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Abstract— This paper deals with the design of controllers
for large-scale linear time-invariant multi-input multi-output
systems, such as those that often arise in process control. We
focus on two standard controller objectives: (i) asymptotic reg-
ulation subject to unmeasurable constant disturbances, and/or
(ii) asymptotic tracking of constant set-points. In either case,
standard output-feedback controller design methodologies typi-
cally result in controllers that have order at least as large as that
of the plant; for large-scale systems, the controller order can
consequently be impractically large. The purpose of this paper
is to introduce, for the subclass of plants that are open-loop
stable, a low-order three-term (i.e., PID) multivariable control
design approach that is practical to compute numerically, even
for large-scale systems. A design algorithm and existence results
to construct such a controller are given, and the approach
is applied to several examples. Remarkably, at least for the
examples considered, the three-term controller’s performance
is quite similar to that achieved by the standard (much higher
order) controller that solves the servomechanism problem.

I. INTRODUCTION

Engineers have long known the benefits of integral feed-

back control for tracking constant reference signals in

the presence of unknown constant disturbances. Indeed,

proportional-integral (PI) and proportional-integral-derivative

(PID) controllers are among the most popular controllers

found in industrial process control. There is a rich literature

on the design and tuning of PID controllers for single-

input single-output (SISO) systems (e.g., see [1]–[5] and the

references therein).

For multiple-input multiple-output (MIMO) systems, the

design of multivariable controllers with integral action can be

found in a number of early papers, including some written by

the first author (e.g., see [6]–[10]). The existing techniques

usually either (i) assume that full-state information is avail-

able, or (ii) require an observer to estimate the state. In the

case where the plant order is large, the first situation results

in an expensive and impractical sensing burden. The second

situation is just as undesirable if the plant order is large since

the order of the resulting controller is at least as large as that

of the plant. Hence, for large industrial systems, many MIMO

controller design approaches are impractical. It is therefore

understandable that both academic and industrial researchers

have sought for, and continue to search for, MIMO design

procedures that result in low-order controllers.
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Inspiring by their success in classical SISO problems,

the most popular MIMO low-order controllers are PID

controllers. Various tuning methods have been developed for

MIMO PID control (e.g., see [1], [11] and the references

therein). However, many of these design procedures require

that the MIMO plant has special properties. For instance,

some papers assume that the system is decoupled or can

be decoupled, while others assume that the system can be

approximated by a low-order system with delay. Fortunately,

by recognizing that there exist systems where the inter-loop

interactions are not necessarily small and where the system

cannot be approximated by a low-order system with delay,

various researchers have managed to devise MIMO PID

design procedures without making restrictive assumptions

on the structure of the system. For example, in [12], a

technique using pole placement is proposed which allows the

designer to partially place some of the poles of the closed-

loop system; if the remaining poles are unstable or unsat-

isfactory, then the design parameters are modified and the

pole-placement problem is solved again. Another approach

is taken in [13], where a MIMO optimal PID controller

is obtained by numerically solving several simultaneous

nonlinear matrix equations. In [14], a third approach for

the design of an optimal PID controller is proposed, which

involves solving a high-order static state-feedback problem

and then reducing the size of the controller by retaining

the “dominant” dynamics of the closed-loop system. Finally,

in [15] and [16], a MIMO PID controller is obtained by

solving a similar static output-feedback problem using linear

matrix inequality (LMI) methods. A disadvantage with all

of these techniques is that the controller synthesis requires

solving various subproblems multiple times before obtaining

a stabilizing controller (if one exists), and therefore the

complexity of the procedures increases greatly with the

system size. Moreover, in almost all approaches, a stabilizing

solution is not even guaranteed to exist.

In this paper, we describe a new optimal PID controller

design approach for MIMO open-loop stable plants. The

approach is based on the multivariable tuning regulator of

[17], using the parameter optimization methods of [18] and

[19], and contains only three scalar parameters to be opti-

mized based on a quadratic performance criterion. Several

practical advantages of the proposed technique stand out: (i)

the approach is suitable for large-scale systems because the

optimization dimension of the optimization parameter space,

R
3, is relatively small and independent of the system size;

(ii) we have been able to characterize the conditions under

which a solution to the optimization problem exist (namely,
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a solution exists if and only if a solution to the underlying

servomechanism problem exists); and (iii) a starting point to

the parameter optimization problem can always be found to

guarantee a solution to the problem.

