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Abstract— In this paper, we study the cheap control problem
and determine what some of the inherent system limitations are
in achieving high performance for LTI systems. In particular,
we observe that a fundamental difficulty in designing a high
performance controller for a system may occur, which is related
to the infinite transmission zero structure of the system. A
continuous measure, called the Toughness Index, is introduced
to characterize such limitations. We then apply these results
to the robust servomechanism problem (RSP), and show that
the Toughness Index of the RSP becomes worst as the number
of tracking/disturbance poles to be tracked/regulated increases.
This implies that high performance control in the RSP cannot
be obtained for a large number of tracking/disturbance poles,
even for minimum phase systems.

I. INTRODUCTION

It is well known in both classical and modern linear control

theory that a closed-loop system can often achieve high

performance if the feedback controller gains are allowed to

be sufficiently large. In fact, under certain criteria, “perfect

control” ([1], [2]) can be achieved if the control effort

is allowed to be arbitrarily large. Of course in practice,

one cannot implement extremely large controller gains, and

practical restrictions such as controller actuator sizing limits,

impose a limitation on the fastest response achievable by

the closed-loop system. Some systems, however, may be

more difficult to control than others, and we are interested

in studying and being able to characterize what are some of

the inherent difficulties a system may have in achieving high

performance.

In our approach, we consider high performance controllers

obtained via the cheap control problem. In particular, con-

sider the following stabilizable and detectable linear time-

invariant (LTI) system as modeled by

ẋ = Ax+Bu, x(0) = x0, (1)

y = Cx,

where x ∈ R
n, u ∈ R

m, and y ∈ R
r are the system

states, inputs, and outputs, respectively. The cheap control

problem consists of finding a stabilizing feedback controller

that minimizes the following quadratic performance index:

Jǫ = min
u

∫
∞

0

(
yTQy + ǫuTRu

)
dt, (2)

where ǫ > 0 is a small positive scalar, Q is positive definite,

and R is positive definite. In the case as ǫ → 0, the cost
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of the control effort decreases, subsequently allowing larger

controller gains, and resulting in faster output response times.

The cheap LQR problem has been extensively studied in

the past (e.g., see [2]–[7]). One of the most well-known

results is that perfect regulation (i.e., Jǫ→0 = 0) can be

achieved if and only if the system is minimum phase and

right invertible (e.g., see [2], [4], [6]). If the system is non-

minimum phase, then there exists a fundamental performance

limitation in controller design, which for some cases such

as the servomechanism problem, can be characterized in

terms of the number and locations of the nonminimum phase

zeros [8]. Another system limitation is the rate at which

a closed-loop system’s faraway poles approach infinity as

ǫ → 0, which is the focus of our study. For the cheap control

problem, it is well known that as ǫ → 0, the closed-loop

poles behave in such a way that i) some poles asymptotically

approach the system’s stable finite transmission zeros, ii)

some approach the mirror-image of the unstable transmission

zeros, and iii) all the other poles approach infinity in various

Butterworth patterns at a rate relative to 1
ǫk

for some k > 0
(e.g., see [4]). Since the closed-loop poles have a direct effect

on the system’s response time, the rate at which the faraway

poles approach infinity as ǫ → 0 poses a limitation on system

performance. Other inherent difficulties a system may have

in transient control include unbounded peaking as ǫ → 0
([9], [10]), and singular initial behaviour [6].

As mentioned earlier, the focus of this paper is to investi-

gate system limitations due to the faraway closed-loop poles.

In particular, it is noted that if the rate at which the faraway

poles approach infinity is slow, then in order to achieve high

performance, one is required to choose ǫ to be extremely

small, resulting in impractically large controller gains. So

subsequently if one has limited controller gain or control

effort, then a slow rate poses a fundamental performance

limitation, as we will see in some examples later on. In this

paper, we introduce a measure based on this observation,

called the Toughness Index, to characterize a system’s ability

to achieve high performance using cheap control.

