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Abstract:

The real decentralized fixed mode radius measures how “near” a decentralized LTI system is from
having a decentralized fixed mode (DFM) present. In this paper, some properties of the real DFM
radius are discussed, a procedure for computing the actual system parametric perturbations that
achieve the real DFM radius is presented, and the real DFM radius is extended to deal with
structured perturbations and general information flow constraints. A study of applying the
radius to determine how to pair system inputs and outputs to obtain a robust decentralized
control system structure with respect to parametric perturbations is also presented.

1. INTRODUCTION

Consider the following decentralized LTI multivariable
system with v local control stations described by

ẋ = Ax +
v
∑

i=1

Biui

yi = Cix +

v
∑

j=1

Dijuj (i = 1, . . . , v) (1)

where x ∈ R
n is the state, and ui ∈ R

mi and yi ∈ R
ri

are respectively the inputs and outputs of the i-th control
agent (i = 1, . . . , v). The notion of a decentralized fixed
mode (DFM) introduced in Wang and Davison (1973)
is a generalization of the notion of uncontrollable and
unobservable modes of centralized control problems. The
importance of DFMs is due to the fact that if system (1)
is controlled by a decentralized LTI controller, then the
closed-loop system can only be assigned a spectrum that
contains the set of DFMs. Consequently, the system can
only be decentrally stabilized by a LTI controller if and
only if it has no unstable DFMs.

However, simply knowing that a system has no DFMs is
often not satisfactory. This is because the system may be
very “close” to having one or more DFMs with respect
to small parametric perturbations. In other words, a small
perturbation in the system’s parameters (i.e. A → A+∆A,
Bi → Bi + ∆Bi

, Ci → Ci + ∆Ci
, and Dij → Dij + ∆Dij

for i, j = 1, . . . , v) may cause the resulting perturbed
system to have one or more DFMs. Therefore, a continuous
measure of the decentralized assignability of a system’s
eigenvalues is more desirable than the traditional binary
‘yes/no’ metric.

Such a measure for the decentralized case, called the DFM
radius, was first suggested in Vaz and Davison (1988) and

⋆ This work has been supported by NSERC under grant No. A4396.

is based on the approach by Eising (1984) for the central-
ized case. However, the DFM radius developed in Vaz and
Davison (1988) deals only with complex perturbations; i.e.
∆A, ∆Bi

, ∆Ci
, and ∆Dij

, for i, j = 1, . . . , v, are complex
perturbation matrices. To deal with real perturbations,
which is the more realistic case, the DFM radius was
recently extended in Lam and Davison (2007), and is
based on real perturbation values (see Bernhardsson et al.
(1998)).

In this paper, various new results related to the real DFM
radius are presented, which are organized as follows. In
Section 2, the concepts of real perturbation values, DFMs,
and the real DFM radius are briefly reviewed. Section 3
consists of most of the new results related to the real DFM
radius. In particular, Section 3.1 presents a procedure for
computing the actual system perturbations that achieve
the real DFM radius, Section 3.2 discusses some properties
of the real DFM radius, and Section 3.3 and 3.4 respec-
tively extends the real DFM radius to deal with structured
perturbations and general information flow constraints.
Section 4 provides some numerical examples, followed by
a study of applying the real DFM radius to determine
input/output pairing which is presented in Section 5.

2. PRELIMINARIES

The notation used in this paper is standard. The field
of real and complex numbers are denoted by R and C

respectively, and C+ denotes the closed right half complex
plane. The i-th singular value of a matrix M ∈ C

p×m

is denoted by σi(M), where σ1(M) ≥ σ2(M) ≥ · · · .
M , MT , M∗, and M+ denote respectively the complex
conjugate, transpose, complex conjugate transpose, and
Moore-Penrose pseudoinverse of M . ‖M‖ denotes the
spectral norm of M and is equal to σ1(M). The real and
imaginary components of the matrix M are given by ℜM
and ℑM respectively. The eigenvalues of a square matrix
A are given by sp(A). Also, denoting N = {1, 2, . . .},
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then for n ∈ N, n denotes the set {1, 2, . . . , n}. Finally,

the notation

[

A B
C D

]

v

is used in the rest of the paper to

represent a decentralized LTI system of the form (1), where

B := [B1 · · ·Bv], C :=







C1

...
Cv






, and D :=







D11 · · · D1v

...
...

