radius becomes smaller, indicating that the system becomes

almost uncontrollable.

The system perturbation structure considered in [11] was

of the following form:

A →

(

I +

[

0 0
0 I

]

∆A

)

A (17)

B →

(

I +

[

0 0
0 I

]

∆B

)

B

which led to a structured controllability radius problem that

was difficult to solve at the time. Subsequently, only an

estimate of the actual radius was obtained in [11]. In this

section, we will use the main results of this paper to study

the true value of the inverted pendulum system’s structured

real controllability radius.

In [11], the structured real controllability radius of A ∈
R

n×n, B ∈ R
n×m, E ∈ R

n×l, F ∈ R
p×n, and G ∈ R

q×m

is defined to be:

rc,struct
R

(A,B, E ,F ,G) (18)

= inf{‖[∆A,∆B ]‖2 |∆A ∈ R
l×p,∆B ∈ R

l×q,

(A + E∆AF , B + E∆BG) is uncontrollable}

Hence the structured controllability radius of the pendulum

system (16) with the perturbation structure (17) is given by

(18), where

E =

[

0 0
0 I

]

, F = A, and G = B (19)

In [11], the formula derived to compute rc,struct
R

is:

rc,struct
R

(A,B, E ,F ,G) (20)

= min
s∈C

τn

(

E−1
[

A − sI, B
]

[

F 0
0 G

]−1
)

which is valid only for the case when E , F , and G are

nonsingular matrices (this allowed the structured real con-

trollability radius to be reduced to the unstructured case – see

Remark 3.1). However, since E , F , and G in (19) are singular,

only an estimate of the radius was obtained in [11] using

(20). This was done by approximating E with a nonsingular

matrix Ẽ = [ ǫI 0
0 I ], where ǫ > 0 is chosen as small as possible

(e.g. ǫ = 10−6) such that Ẽ is not ill-conditioned, and also by

approximating
[F 0

0 G
]

with another nonsingular matrix via an

ad-hoc normalization technique involving a random matrix.

In [6], the nonsingularity restriction of F and G in (20)

was removed to obtain the following formula involving

generalized real perturbation values:

rc,struct
R

(A,B, E ,F ,G) (21)

= min
s∈C

τn

(

E−1
[

A − sI, B
]

,

[

F 0
0 G

])

where E is still required to be nonsingular. Hence, the results

obtained in [6] using (21) were also only an estimate of the

radius (obtained by approximating E by Ẽ = [ ǫI 0
0 I ]).

Using the results of this paper, we can now remove the

final nonsingularity restriction of E , and present a formula

to compute rc,struct
R

in (18) for all general E , F , and G.

Theorem 4.1: Given the LTI system (1), and general ma-

trices E , F , and G of conformal dimensions, the structured

real controllability radius (18) is given as follows:

rc,struct
R

(A,B, E ,F ,G) (22)

= min
s∈C

τn

(

[

A − sI, B
]

, E ,

[

F 0
0 G

])

Proof: The proof is straightforward. Given s ∈ C,

the perturbed system (A + E∆AF , B + E∆BG) is uncon-

trollable at s if and only if

rank([A + E∆AF − sI,B + E∆BG]) < n

or equivalently,

rank

(

[A − sI,B] + E [∆A,∆B ]

[

F 0
0 G

])

< n

Therefore the smallest perturbations, [∆A,∆B ], such that

the perturbed system is uncontrollable at s is given by

τn

(

[A − sI,B] , E ,

[

F 0
0 G

])

. The structured real con-

trollability radius, rc,struct
R

, is then the minimization of this

function over s in the complex plane.

Using Theorem 3.1, we computed lower bounds of the

true structured controllability radius given by (22) of the

pendulum system with 1 to 7 links, where each link is

of unit mass and unit length (i.e. mi = 1 and li = 1,

for i = 1, . . . , v). The results are listed in Table I, along

with the values obtained in [11] and [6]. Here we see

that the values obtained in [6] are almost equal (up to

the 11th significant figure) to the lower bound obtained by

Theorem 3.1. Since one may expect Ẽ = [ ǫI 0
0 I ] to be a good

approximation of E = [ 0 0
0 I ] for small ǫ, this suggests that for

the particular perturbation structure (17), the lower bound of

the controllability radius is achievable, and that the values

obtained in [6] via (21) are very close to the true radius.
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TABLE I

THE STRUCTURED REAL CONTROLLABILITY RADIUS OF A MULTI-LINK

INVERTED PENDULUM SYSTEM (REVISITED)

v r
c,struct
R

r
c,struct
R

r
c,struct
R

via (20) in [11] via (21) in [6] via (22)∗

1 1.000
10+0 1.000

10+0 1.000
10+0

2 1.111
10−1 1.085

10−1 1.085
10−1

3 4.688
10−2 4.655

10−2 4.655
10−2

4 2.456
10−2 2.450

10−2 2.450
10−2

5 1.467
10−2 1.466

10−2 1.466
10−2

6 9.565
10−3 9.559

10−3 9.559
10−3

7 6.635
10−3 6.633

10−3 6.633
10−3

∗ These values are in fact lower bounds of (22) obtained by using
Theorem 3.1.