This paper is organized as follows. First, some topics

related to cheap control are reviewed in Section II. Section III

proposes a method for determining the asymptotic rates at

which the faraway poles approach infinity for the cheap

control problem, and defines a Toughness Index for the sys-

tem based on these rates. Section IV applies the Toughness

Index to study the robust servomechanism problem [11],

and shows that as the number of tracking/disturbance poles

increases, there are fundamental limits in obtaining high

performance in the resultant closed-loop system, even if the
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system is minimum phase. Finally, a few numerical examples

are looked at in Section V.

II. PRELIMINARIES

In this paper, a transfer matrix realization, H(s), of the

system (1) is given by

H(s) = C (sI −A)
−1

B. (3)

The finite transmission zeros [12] of (1) are the points in the

complex plane that satisfy

rank

([
A− sI B

C 0

])

< n+min (m, r) ,

and are the roots of the numerator polynomials of the

nonzero elements of the Smith-McMillan form of (3). System

(1) or (3) is said to be minimum phase if it has no transmis-

sion zeros in the closed right-half part of the complex plane,

otherwise it is said to be non-minimum phase. The transfer

matrix H(s) is said to have an infinite transmission zero of

order k (i.e., 1/sk) if H(1/s) has a finite transmission zero

of precisely that order at s = 0.

A. Asymptotic locations of the optimal closed-loop poles

Recall that given a LTI system (1), the optimal control law

that minimizes the performance index (2) is

u = −
1

ǫ
BTPǫx, (4)

where Pǫ is the unique positive semidefinite solution to the

algebraic Riccati equation (ARE)

ATPǫ + PǫA+ CTQC −
1

ǫ
PǫBR−1BTPǫ = 0. (5)

The optimal closed-loop poles of A− 1
ǫBR−1BTPǫ are the

stable eigenvalues of the Hamiltonian matrix (e.g., see [4])

Z =

[
A − 1

ǫBR−1BT

−CTQC −AT

]

, (6)

or equivalently, the stable roots of

det

(

I +
1

ǫ
R−1HT (−s)QH(s)

)

= 0, (7)

where H(s) is the transfer matrix of (1) . In the case when

system (1) is square (i.e., m = r), det(H(s)) is given by

det(H(s)) =
α
∏p

i=1 (s− zi)
∏n

i=1 (s− pi)

where α is a constant, pi, for i = 1, . . . , n, are the

eigenvalues of system (1), and zi, for i = 1, . . . , p, are the

finite transmission zeros of (1). We now recall the following

result [4].

Lemma 2.1: ([4]) Given (1), assume that m = r; then it

follows from (7) that as ǫ → 0, the following is true:

• p of the optimal closed-loop poles approach ẑi, where

ẑi =

{
zi if Re zi ≤ 0
−zi if Re zi > 0

;

• the remaining (faraway) closed-loop poles approach in-

finity in various Butterworth configurations of different

orders and radii; and

• a “rough estimate” of the faraway poles’ distance to the

origin as ǫ → 0 is given by

(
α2

ǫm

)1/(2(n−p))

. (8)

III. MAIN RESULTS

In this section, we study how to compute the exact asymp-

totic rates at which the individual faraway closed-loop poles

approach infinity as ǫ → 0. As shown in the previous section,

a “rough estimate” of the rates is given by (8); however, the

estimate is rather crude (e.g., see [4, Example 3.21]), and

also does not provide an estimate for each individual pole.

To compute the individual faraway poles for a given ǫ, one

can directly solve the Hamiltonian matrix (6) for the stable

eigenvalues. However, for systems with large dimensions

(e.g., n > 50), this method may have very severe numerical

problems when ǫ is chosen to be small (e.g., ǫ = 10−12), and

so cannot be used. Instead, we use an alternative method

to determine the faraway poles by computing the closed-

loop eigenvalues of a reduced model based on the system’s

infinite transmission zeros. In the remainder of this paper,

we assume, unless specified otherwise, that the LTI system

has equal inputs and outputs.