Dv1 · · · Dvv






.

2.1 Real Perturbation Values

Definition 1. (Real Perturbation Values). Given a matrix
M ∈ C

q×l, the k-th real perturbation value of M , τk(M),
is defined as

τk(M) := inf
{

‖∆‖ |∆ ∈ R
q×l, rank(M + ∆) < k

}

(2)

where k ∈ N. 1

The real perturbation values have the following properties
(see Bernhardsson et al. (1995)).

Lemma 2. (Properties of the Real Perturbation Values).

i) τk(αM) = ατk(M) , α ∈ R

ii) τk

(

M
)

= τk(M)

iii) τk(Q1MQ2) = τk(M) , Q1, Q2 real orthogonal

The k-th perturbation value of a matrix M ∈ C
q×l can be

computed by the following result.

Theorem 3. (Bernhardsson et al. (1998)). Given M ∈ C
q×l

and k ∈ N, then

τk(M) = sup
γ∈(0,1]

σ2k−1

([

ℜM −γℑM

γ−1ℑM ℜM

])

(3)

2.2 Decentralized Fixed Modes

The following definition of a decentralized fixed mode is
made in Wang and Davison (1973).

Definition 4. (Decentralized Fixed Mode (DFM)). The LTI
system (1) is said to have a DFM λ ∈ C, if λ ∈ sp(A) and
for all conformal Ki ∈ R

mi×ri (i ∈ v) with the property

that (I − DK)
−1

exists,

λ ∈ sp
(

A + BK (I − DK)
−1

C
)

(4)

where K := block diag (K1, . . . ,Kv).

An algebraic characterization of a DFM is given in Davison
and Chang (1990).

Theorem 5. Given the LTI system (1), λ ∈ sp(A) is a DFM
of (1) if and only if there exists a subset P = {i1, . . . , ik}
of v (i.e. P ⊆ v), and a complementary subset P̄ =
{j1, . . . , jv−k} (i.e. P̄ = v − P) such that

rank

([

A − λIn B
P̄

CP D
PP̄

])

< n (5)

where we denote T (s,P) :=

[

A − sI B
P̄

CP D
PP̄

]

and is defined

as follows
1 τk(M) defined in this paper is sometimes referred to as the real
perturbation values of the second kind.

[

A − sI B
P̄

CP D
PP̄

]

:= (6)



























































[ A − sI B1 . . . Bv ] if k = 0








A − sI Bj1 · · · Bjv−k

Ci1 Di1j1 · · · Di1jv−k

...
...

...
Cik

Dikj1 · · · Dikjv−k









if k ∈ [1, v − 1]









A − sI
C1

...
Cv









if k = v

Furthermore, denote the dimensions of B
P̄

and CP by
n × m

P̄
and rP × n respectively.

2.3 Decentralized Fixed Mode Radius

Following a similar approach as introduced in Vaz and
Davison (1988), the DFM radius and unstable DFM radius
are defined as follows.

Definition 6. (DFM Radius). Given a LTI system (1) that
has no DFMs, the DFM radius of the system is defined as

rDFM
F

([

A B
C D

]

v

)

= inf

{∥

∥

∥

∥

[

∆A ∆B

∆C ∆D

]∥

∥

∥

∥

∣

∣

∣

∣

(7)

∆A ∈ F
n×n,∆B ∈ F

n×m,∆C ∈ F
r×n,∆D ∈ F

r×m,
[

A + ∆A B + ∆B

C + ∆C D + ∆D

]

v

has at least one DFM

}

where m =

v
∑

i=1

mi, r =

v
∑

i=1

ri, and F ∈ {R, C} . 2

Definition 7. (Unstable DFM Radius). Likewise, given a
LTI system (1) that has no unstable DFMs, the unstable
DFM radius is defined as

r
DFM+

F

([

A B
C D

]

v

)