B. Study of when the lower bound (11) is achievable

In the previous example, we saw that we are able to obtain

an estimate of the structured real controllability radius that

is very close to the lower bound provided by Theorem 3.1,

which suggests that the lower bound is achievable. In this

example, we will investigate this further, namely, when does

the restricted real perturbation values of a matrix triplet equal

the lower bounds provided by Theorem 3.1 (i.e. (11))?

Similar to the approach used in the previous example, we

will compute estimates of the restricted real perturbation

values of (M,L,N) by computing the generalized real

perturbation values [6] of
(

L̃−1M̃,N
)

; i.e. (see [6])

τi

(

L̃−1M̃,N
)

= sup
γ∈(0,1]

σ2i−1

(

(

L̃−1M̃
)R

, NR

)

(23)

where L̃ is a nonsingular approximation of L, and M̃ =
[ M 0

0 0 ] is equal to M padded with zero columns/rows to

conform with the dimensions of L̃ and N .

In order to be able to approximate a general matrix L
with a (square) nonsingular matrix, it should be noted that

the matrices (M,L,N) in Definition 3.1 can all be assumed,

without loss of generality, to be square matrices with the

same dimensions. This is because

rank(M − L∆N) =

rank

([

M 0
0 0

]

−

[

L 0
0 0

] [

∆ ∆2

∆3 ∆4

] [

N 0
0 0

])

where M := [ M 0
0 0 ], L := [ L 0

0 0 ], and N := [ N 0
0 0 ] are all

square matrices with the same dimensions. It can easily be

shown that

τi(M,L,N) = τi(M,L,N )

for i = 1, . . . ,min(n,m). The proof is straightforward and

involves showing that the minimum-norm perturbation to

(M,L,N ) occurs at ∆2 = ∆3 = ∆4 = 0; the details are

omitted.

1) Approximating a singular matrix with a nonsingular

matrix: We used an approach similar to the singular value

decomposition approach often used to approximate a matrix

by one of lower rank (e.g. see [14]). In particular, let M ∈
C

n×n be a given singular matrix, and

M = U diag(σ1, . . . , σn) V ∗

be a singular value decomposition of M , where U and V
are unitary, and σ1, . . . , σn are the singular values of M ,

where σ1 ≥ · · · ≥ σn. Since M is singular, then there are

one or more zero singular values; i.e σj = . . . = σn = 0.

We approximated M with M̃ by perturbing the zero singular

values by a small amount, ǫ ≪ 1; i.e.

M̃ = U diag(σ1, . . . , σj−1, ǫ, . . . , ǫ) V ∗

It can be shown that

∥

∥

∥
M − M̃

∥

∥

∥

2
= ǫ, and that the condition

number2 of M̃ is κ
(

M̃
)

= σ1/ǫ. Hence, an advantage of

this approach is its ease in choosing an approximation with

a particular “distance” and/or condition number.
2) Results obtained: Interestingly enough, the approxima-

tion technique discussed above does not provide in general

an estimate of a restricted real perturbation value that is close

to the lower bound provided by Theorem 3.1. For example,

consider the following matrix triplet:

M0 =





−5 − 1i 10 − 13i −16 + 4i 4 + 4i
5 − 11i 6 + 7i −11 + 16i −6 + 19i
13 − 1i 11 + 1i 7 + 33i −2 + 8i





L0 =





−4 − 5i 16 − 11i −2 − 18i −5 + 6i
−5 + 5i 10 −3 − 11i 3 + 10i
3 + 2i 7 + 1i −4 −1 + 7i





N0 =













10 − 2i −1 − 16i −14 + 4i −6 + 10i
−6 + 13i 6 + 22i −6 − 9i 3 − 1i
17 + 12i −7 + 1i −5 − 1i 2 + 7i
−2i 12 + 5i −24 + 8i −1 + 9i

8 − 11i −5 + 9i −4 + 8i −14 − 1i













Using the approximation technique outlined above with ǫ =
10−6, we obtained:

L̃0 =









−4 − 5i 16 − 11i
−5 + 5i 10 + 6.8310−15i
3 + 2i 7 + 1i

6.5710−7 −4.6110−7 − 3.4310−8i

−2 − 18i −5 + 6i
−3 − 11i 3 + 10i

−4 + 1.3310−15i −1 + 7i
1.8410−7 − 4.7510−7i 7.2610−8 + 3.0010−7i









Table II shows the lower bounds of τi(M0, L0, N0) provided

by Theorem 3.1, and the estimates of τi(M0, L0, N0) ob-

tained by computing τi

(

L̃−1
0 M̃0, N0

)

, where L̃0 denotes an

approximations of L0, and M̃0 equals
[

M0 0
0 0

]

such that M̃0

conforms with the dimensions of L̃0 and N0. From Table II,

we see that the estimates of τi(M0, L0, N0) do not achieve

the lower bounds. As mentioned earlier, this is generally the

case. However, there are some cases where the lower bound

is achieved, and these are presented below.