This paper is organized as follows. Section II describes the

structure and existence conditions of the proposed multivari-

able three-term controller, and the procedure for designing

such a controller. Then Section III investigates the perfor-

mance of the proposed three-term controller by applying

the technique to several different systems and comparing

the closed-loop performance to that which is achieved by

designing full-order optimal servo controllers.

II. THREE-TERM OPTIMAL CONTROLLER DESIGN

Consider the open-loop asymptotically stable linear time-

invariant (LTI) system, which may or may not be minimum

phase:

ẋ = Ax + Bu + Ew

y = Cx + Fw (1)

e = yref − y,

where x ∈ R
n is the state of the system, u ∈ R

m is the

input, y ∈ R
r is the output, w ∈ R

Ω is an unmeasurable

constant disturbance, e ∈ R
r is the error, and yref ∈ R

r is a

constant tracking signal. The control objective is to solve the

robust servomechanism problem (RSP) [20] for this system.

Start by introducing the notation (·)
+

= (·)
T

[(·) (·)
T
]−1

and recalling the following two fundamental results, from

[17], concerning the solution to the RSP:

Lemma 2.1: [17] There exists a solution to the RSP for

(1) if and only if rank
(

CA−1B
)

= r. �

Lemma 2.2: [17] Consider the MIMO integral controller

η̇ = e, u = −ǫ
(

CA−1B
)+

η (where ǫ > 0 is a design

parameter) applied to the plant (1). Then rank
(

CA−1B
)

= r

is a necessary and sufficient condition for the existence of

an ǫ∗ > 0 such that the closed-loop system is asymptotically

stable for all ǫ ∈ (0, ǫ∗). �

Given these two results, throughout the paper it is assumed

that rank
(

CA−1B
)

= r, which implies m ≥ r.

A. Controller structure

To control (1), we choose a multivariable three-term

controller structure of the form

u = ǫISη + ǫPSe + ǫDS ė (2)

where

η̇ = e, S := −
(

CA−1B
)+

(3)

and where ǫI , ǫP , and ǫD are scalar tuning parameters of the

controller. The three-term controller (2) can be considered to

be a generalization of the “tuning controller” introduced in

[17] and described in Lemma 2.2. Lemma 2.2 can be readily

extended to show that sufficiently small choices for the three

parameters in controller (2) guarantees closed-loop stability:

Lemma 2.3: Let the controller (2) be applied to (1); then

there exist ǫ∗ > 0 and ǫ∗∗ > 0 such that the closed-loop

system is asymptotically stable for all ǫI ∈ (0, ǫ∗), ǫP ∈
(0, ǫ∗∗), and ǫD ∈ (0, ǫ∗∗). �

B. Optimal parameter selection

We propose that the three parameters ǫI , ǫP , and ǫD

be chosen by solving an optimization problem. In practice,

problems such as the one described below can be solved

numerically using the approach of [18] and [19].

Motivated by the “optimal transient shaping” results in

[21], we introduce the performance index

JǫI ,ǫP ,ǫD
=

∫ ∞

0

(

zT z + ǫu̇T u̇
)

dτ (4)

where z := θė + e, θ > 0, and ǫ > 0. As discussed in [21],

the above performance index is appealing because making

JǫI ,ǫP ,ǫD
small results in “small” z, which implies e decays

roughly as a first-order system with settling time determined

by θ. For the problem at hand, the goal is to minimize (with

respect to the three parameters ǫI , ǫP , and ǫD) performance

index (4) subject to the constraint
[

ẍ

ė

]

=

[

A 0
−C 0

] [

ẋ

e

]

+

[

B

0

]

u̇ (5)

z =
[

−θC I
]

[

ẋ

e

]

.