= inf

{
∥

∥

∥

∥

[

∆A ∆B

∆C ∆D

]
∥

∥

∥

∥

∣

∣

∣

∣

(8)

∆A ∈ F
n×n,∆B ∈ F

n×m,∆C ∈ F
r×n,∆D ∈ F

r×m,
[

A + ∆A B + ∆B

C + ∆C D + ∆D

]

v

has at least one unstable DFM

}

In Vaz and Davison (1988), it was shown that the complex
DFM radius and the complex unstable DFM radius are
respectively given by:

rDFM
C

([

A B
C D

]

v

)

= min
s∈C

min
P⊆v

σn(T (s,P)) (9)

and

r
DFM+

C

([

A B
C D

]

v

)

= min
s∈C+

min
P⊆v

σn(T (s,P)) (10)

In Lam and Davison (2007), the real DFM radius and the
real unstable DFM radius are respectively obtained as:

rDFM
R

([

A B
C D

]

v

)

= min
s∈C

min
P⊆v

τn(T (s,P)) (11)

and

r
DFM+

R

([

A B
C D

]

v

)

= min
s∈C+

min
P⊆v

τn(T (s,P)) (12)

2 rDFM

C
(i.e. F = C) is called the complex DFM radius, whereas

rDFM

R
is called the real DFM radius.
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We will make one further definition.

Definition 8. Given a LTI system (1) that has no DFM
and given s ∈ C, the modal DFM radius of (1) with respect
to s, denoted by rs

F
, is defined as

rs
F

([

A B
C D

]

v

)

= inf

{∥

∥

∥

∥

[

∆A ∆B

∆C ∆D

]∥

∥

∥

∥

∣

∣

∣

∣

(13)

∆A ∈ F
n×n,∆B ∈ F

n×m,∆C ∈ F
r×n,∆D ∈ F

r×m,
[

A + ∆A B + ∆B

C + ∆C D + ∆D

]

v

has at least one DFM at s

}

where F ∈ {C, R}. The model complex and real DFM
radius are respectively obtained as:

rs
C

([

A B
C D

]

v

)

= min
P⊆v

σn(T (s,P)) (14)

and

rs
R

([

A B
C D

]

v

)

= min
P⊆v

τn(T (s,P)) (15)

3. MAIN RESULTS

The main focus of this paper is: i) to present an al-
gorithm for computing the minimum norm perturbation
that achieves the real DFM radius; ii) to discuss some
properties of the real DFM radius; iii) to extend the real
DFM radius to deal with structured perturbations; and
iv) to extend the real DFM radius to deal with general
decentralized information flow constraints.

3.1 Constructing the perturbations that achieve rDFM
R

Assume that the real DFM radius of

[

A B
C D

]

v

is found to

be rDFM
R

and is achieved at s, P and P̄. This section now
presents a method for constructing the real perturbation

matrix, ∆ :=

[

∆A ∆B

∆C ∆D

]

, that achieves rDFM
R

(i.e. so that
∥

∥

∥

∥

[

∆A ∆B

∆C ∆D

]∥

∥

∥

∥

= rDFM
R

).

Note that ∆ can easily be derived from any matrix ∆s :=
[

∆A ∆B
P̄

∆CP
∆D

PP̄

]

that satisfies

rank(T (s,P) + ∆s) < n

In particular, the rows/columns of ∆B , ∆C , and ∆D cor-
responding to P and P̄ as defined by (6) can respectively
be set to be equal to ∆B

P̄
, ∆CP

, and ∆D
PP̄

, while the
remaining elements are set to zero. Hence, the main effort
in constructing ∆ is in finding ∆s. The following theorem
found in Karow (2003) can be used to construct ∆s.

Theorem 9. Given M ∈ C
q×l and k ∈ N. If τk(M) = ∞,

then there exists no ∆ ∈ R
q×l such that rank(M + ∆) < k.