A. Reduced model based on H(s) approximation

Let H(s) be a strictly proper transfer matrix realization

of (1), and expand H(s) in a Laurent series about the origin

s = 0 as follows:

H(s) =
∞∑

k=1

CAk−1B

sk
(9)

Assuming that the infinite transmission zeros of H(s) are

[1/sp1 , . . . , 1/spk ], denote p∗ = max(p1, . . . , pk). Now

approximate H(s) by the truncated series Ĥ(s) given by

Ĥ(s) =

p∗

∑

k=1

CAk−1B

sk
, (10)

where the approximation is valid for large s. It can easily be

shown that Ĥ(s) and H(s) have identical infinite transmis-

sion zeros. Also, as ǫ → 0, the faraway closed-loop poles

approach infinity and the approximation Ĥ(s) for large s
improves; so on replacing H(s) with Ĥ(s) in (7) for ǫ → 0,

we obtain

0 = det

(

I +
1

ǫ
R−1ĤT (−s)QĤ(s)

)

= det



s2p
∗

I +
1

ǫ

2p∗

−2
∑

k=0

(−1)kMks
k



 , (11)

where Mk, for k = 0, . . . , 2p∗ − 2, is given by

Mk =
k∑

j=0

R−1
(

CAp∗

−1−jB
)T

QCAp∗

−1−k+jB,
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and where for notational convenience, we assume that Ai =
0 for i < 0. In this case, on applying controller (4), the

faraway poles for a given ǫ can be obtained by computing the

stable roots of the matrix polynomial (11), or equivalently,

the stable eigenvalues of the matrix Aǫ , where

Aǫ =










0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 I
1
ǫM0 − 1

ǫM1
1
ǫM2 · · · 1

ǫM2(p∗
−1) 0










.

(12)

B. Toughness Index

Using the same derivation for obtaining the estimate (8),

one can show that the distances of the faraway poles of (11)

from the origin, or equivalently, the distances of the faraway

eigenvalues of (12), asymptotically approach the following

as ǫ → 0:
(αi

ǫ

)βi

(13)

for some constant αi > 0 and βi > 0, for i = 1, 2, . . . , p∗.

To compute αi and βi, the following procedure is used.

First compute the eigenvalues of Aǫ for ǫ = ǫ1 and ǫ = ǫ2,

where ǫ1 > ǫ2, and ǫ1 and ǫ2 are chosen sufficiently small

such that the distances of the faraway eigenvalues for ǫ1
and ǫ2 are closely described by (13). Assume the subsequent

eigenvalues are given by

For ǫ = ǫ1 : λ(Aǫ1) =
{

s
(ǫ1)
1 , s

(ǫ1)
2 , . . . , s

(ǫ1)
p∗

}

,

For ǫ = ǫ2 : λ(Aǫ2) =
{

s
(ǫ2)
1 , s

(ǫ2)
2 , . . . , s

(ǫ2)
p∗

}

.

Then, compute

βi =
log10

(∣
∣
∣s

(ǫ2)
i

∣
∣
∣ /

∣
∣
∣s

(ǫ1)
i

∣
∣
∣

)

log10(ǫ1/ǫ2)
, for i = 1, 2, . . . , p∗ (14)

and

αi = ǫ1

(∣
∣
∣s

(ǫ1)
i

∣
∣
∣

)1/βi

, for i = 1, 2, . . . , p∗. (15)

We can now make the following definition.