Substitute the controller equation (2) into (5) to obtain, for

x̃ :=

[

ẋ

e

]

, the closed-loop equations

˙̃x = Ãx̃

z = C̃x̃ (6)

u̇ = C̃ux̃

where, on defining T := (I + ǫDSCB)
−1

S,

Ã =

[

A − BT (ǫP C + ǫDCA) ǫIBT
−C 0

]

(7a)

C̃ =
[

−θC I
]

(7b)

C̃u =
[

−T (ǫP C + ǫDCA) ǫIT
]

. (7c)

Note that the gain matrix T is well defined for almost all ǫD;

we disallow values of ǫD where det(I+ǫDSCB) = 0. Next,

substitute for z and u̇ from (6) into (4), yielding (dropping

the ǫI , ǫP , ǫD subscript for convenience)

J = x̃T(0)

[
∫ ∞

0

eÃ
T τ

(

C̃T C̃ + ǫC̃T
u C̃u

)

eÃτdτ

]

x̃(0) (8)

or

J = x̃T(0)Γx̃(0) (9)

where Γ > 0 is the solution of the Lyapunov equation

ÃT Γ + ΓÃ = −
(

C̃T C̃ + ǫC̃T
u C̃u

)

. (10)

Assume the controller is initialized so that u(0) = 0. Hence,

x̃(0) =

[

A E 0
−C −F I

]





x(0)
w

yref



. The expression in (9)

can then be simplified in three cases of most interest:

1. Disturbance rejection (x(0) = 0, w 6= 0, yref = 0):

Jw := J = trace

(

[

ET −FT
]

Γ

[

E

−F

])

(11)
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Fig. 1. Plant output and control signal of the chemical plant versus time

(in seconds) with w = [1, 0, 0]T using (a) the 45th order servomechanism
controller, and (b) the proposed 4th order PID controller, both with ǫ =
10−5 and θ = 0. Note that the u4(t) signal in part (a) of the figure settles
to ≈0.3 at time ≈1800 s.

Using this performance index measures the “average cost”

of (4) over all disturbances w uniformly distributed on an

unit disk ball [18]. Likewise we choose:

2. Tracking (x(0) = 0, w = 0, yref 6= 0):

Jyref
:= J = trace

(

[

0 I
]

Γ

[

0
I

])

(12)

3. Regulation (x(0) 6= 0, w = 0, yref = 0):

Jx0
:= J = trace

(

[

AT −CT
]

Γ

[

A

−C

])

(13)

In summary, to determine the optimal values of the con-

troller parameters ǫI , ǫP , and ǫD, the following nonlinear

parameter optimization problem is to be solved:

min
ǫI ,ǫP ,ǫD

JǫI ,ǫP ,ǫD

subject to the constraint

that the closed-loop

system (6) is stable

(14)
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Fig. 2. The same as Figure 1 except with θ = 5 instead of θ = 0. Note
that the transient response is now significantly smoother.

where, depending on the problem definition, JǫI ,ǫP ,ǫD
is

chosen to be Jw, Jyref
, or Jx0

(or any linear combination

of these indices). In the examples studied in Section III, the

choice of Jw was used in (14) since disturbance rejection is

the most important problem in process control.

Remark 2.1: It may well be that multiple local minima

exist for the optimization problem (14). From an engineering

viewpoint, all things being equal, the solution of the optimal

parameter vector (ǫI , ǫP , ǫD) that has the smallest norm is

desirable, which implies that a starting point “as close as

possible” to the origin should be used.

C. Discussion of optimization starting point

It follows from Lemma 2.3 that there exists a feasible

starting point for the optimization problem (14) given by ǫI ,

ǫP = 0, and ǫD = 0 with ǫI > 0 “sufficiently small”. For

the examples in Section III, the choice of performance index

Jw with (ǫI , ǫP , ǫD) =
(

10−5, 10−8, 10−12
)

was used as the

starting point.
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III. NUMERICAL EXAMPLES

In this section we compare the disturbance rejection per-

formance of the PID controller proposed in Section II with

that of a general servomechanism controller [20]. We also

briefly compare the robustness of the two control schemes

using the real stability radius, denoted rstab [22]. (See the

Appendix for the definition of rstab.) Three systems are

considered below: the Williams and Otto chemical plant in

[23], the distillation column with pressure variation in [24],

and a 4th order example in [12].