Consider the following two cases and examples:

Case 1: L has full column rank; e.g.

M1 = M0, L1 =





−4 − 5i 16 − 11i
−5 + 5i 10
3 + 2i 7 + 1i



 , N1 = N0

2Assuming all the non-zero singular values of M are greater than ǫ.
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Case 2: L is real; e.g.

M2 = M0, L2 =





−4 16 −2 −5
−5 10 −3 3
3 7 −4 −1



 , N2 = N0

TABLE II

APPROXIMATION AND LOWER BOUNDS OF τi(Mj , Lj , Nj) FOR

j = 0, 1, 2

τi

(

L̃−1M̃, N
)

τi(M, L, N) σi(M, L, N)

(by (23))∗ (by Theorem 3.1)∗

Case 0: (M0, L0, N0)

i = 1 15345 15339 0.19336
2 1912.3 0.076982 0.073709
3 0.027633 0.023693 0.018815

∗∗Case 1: (M1, L1, N1)

i = 1 8.5355
10+10 ∞ ∞

2 1073.3 1073.3 0.095529
3 0.038480 0.038480 0.026681

∗∗Case 2: (M2, L2, N2)

i = 1 20822 20822 0.38061
2 204.70 204.70 0.11524
3 0.033333 0.033333 0.029250

∗ For numerical purposes, the search in (23) and (11) is in γ ∈

[

10−5, 1
]

.
∗∗ In these cases, the lower bounds obtained by Theorem 3.1 are very close
to the approximated values (see bold values).

From Table II, we see that when L has full column rank

and/or is real, the estimates of the restricted real perturbation

values of (M,L,N) obtained by τi

(

L̃−1M̃,N
)

are very

close to the lower bounds provided by Theorem 3.1 (shown

in the second column). From experiment, this seems to be

true for any L with full column rank and/or is real, and not

just for the particular examples shown here. Therefore this

suggests that for these two cases, the lower bound is actually

achievable; i.e. equality in (11) holds. The same can be said

about N with full row rank and/or is real.

Table II also lists σi(M,L,N), which is another lower

bound (see Remark 3.2) for the restricted real perturbation

values of (M,L,N). We see that the lower bounds provided

by Theorem 3.1 are much tighter than σi(M,L,N), and in

some cases, the differences are quite large.

V. CONCLUSIONS

In this paper, we further generalized the real perturbation

value problem of [1] to account for more general perturbation

structures and presented a formula for computing lower

bounds of the so-called restricted real perturbation values

of a complex matrix triplet (M,L,N). Using these results,

we revisited the pendulum problem in [11] and obtained

the true value of the structured real controllability radius

of the multi-link inverted pendulum system. In the future,

the restricted real perturbation values can also be applied to

make extensions, similar to that made to the structured real

controllability radius, to the other LTI robustness measures

(e.g. the structured real decentralized fixed-mode radius, the

structured real minimum-phase radius, etc.).

This paper also studied the exactness of the lower bounds

provided by Theorem 3.1, which are proved to be tighter

than simply computing the restricted singular values of

(M,L,N). In particular, using approximation techniques,

we experimentally showed that the lower bounds provided

by Theorem 3.1 are actually achievable when L (or N ) have

full column (or row) rank, and/or is real. In fact, it can readily

be shown that when (L,N) = (I, I) or L = I , the formula

(11) for computing the lower bound of τi(M,L,N) reduces

to the formulas for computing the ordinary and generalized

real perturbation values respectively (i.e. from Theorem 2.1

and [6]) where equality actually holds:

τi(M, I, I) = τi(M) = sup
γ∈(0,1]

σ2i−1

(

MR

γ

)

τi(M, I,N) = τi(M,N) = sup
γ∈(0,1]

σ2i−1

(

MR

γ , NR

γ

)

As equality holds in both of these two cases, this leads one to

conjecture that equality should also hold in Theorem 3.1. A

more analytical study investigating the achievability of the

lower bound in Theorem 3.1 for the case when L (or N )

have full column (or row) rank, and/or is real, and also for

the general cases of L and N , is currently being conducted

by the authors.
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