Definition 3.1 (Toughness Indices): Given (C,A,B) of

system (1), positive definite Q, positive definite R, and

0 < ǫ ≪ 1, let p∗ denote the number of optimal faraway

closed-loop poles. Then for a given ǫ > 0, define the set of

Toughness Indices for system (1) with the performance index

(2) as follows:

Indexi =
(αi

ǫ

)βi

, for i = 1, 2, . . . , p∗, (16)

where αi and βi, for i = 1, . . . , p∗, are given by (14) and

(15). Also, for a given ǫ > 0, define the Toughness Index for

the overall system (1) as

ToughnessIndex = min
i

(αi

ǫ

)βi

. (17)

The Toughness Index as defined in (17) gives an indication

of a system’s difficulty in achieving high performance by

cheap control. In particular, the Toughness Index (17) corre-

sponds to the dominant optimal faraway closed-loop pole’s

distance from the origin for ǫ → 0. So if the Toughness Index

is small, even for small ǫ, then it implies that the dominate

faraway pole is very close to the origin even when the control

effort is allowed to be relatively cheap. This in turn implies

that the closed-loop system will have a slow response time,

even when large controller gains are used.

IV. APPLICATION: ROBUST SERVOMECHANISM

PROBLEM

In this section, we review and study the robust servomech-

anism problem (RSP) [11] for the case when there is a large

number of tracking/disturbance poles to be tracked/regulated.

Consider the following LTI system with disturbances:

ẋ = Ax+Bu+ Ew

y = Cx+Du+ Fw (18)

e = yref − y,

where x ∈ R
n is the state of the system, u ∈ R

m is the input,

y ∈ R
r is a measurable output, w ∈ R

Ω is an unmeasurable

disturbance, e ∈ R
r is the error, and yref ∈ R

r is a

specified tracking signal. Denote λi as a tracking/disturbance

pole [11], where Reλi ≥ 0, for i = 1, . . . , p, and let the

coefficients of the tracking/disturbance polynomial be

p
∏

i=1

(λ− λi) = λp + δpλ
p−1 + · · ·+ δ2λ+ δ1. (19)

The control objective is then to solve the RSP [11] for the

system (18) with respect to the class of tracking/disturbance

signals described by (19); i.e., find a LTI controller such that

i) the closed-loop system is asymptotically stable;

ii) asymptotic tracking/regulation occurs; i.e.,

lim
t→∞

e(t) = 0

for all initial conditions; and

iii) conditions (i)-(ii) hold for any arbitrary perturbations

in the plant model (18) that do not cause the resultant

perturbed closed-loop system to be unstable.

The following existence conditions for a solution to the

RSP to exist are obtained from [11].

Lemma 4.1 ([11]): There exists a solution to the RSP for

(18) with respect to the tracking/disturbance poles of (19) if

and only if the following conditions are all true:

i) (C,A,B) is stabilizable and detectable;

ii) the number of inputs is more than or equal to the

number of outputs; i.e., m ≥ r; and

iii) the transmission zeros of (C,A,B,D) exclude the

tracking/disturbance poles (19).

Assume now that the existence conditions of Lemma 4.1

are satisfied; then this implies that there exists K0 ∈ R
m×n

and K1 ∈ R
m×rp, and a LTI controller of the form

v̂ = K0x̂+K1η̂, (20)
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where x̂ ∈ R
n and η̂ ∈ R

rp are the inputs, and v̂ ∈ R
m are

the outputs of the controller, such that (20) will stabilize the

following plant-servocompensator augmented system [11]:
[

˙̂x
˙̂η

]

=

[
A 0

B̃C C̃

] [
x̂
η̂

]

+

[
B

B̃D

]

v̂ (21)

z =
[

0 D̃
]
[

x̂
η̂

]

,

where C̃, B̃, and D̃ are given by

C̃ := block diag(C, . . . , C
︸ ︷︷ ︸

r

), B̃ := block diag(B, . . . ,B
︸ ︷︷ ︸

r

),

C :=










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−δ1 −δ2 −δ3 · · · −δp










, B :=










0
0
...

0
1










,

and for D = [1, 0, 0, . . . , 0] ∈ R
1×p,

D̃ := block diag



D, . . . ,D
︸ ︷︷ ︸

r



 .