A. Williams and Otto chemical plant [23]

The Williams and Otto chemical plant in [23] is a 41st

order chemical plant model with 4 inputs, 4 outputs, and

3 disturbance channels. The system is open-loop stable and

minimum-phase. Following the procedure in Section II, the

inverse of the open-loop input steady-state gain matrix (3)

was found to be:

S =









10.66 0 0 −800.1
−2.860 3.860 0 0

0 −1.642103 1.642103 0
1.05910−9 −1.09810−9 0 −9.960104









Then using the starting point
(

ǫ0I , ǫ
0
P , ǫ0D

)

=
(

10−5, 10−8, 10−12
)

, the optimization problem (14)

was solved with JǫI ,ǫP ,ǫD
= Jw, θ = 0, and ǫ = 10−5,

yielding an optimal controller with structure (2) and

parameter values

(ǫI , ǫP , ǫD) = (985.1, 16.99, 25.88)

and

T =









1.44910−2 0 0 −0.1241
−3.88810−3 3.860 0 −24.47

0 −4.862 4.862 0
0 0 0 −1.137104









.

As summarized in Table I, the controller obtained is 4th

order, and achieves an optimal disturbance cost, Jw, of

6.52010−5 with a real stability radius, rstab, of 1.31210−6 . For

comparison, a 45th-order servomechanism controller for the

same plant was obtained by minimizing (4) with ǫ = 10−5

and θ = 0, and it achieves a cost of 1.09210−8 with a stability

radius of 1.00410−5 . Both types of controllers were then

redesigned using θ = 5 (holding ǫ = 10−5). In this case,

the new three-term optimal controller parameter values are

(ǫI , ǫP , ǫD) = (983.3, 473.3, 1.691) .

Figures 1 and 2 illustrate the behavior of the four controllers

for the unit step disturbance w = [1, 0, 0]
T

with θ = 0
and θ = 5, respectively. It can be seen from these figures

that, to our surprise, the proposed three-term controller

performs reasonably well in comparison to the 45th-order

servomechanism controller; we had expected that, due to

the massive decrease in controller order, performance would

suffer greatly. In addition, as we would expect because of the

chosen structure of the performance index (4), the controller

with θ = 5 produces a more desirable transient response,

TABLE I

SUMMARY OF CONTROLLERS FOR WILLIAMS AND OTTO CHEMICAL

PLANT [23] WITH θ = 0

Servocontroller PID controller

Controller order 45 4
Cost Jw 1.092

10−8 6.520
10−5

rstab 1.004
10−5 1.312

10−6

TABLE II

SUMMARY OF CONTROLLERS FOR DISTILLATION COLUMN [24] WITH

θ = 0

Servocontroller PID controller

Controller order 14 3
Cost Jw 2.994

10−7 7.064
10−4

rstab 1.604
10−4 2.654

10−4

with no oscillations and greater disturbance rejection com-

pared to the case when θ = 0.

B. Distillation column with pressure variation [24]

The distillation column studied in [24] is an 11th-order

industrial plant that is open-loop stable and minimum-phase,

with a single disturbance corresponding to the input feed

composition. Matrix S in (3) was found to be:

S =





−156.9 184.0 24.99
101.5 −239.5 15.23

−5.01210−2 0.3019 3.32710−3



 .

Starting with
(

ǫ0I , ǫ
0
P , ǫ0D

)

=
(

10−5, 10−8, 10−12
)

, the fol-

lowing optimal controller was found by solving (14), with

JǫI ,ǫP ,ǫD
= Jw, θ = 0, and ǫ = 10−5 in (4):

T =





−1.581102 1.839102 25.53
1.014102 −2.402102 15.46

−5.03710−2 0.3020 3.40810−3





and

(ǫI , ǫP , ǫD) = (4.902, 2.995103 , 0.9925) .

The controller is 3rd order, with an optimal disturbance cost

Jw, of 7.06410−4 . In comparison, a standard servomechanism

controller for the same plant is 14th order, and achieves a

performance index Jw of 2.99410−7 . A comparsion of the

two controllers is made in Table II and, for response to a

unit step disturbance, in Figure 3. As with the chemical plant

example, despite the huge reduction in controller order, the

proposed PID controller achieves a response and robustness

that are comparable to that of the servo controller.