Suppose τk(M) < ∞. Let X be any (l−k+1)-dimensional
subspace of C

l satisfying the hermitian-symmetric inequal-
ity

x∗
(

τk(M)
2
Il − M∗M

)

x ≥
∣

∣

∣
xT
(

τk(M)
2
Il − MT M

)

x
∣

∣

∣

(16)

for all x ∈ X , and let X ∈ C
l×(l−k+1) be any matrix whose

columns form a basis of X . Set

∆ := − [ℜ(MX) ℑ(MX) ] [ℜ(X) ℑ(X) ]
+
∈ R

q×l (17)

Then

rank(M + ∆) < k and ‖∆‖ = τk(M) (18)

Hence from Theorem 9, we immediately see that ∆s can
be constructed as follows:

∆s := − [ℜ(T (s,P)Xs) ℑ(T (s,P)Xs) ] [ℜ(Xs) ℑ(Xs) ]
+

(19)
where Xs is a complex matrix whose columns form the
basis for a subspace that satisfies

x∗Ĥx ≥
∣

∣

∣
xT Ŝx

∣

∣

∣
(20)

where Ĥ := (rDFM
R

)2I − T (s,P)
∗
T (s,P) and Ŝ :=

(rDFM
R

)2I − T (s,P)
T
T (s,P). Such a basis (i.e. Xs) can

be obtained by performing a simultaneous block diagonal-
ization of Ĥ and Ŝ. We will consider two cases: i) when s
is real; and ii) when s is complex.

Case (i): s is real

When s is real, Ĥ = Ŝ are real symmetric. Hence,
(Ĥ, Ŝ) can both be simultaneously diagonalized via a real

orthogonal matrix P ; i.e. PT ĤP = PT ŜP = Λ, where
Λ is a real diagonal matrix. Such a P can be obtained
by the Takagi decomposition of Ĥ. 3 Finally, set Xs =
[x1, . . . , xk], where x1, . . . , xk are the columns of P that
satisfy (20) and k = m

P̄
+ 1.

Case (ii): s is complex

Let HSn :=
{

(H,S) ∈ C
n×n × C

n×n|H∗ = H,ST = S
}

be the set of n × n hermitian-symmetric matrix pairs.
Furthermore, denote

HS+
n := {(H,S) ∈ HSn|det(H) 6= 0,

C is condiagonalizable 4 , where C := S−1H
}

It is shown in Karow (2003) that the set HS+
n is an open

and dense subset of HSn. Also, the following is true.

Theorem 10. (Karow (2003)). Let (H,S) ∈ HS+
n and C =

S−1H. Then CC has non-negative real eigenvalues, the
nonreal eigenvalues of CC occur in complex conjugate
pairs, and there exists an invertible matrix P ∈ C

n×n such
that

P ∗HP = block diag{λ1, . . . , λρ, λρ+1, . . . , λρ+l,

λρ+l+1, . . . , λr,

[

0 ν1

ν1 0

]

, . . . ,

[

0 νs

νs 0

]}

PT SP = In (21)

where

• λi ∈ R and λ2
i is a real eigenvalue of CC, for i =

1, . . . , r

3 Since Ĥ and Ŝ are real symmetric, the real Schur decomposition
can also be used.
4 i.e. there exists a nonsingular R ∈ Cn×n such that R−1CR is
diagonal.
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• ℑνi ∈ C\R with ℑνi > 0 and ν2
i , νi

2 are the nonreal
eigenvalues of CC, for i = 1, . . . , s

• 1 > λ1 ≥ · · · ≥ λρ ≥ −1
• λi ≥ 1 for ρ + 1 ≤ i ≤ ρ + l
• λi < −1 for ρ + l + 1 ≤ i ≤ r

Furthermore, the columns of P form a basis of eigenvectors
for CC.