Using the above results, a controller that solves the RSP for

system (18) is then given by

η̇ = C̃η + B̃e (22a)

u = K0x+K1η, (22b)

where e ∈ R
r and u ∈ R

m are the controller inputs and

outputs, respectively, K0 and K1 are the same as given in

(20), the servocompensator [11] of the controller is given in

(22a), and the state x can be estimated using an observer.

The augmented system (21) has the following property.

Lemma 4.2: Let [1/sp1 , . . . , 1/spk ] be the infinite

transmission zeros of (C,A,B,D) in (18); then
[
1/s(p1+N), . . . , 1/s(pk+N)

]
are the infinite transmission

zeros of

(
[

0 D̃
]
,

[
A 0

B̃C C̃

]

,

[
B

B̃D

])

, where N is

the number of tracking/disturbance poles.

Proof: See Appendix.

Assume now that the controller (20) is found to minimize

the following cheap performance index:

J =

∫
∞

0

(
zT z + ǫv̂T v̂

)
dτ (23)

for some given 0 < ǫ ≪ 1. From Lemma 4.2, we see

that if the Toughness Index of the original plant (C,A,B)

is found to be
(
α
ǫ

)(1/(2k))
, for some α > 0 and k > 0,

then the Toughness Index of the plant-servocompensator

augmented system (21) is
(
γ
ǫ

)(1/(2k+2N))
for some γ > 0.

So if one is to design a RSP controller with a large number

of tracking/disturbance poles (as is often the case), then one

may encounter difficulty trying to achieve high performance,

as measured by the Toughness Index. We will see some

examples of this latter point in the following section.

V. NUMERICAL EXAMPLES

We now study four examples.

A. Example 1: Longitudinal control of an airplane

Consider the following LTI system found in Example 3.21

of [4] given by

A =






−0.01580 0.02633 −9.810 0

−0.1571 −1.030 0 120.5
0 0 0 1

5.27410−4 −0.01652 0 −1.466




, (24)

B =






6.05610−4 0

0 −9.496
0 0

0 −5.565




 , C =

[

1 0 0 0

0 0 1 0

]

.

The system (24) has a finite transmission zero at s = −1.002
and infinite transmission zeros

[
1/s, 1/s2

]
.

Using the approach in Section III, the magnitudes of the

stable eigenvalues of (12) for Q = I , R = I , and ǫ equal to

10−9, 10−10, 10−11, and 10−12 are given below:

ǫ1 = 10
−9 ǫ2 = 10

−10 ǫ3 = 10
−11 ǫ4 = 10

−12

∣

∣

∣
s
(ǫ)
i

∣

∣

∣
4.19710+2 7.46410+2 1.32710+3 2.36010+3

4.19710+2 7.46410+2 1.32710+3 2.36010+3

1.91310+1 6.05010+1 1.91310+2 6.05010+2

and on calculating the Toughness Indices of Section III-B,

we obtain

ǫ2 = 10
−10 ǫ3 = 10

−11 ǫ4 = 10
−12

βi 0.25 0.25 0.25
0.25 0.25 0.25
0.50 0.50 0.50

and

ǫ2 = 10
−10 ǫ3 = 10

−11 ǫ4 = 10
−12

αi 3.10310+1 3.10410+1 3.10610+1

3.10310+1 3.10410+1 3.10610+1

3.66010−7 3.66010−7 3.65910−7

.

Hence for a given 0 < ǫ ≪ 1, the Toughness Indices (16),

which correspond to the optimal closed-loop faraway poles’

distances from the origin, are given by

(
31.0

ǫ

)0.25

,

(
31.0

ǫ

)0.25

,

(
3.6610−7

ǫ

)0.5

, (25)

while the Toughness Index for the overall system is given

by min

(
(
31.0
ǫ

)0.25
,
(

3.66
10−7

ǫ

)0.5
)

. To verify these results,

we compare the faraway poles as given by (25) with the

optimal closed-loop poles obtained by solving for the actual

optimal controller (4), and we observe that there is a strong

agreement, as shown below.
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ǫ s ∈ λ
(