C. Example from [12]

The following unstable system with an unstable pole

located at s = 1, is taken from [12]:

A =









0 1 0 0
0 0 1 0
0 0 0 1
10 2 −9 −2









B =









0 1
0 0
0 2
1 0









E =









1
−1
0
0









C =

[

1 0 0 0
0 1 0 0

]

F =

[

0
0

]

.
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Fig. 3. Plant output and control signal of the distillation column versus
time (in seconds) with w = 1 using (a) the 14th order servomechanism
controller with θ = 0, and (b) the proposed 3rd order PID controller with
θ = 0.

The plant must first be stabilized for the results of this paper

to be applicable. On noting that the system can be stabilized

using the proportional controller u2 = −5y2, the following

optimal three-term controller is obtained using ǫ = 10−5 and

θ = 0:

T =

[

−10 57.0
0 4

]

and

(ǫI , ǫP , ǫD) = (14.77, 3.679, 1.375)

Table III and Figure 4 compares the performance of the PID

controller obtained in [12] with that proposed in this paper.

It can be seen that the three-term controller works quite well

even in the presence of an unstable open-loop pole.

D. Addressing a potential criticism

One might conjecture that the three-term controller’s per-

formance is similar to that of the full-order servo controller

only because both control schemes yield poor performance

compared to the “no control” (i.e., open loop) performance;

in other words, it is conceivable that the full-order servo

controller’s performance is poor, and therefore the com-

parisons we make for the chemical plant system and the

distillation column system are not of interest. In fact, all of

the controllers designed above are highly effective compared

to the open-loop performance. As evidence, Table IV lists

the output steady-state errors of the two industrial systems

when no control is applied and the systems are subject to

constant unit disturbances. Comparing this data with the peak

output values apparent from Figures 1–2 indicates clearly the

effectiveness of the feedback control schemes.

IV. CONCLUSIONS

An optimal PID controller is proposed for controlling

large-scale open-loop stable multivariable plants. Like all

multivariable PID controllers, the control order is low, which

is an advantage compared to the high-order controllers that

many other conventional design techniques generate. A key

strength of this work is that the proposed three-term con-

troller is easily tuned, even for large-scale systems with many

inputs and outputs, since the controller contains only three

scalar parameters to be optimized. The design approach in

this paper was illustrated by synthesizing 4th and 3rd order

three-term controllers for two industrial examples; the dis-

turbance rejection performance was found to be comparable

to that achieved by full-order servo controllers, which are of

45th and 14th order, respectively. It was also shown how the

transient response of the closed-loop system can be improved

by selecting θ > 0 in the performance index (4). Lastly, it

can be seen from the third example studied in the paper that

the assumption about the plant being open-loop stable is not

essential.
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APPENDIX: rstab AS A MEASURE OF ROBUSTNESS

Consider a system ẋ = Ax + Bu, y = Cx that is subject

to the following singular perturbation (where Ā is assumed

to be stable):
(

ẋ

ǫη̇

)

=

[

A 0
0 Ā

] (

x

η

)

+

(

B

B̄

)

u

y =
[

C C̄
]

(

x

η

)

.

In the limit as ǫ → 0, the perturbed system simplifies to

ẋ = Ax + Bu

y = Cx + ∆Du

where ∆D = −C̄Ā−1B̄. We now consider ∆D to be a

completely uncertain matrix and define the real stability

radius of ∆D, denoted rstab, to be the largest bound such that

the perturbed closed-loop system is stable for all ‖∆D‖
2

<

rstab. Note that rstab is a function of the controller. An

algorithm to compute rstab is available in [22].

TABLE III

SUMMARY OF CONTROLLERS FOR EXAMPLE FROM [12]

[12]’s controller PID controller

Controller order 2 2
Cost Jw – 0.1687
rstab – 9.036

10−3

TABLE IV

OPEN-LOOP STEADY-STATE OUTPUTS FOR VARIOUS INPUT

DISTURBANCES

Plant Disturbance w Steady-state output y(∞)

Chemical
plant

w =





1
0
0



 y(∞) =







3.871
10−4

2.869
10−4

2.869
10−4

2.889
10−6







Distillation
column

w = 1 y(∞) = [2.116, 1.176, 4.537]T
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Fig. 4. Plant output and control signal versus time (in seconds) for the
example from [12] for a unit step disturbance using (a) the PID controller
of [12] and (b) the proposed PID controller.
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