Let
(

Ĥ, Ŝ
)

∈ HS+
n+m

P̄

, where Ĥ and Ŝ are given in

(20), then by Theorem 10, there exists a P that can

simultaneously block diagonalize Ĥ and Ŝ into the form
given by (21). Such a P can be constructed by a procedure
in Karow (2003) and is summarized below.

First, let µ1, . . . , µr be the real eigenvalues of CC, where

C = Ŝ−1Ĥ, and µr+1, . . . , µr+s be the eigenvalues of CC
with positive imaginary part. Now, let u1, . . . , ur be the
eigenvectors corresponding to µ1, . . . , µr, and v1, . . . , vs

be the eigenvectors corresponding to µr+1, . . . , µr+s.
(Note: Cv1, . . . , Cvs are eigenvectors corresponding to
µr+1, . . . , µr+s.) Define

Q = [u1, . . . , ur, v1, Cv1, . . . , vs, Cvs]

and let P be as follows:

P = Qdiag
(

α−1
1 , . . . , α−1

r , β−1
1 , γ−1

1 β−1
1 , . . . , β−1

s , γ−1
s β−1

s

)

where αj , βj , γj ∈ C\{0} satisfy

α2
j = uT

j Ŝuj 1 ≤ j ≤ r,

β2
j = vT

j Ŝvj 1 ≤ j ≤ s,

γ2
j = µr+j 1 ≤ j ≤ s

Such a P := [p1, . . . , pr+2s] will simultaneously block

diagonalize Ĥ and Ŝ in the form given by (21). 5 Then,

• for each λj ≥ 1, set aj := pρ+j , for j = 1, . . . , l
• for each complex pair (νj , νj), set bj := pr+2j−1 +

ipr+2j , for j = 1, . . . , s
• for the set of eigenvalues {λ1, . . . , λρ}, there exists

w = m
P̄
− l− s+1 pairs such that λj +λ2w+1−j ≥ 0;

set cj := pj + ip2w+1−j for j = 1, . . . , w.

Finally, set Xs = [x1, . . . , xm
P̄

+1], where x1, . . . , xm
P̄

+1

are now the columns of [a1, . . . , al, b1, . . . , bs, c1, . . . , cw]
that satisfy (20), and substitute Xs into (19) to obtain
∆s.

3.2 Properties of the real DFM radius

Lemma 11. The real DFM radius of (1) is invariant under
real orthogonal coordinate transformations. In particular,
let z = Qx where Q is real orthogonal and consider the
system:

ż = Ãz +
v
∑

i=1

B̃iui

yi = C̃iz +

v
∑

j=1

D̃ijuj (i ∈ v) (22)

5 To achieve the particular ordering of λ1, . . . , λr as specified in (21),
the first r columns of P may need to be rearranged in a different
order.

where Ã := QAQT , B̃i := QBi, C̃i := CiQ
T and D̃ij :=

Dij , for i, j ∈ v. Then

rDFM
R

([

Ã B̃

C̃ D̃

]

v

)

= rDFM
R

([

A B
C D

]

v

)

(23)

where B̃, C̃, and D̃ are defined in a similar way as matrices
B, C, and D respectively.

Proof.

rDFM
R

([

Ã B̃

C̃ D̃

]

v

)

= min
s∈C

min
P⊆v

τn

([

Q 0
0 I

]

T (s,P)

[

QT 0
0 I

])

= min
s∈C

min
P⊆v

τn(T (s,P)) by Lemma 2 (iii)

Lemma 12. Given s ∈ C, then

rs
R

([

A B
C D

]

v

)

= rs
R

([

A B
C D

]

v

)

(24)

Proof.

rs
R

([

A B
C D

]

v

)

= min
P⊆v

τn(T (s,P))

= min
P⊆v

τn(T (s,P)) by Lemma 2 (ii)

Remark 13. An immediate result of Lemma 12 is that
if a given s achieves the real DFM radius, then s also

achieves it. More importantly, rs
R

([

A B
C D

]

v

)

is therefore

a mirrored image with respect to the real axis. Hence, the
search for the global minimizer that achieves the real DFM
radius can be restricted to either the closed upper or lower
half of the complex plane.