A− 1
ǫ
BBTPǫ

)

|s|
(

αi

ǫ

)βi

10
−10 −5.27810+2 + j5.27810+2 7.46410+2 7.46610+2

−5.27810+2 − j5.27810+2 7.46410+2 7.46610+2

−6.08710+1 6.08710+1 6.05010+1

−1.009 1.009 –

10
−11 −9.38510+2 + j9.38510+2 1.32710+3 1.32710+3

−9.38510+2 − j9.38510+2 1.32710+3 1.32710+3

−1.91410+2 1.91410+2 1.91310+2

−1.003 1.003 –

10
−12 −1.66910+3 + j1.66910+3 2.36010+3 2.36110+3

−1.66910+3 − j1.66910+3 2.36010+3 2.36110+3

−6.05010+2 6.05010+2 6.04910+2

−1.002 1.002 –

B. Example 2: A simple example

Given the following two unstable plants described by

H1(s) =
1

s50
and H2(s) =

(s− 1)40

s50
,

it is desired to determine the asymptotic distances of the

two systems’ closed-loop poles controlled using optimal state

feedback and minimizing the cheap control performance

index (2) for Q = I , R = I , and some 0 < ǫ ≪ 1.

In this case, the standard optimization algorithm lqr.m

of MATLAB fails for all ǫ < 1 due to numerical prob-

lems. Therefore it is not possible to study the asymptotic

behaviour for ǫ → 0 by simply using lqr.m to compute the

closed-loop poles. However, using the proposed numerical

procedure of Section III, it is immediately obtained that the

Toughness Index for H1(s) is given by (1/ǫ)
0.01

, and for

H2(s) is given by (1/ǫ)
0.05

. So for H1(s) and a sufficiently

small ǫ, at least one of the faraway closed-loop poles of

the resultant closed-loop system (if implemented) would be

at a distance D from the origin, where D = (1/ǫ)
0.01

;

i.e., if ǫ = 10−10, then D = 1.259, and if ǫ = 10−100,

then D = 10. Since a distance of D = 10 approximately

relates to at least a time constant of 0.1, it is therefore

virtually impossible to obtain a relatively fast settling time

for H1(s) using cheap control. In comparison, the distance

of the faraway closed-loop poles of H2(s) for ǫ = 10−10

and ǫ = 10−100 would be D = 3.1623 and D = 105,

respectively.

One could also have studied the asymptotic distance of

the closed-loop poles by computing the eigenvalues of the

Hamiltonian matrix (6), instead of solving the full LQR

problem. However, it should be noted that computing the

eigenvalues of (12) in the proposed procedure of Section III

is often more numerically sound than computing the eigen-

values of the Hamiltonian matrix (6), especially for systems

with infinite transmission zeros of low order. In this example,

for instance, a state-space realization of the second plant

H2(s) has 50 states (n = 50), and infinite transmission zeros
[
1/s10

]
. The dimension of the corresponding Hamiltonian

matrix (6) is then of order 100. On the other hand, the

dimension of the Aǫ matrix in (12) is only 20, so computing

the eigenvalues of Aǫ is numerically more reliable than

computing the eigenvalues of the Hamiltonian matrix.

TABLE I

SUMMARY OF MASS-SPRING EXAMPLE FOR TRACKING/DISTURBANCE

POLES = [0,±j1]

ǫ
∥

∥

[

K0 K1
]
∥

∥ trace(Pǫ) TZ∞

10−4 1.58810+2 3.934
[

1/s5, 1/s5
]

10−8 1.12110+4 1.114
[

1/s5, 1/s5
]

10−12 1.02110+6 0.4140
[

1/s5, 1/s5
]

C. Example 3: RSP for a mass-spring system

Consider a mass-spring system, where two smaller masses

are attached to larger mass via springs and dampers. The

outputs are the outputs of the two smaller masses and the

inputs are the forces applied to the two smaller masses. The

system can be modeled by the following LTI system:

A=









0 1 0 0 0 0

−0.2 −0.02 0.1 0.01 0.1 0.01
0 0 0 1 0 0

1 0.1 −1 −0.1 0 0

0 0 0 0 0 1

1 0.1 0 0 −1 −0.1









, (26)

B=

[

0 0 0 1 0 0

0 0 0 0 0 1

]T

, C=

[

0 0 1 0 0 0

0 0 0 0 1 0

]

.

The system (26) is open-loop unstable, has two minimum

phase finite transmission zeros at s = −0.0100 ± j0.447,

and infinite transmission zeros
[
1/s2, 1/s2

]
.

Suppose we want to solve the RSP for (26) with track-

ing/disturbance poles [0,±j1]. In this case, the resultant

augmented system to be stabilized has infinite transmission

zeros
[
1/s5, 1/s5

]
. On applying the results of Section III, it

is determined that the Toughness Index is given by

(
1

ǫ

)1/10

, (27)

which indicates that a relatively slow transient response

will occur. On solving the RSP using state feedback and

minimizing the cheap performance index (23) with Q = I ,

R = I , and ǫ =
(
10−4, 10−8, 10−12

)
, the results are

obtained for a tracking reference signal of yref = 1 and is

presented in Figures 1-2. From these figures1, we see that for

ǫ = 10−12, the system achieves a response with a settling

time of ∼ 1 sec. For these chosen ǫ, Table I summarizes

the size of the corresponding controller gains (20), and the

performance cost given by the trace of Pǫ, where Pǫ is the

solution to the associated ARE (5), and TZ∞ denotes infinite

transmission zeros.

Now suppose we want to solve the RSP for (26) with

tracking/disturbance poles [0,±j1,±j2,±j4,±j8,±j10].
The resultant augmented system now has infinite transmis-

sion zeros
[
1/s13, 1/s13

]
. Figures 3-4 display the input

and output responses for ǫ =
(
10−12, 10−18, 10−24

)
, and

Table II summarizes the corresponding controller gains and

performance costs. From these figures, it can be seen that

1Note that in the figures, Output 1 and Output 2 actually coincide with
each other very closely.
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Fig. 1. Output response of the mass-spring system using cheap servomech-
anism control with tracking/disturbance poles [0,±j1], and (a) ǫ = 10−4,
(b) ǫ = 10−8, and (c) ǫ = 10−12 .
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Fig. 2. Input response of the mass-spring system using cheap servomech-
anism control with tracking/disturbance poles [0,±j1], and (a) ǫ = 10−4,
(b) ǫ = 10−8, and (c) ǫ = 10−12 .

with the additional tracking/disturbance poles, the system

has difficulty achieving a fast response. In particular, even

with a large controller gain corresponding to ǫ = 10−24 (and

input magnitudes similar to the previous response shown in

Figure 2), the settling time is about ∼ 7 sec. On computing

the Toughness Indices (16), it is determined that all the

faraway poles approach infinity at a rate

(
1

ǫ

)1/26

, (28)

which is much slower than (27).

D. Example 4: Control of a commercial hard disc drive

The study of obtaining high performance control of a com-

mercial hard disk drive system was carried out in [13]. The

TABLE II

SUMMARY OF MASS-SPRING EXAMPLE FOR TRACKING/DISTURBANCE

POLES = [0,±j1,±j2,±j4,±j8,±j10]

ǫ
∥

∥

[

K0 K1
]
∥

∥ trace(Pǫ) TZ∞

10−12 3.20710+6 3.47910+1

[

1/s13, 1/s13
]

10−18 2.15910+9 6.24910+0

[

1/s13, 1/s13
]

10−24 1.42810+12 2.43010+0

[

1/s13, 1/s13
]
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Fig. 3. Output response of the mass-spring system using
cheap servomechanism control with tracking/disturbance poles
[0,±j1,±j2,±j4,±j8,±j10], and (a) ǫ = 10−12, (b) ǫ = 10−18, and
(c) ǫ = 10−24.

plant model describing the disk drive model in this case was a

SISO LTI system of high order (≫10), and it was desired to

reject unknown and unmeasurable disturbances using a RSP

controller design. In this case the class of disturbances to be

rejected were modeled by harmonic sinusoidal signals with

five frequencies given by 180π × (1, 2, 3, 5, 24) radians/sec.