3.3 Real DFM radius with structured perturbations

Definition 14. Given an LTI system (1) that has no DFMs.
Consider the following structured perturbations:

A→A + E1∆AF1 (25)

Bi →Bi + E1∆Bi
f2i i ∈ v (26)

Ci →Ci + e2i∆Ci
F1 i ∈ v (27)

Dij →Dij + e2i∆Dij
f2j i, j ∈ v (28)

where E1, F1, E2 := block diag (e21, . . . , e2v), and F2 :=
block diag (f21, . . . , f2v) are all nonsingular. The struc-
tured real DFM radius of the system is defined as

rDFM
R,struct

([

A B
C D

]

v

)

= inf

{∥

∥

∥

∥

[

∆A ∆B

∆C ∆D

]∥

∥

∥

∥

∣

∣

∣

∣

(29)

∆A ∈ R
n×n,∆B ∈ R

n×m,∆C ∈ R
r×n,∆D ∈ R

r×m,
[

A + E1∆AF1 B + E1∆BF2

C + E2∆CF1 D + E2∆DF2

]

v

has at least one DFM

}

Lemma 15.

rDFM
R,struct

([

A B
C D

]

v

)

(30)

= min
s∈C

min
P⊆v

τn

(

[

E1 0
0 E2P

]−1

T (s,P)

[

F1 0
0 F2P̄

]−1
)
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where for the partition P := {i1, . . . , ik}, and P̄ :=
{j1, . . . , jv−k}, we denote E2P := block diag(e2i1 , . . . , e2ik

)
and F2P̄ := block diag

(

f2j1 , . . . , f2jv−k

)

.

Proof. The proof directly follows given that for nonsin-
gular E and F ,

rank(M + E∆F ) = rank
(

E−1MF−1 + ∆
)

3.4 General information flow constraints

In Lam and Davison (2007), the real DFM radius (11) is
defined for the decentralized system (1) that is subject to
a diagonal information flow constraint, K; i.e.

u = Ky

where u =
[

u1
T , · · ·, uv

T
]T

, y =
[

y1
T , · · ·, yv

T
]T

, and

K ∈
{

K ∈ R
m×r|K = block diag(K1,K2, . . . ,Kv) ,

Ki ∈ R
mi×ri , i = 1, . . . , v,det (I − DK) 6= 0

}

(31)

In this section, the real DFM radius is generalized to
general information flow constraints, i.e.

K ∈











K ∈ R
m×r

∣

∣

∣

∣

∣

∣

∣

K =







K11 · · · K1v

...
...

Kv1 · · · Kvv






,Kij ∈ R

mi×rj

i, j = 1, . . . , v} (32)

where any of the elements of K can be constrained to be
zero, for systems with D = 0.

Lemma 16. The decentralized LTI system (1) with D = 0
and a general information flow constraint (32), K, can be
written as an alternative decentralized system

ẋ = Ax +

ṽ
∑

i=1

B̃iũi

ỹi = C̃ix (i ∈ ṽ) (33)

subject to a block diagonal information flow constraint
(31), K̃; i.e.

ũ = K̃ỹ

where ũ =
[

ũT
1 , · · ·, ũT

ṽ

]T
and ỹ =

[

ỹT
1 , · · ·, ỹT

ṽ

]T
.

Proof. For i ∈ v, let ki denote the number of non-zero
block matrices in the (ordered) set Ki := {Ki1, . . . ,Kiv},
where Kij are defined in (32) for j = 1, . . . , v, and let
hi,j ∈ {hi,1, . . . , hi,ki

} be an index where Ki(hi,j) is the
j-th non-zero block matrix of Ki, for j = 1, . . . , ki. Now
for i ∈ v, let

B̃k1+···+ki−1+j = Bi for j = 1, . . . , ki

C̃k1+···+ki−1+j = Chi,j
for j = 1, . . . , ki

It can easily be verified that the original system (1)
with the general information flow K is equivalent to the
alternative system (33) (where ṽ =