The resultant RSP controller design was highly effective

compared to conventional approaches, but the following

observation was made in [13]:

“For this initial servocompensator design, one can

see in Figure 3 that an undesirably long settling

time occurs due to the relatively slow error attenu-

ation of the sinusoidal harmonic having frequency

component ω5.”

This undesirable long settling time is precisely the type of

result that would be predicted by the Toughness Index. Due

to the large number of tracking/disturbance poles required

to be rejected in this study (a total of 10), extremely

high controller gains would be required to speed up the

disturbance rejection properties of the servo-controller, but

such high controller gains are completely unrealistic to use,

and so some of the closed-loop poles of the system were

sluggish.
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Fig. 4. Input response of the mass-spring system using
cheap servomechanism control with tracking/disturbance poles
[0,±j1,±j2,±j4,±j8,±j10], and (a) ǫ = 10−12, (b) ǫ = 10−18, and
(c) ǫ = 10−24.

VI. CONCLUSIONS

In this paper, a Toughness Index is proposed to charac-

terize a LTI system’s difficulty in using cheap control to

achieve high performance. The Toughness Index measures

the distances of the faraway optimal closed-loop poles from

the origin, and indicates that there exists a performance

limitation if the distances are small, even when the cost of

the control effort is made relatively cheap. An important

observation is then made, which is that in solving the

RSP, the Toughness Index becomes worst as the number of

tracking/disturbance poles increases. Thus even for minimum

phase systems, there is a performance limitation that occurs

when trying to solve the RSP for a large number of track-

ing/disturbance poles.

APPENDIX

PROOF OF LEMMA 4.2

Denote

H(s) =
[

0 D̃
]
(

sI −

[
A 0

B̃C C̃

])−1 [
B

B̃D

]

.

From the diagonal structure of B̃, C̃, and D̃ in (21), it can

easily be shown that

H(s) = diag(H2(s) , . . . , H2(s)
︸ ︷︷ ︸

r

)H1(s) , (29)

where H1(s) := C (sI −A)
−1

+ D and H2(s) :=
D (sI − C)

−1
B. Now given that the infinite transmission

zeros of H1(s) are [1/sp1 , . . . , 1/spk ], there exists the fol-

lowing Smith-McMillan factorization at infinity [14] for

(C,A,B,D):

H1(s) = B1(s)

[
Λ(s) 0
0 0

]

B2(s), (30)

where Λ(s) = diag(s−p1 , . . . , s−pk), and B1(s) and B2(s)
are respectively (r × r) and (m×m) bicausal isomor-

phisms. Furthermore, it can easily be shown that the infinite

transmission zeros of H2(s) are
[
1/sN

]
, so there exists a

following factorization at infinity:

H2(s) = B3(s)

[
1

sN

]

B4(s) =: B5(s)
1

sN
, (31)

where B3(s), B4(s), and B5(s) := B3(s)B4(s) are all (1×
1) bicausal isomorphisms. From (29)-(31), it can be seen that

H(s) then has the following Smith-McMillan factorization

at infinity:

H(s) = diag(B5(s), . . . , B5(s)
︸ ︷︷ ︸

r

)B1(s)

[

Λ̃(s) 0
0 0

]

B2(s),

where Λ̃(s) = diag
(
s−(p1+N), . . . , s−(pk+N)

)
; hence

the infinite transmission zeros of H(s) are given by
[
1/s(p1+N), . . . , 1/s(pk+N)

]
.
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