∑v
i=1 ki, and B̃i and

C̃i are constructed as above, for i ∈ ṽ) with the diagonal
information flow constraint:

K̃ = block diag
(

K1,h1,1
, . . . ,K1,h1,k1

,K2,h2,1
, . . . ,K2,h2,k2

,

. . . ,Kv,hv,1
, . . . ,Kv,hv,kv

)

Hence by Lemma 16, one can compute the real DFM radius
of a decentralized system with a general information flow
constraint by first reformulating the system such that a
diagonal information flow constraint is used. The previous
results (e.g. (11) and (12)) can then be applied to the
new system after removing repeated columns and rows in
T (s,P) that arise from applying Lemma 16. To illustrate
the latter point, it is best to use an example.

Example 17. Consider the following system with two con-
trol stations and subject to the general information flow

constraint K =

[

K11 K12

0 K22

]

:

ẋ = Ax + B1u1 + B2u2

y1 = C1x, y2 = C2x (34)

The system (34) can be rewritten as

ẋ = Ax + B1ũ1 + B1ũ2 + B2ũ3

ỹ1 = C1x, ỹ2 = C2x, ỹ3 = C2x (35)

where the information flow constraint is given by K̃ =
block diag(K11,K12,K22). Given s ∈ C, a direct applica-
tion of (13) to compute the modal real DFM radius of
system (35) with respect to s requires the computation of
the n-th real perturbation values of the following matrices:

[ A − sI B1 B1 B2 ],

[

A − sI B1

C1 0
C2 0

]

,

[

A − sI B1

C2 0
C2 0

]

, etc.

However, note that B1 appears twice in the first matrix.
Therefore to avoid perturbing each B1’s independently,
the n-th real perturbation value of [ A − sI B1 B2 ] should
be computed instead. Likewise, all of the other matrices
(i.e. T (s,P)) that have repeated columns and/or rows
obtained from applying Lemma 16 (e.g. the third matrix
with repeated C2) should have the repeated columns and
rows removed before applying any of the previous results.

4. NUMERICAL EXAMPLE

Consider the following system, which has eigenvalues
{−0.6956,−1.358 ± 1.029i} and has two control stations,

subject to the information flow constraint K =

[

× 0
0 ×

]

:

ẋ =

[

0 −1 −1
1 1 1
2 3 1

]

x +

[

1
0
0

]

u1 +

[

0
0.1
0

]

u2

y1 = [ 0 0.01 0 ]x, y2 = [ 1 0 0.01 ]x (36)

By (11), the real DFM radius is found to be 7.90210−2 ,
which is achieved at s = 1.336 ± 1.034i, P = {1}, and
P̄ = {2}. Using the procedure presented in Section 3.1, the
corresponding system perturbation is computed to be:

∆ :=





∆A ∆b1 ∆b2

∆c1
∆d11

∆d12

∆c2
∆d21

∆d22



 = (37)











−2.1410−2 4.4510−2 −5.4210−2 0 −1.7810−2

0 0 0 0 −6.2410−2

8.4510−3 −1.7610−2 2.1410−2 0 −4.5010−2

0 −1.0010−2 0 0 0
0 0 0 0 0
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It can easily be verified that the norm of the perturbation
(37) is equal to the real DFM radius 7.90210−2 and that
the perturbed system has a DFM at s = 1.336 ± 1.034i.

Now consider the same system (36) with the information

flow constraints K =

[

× ×
0 ×

]

. Using the method presented

in Section 3.4, the real DFM radius is found to be 0.1107,
which is achieved at s = −0.6981, P = {} and P̄ = {1, 2}.
The following perturbation achieves the real DFM radius
of 0.1107:

∆ = (38)










1.8810−3 −6.1910−4 −9.3110−4 −2.8910−3 −4.7210−3

3.0610−2 −1.0110−2 −1.5210−2 −4.7210−2 −7.7110−2

−1.6610−2 5.4710−3 8.2310−3 2.5610−2 4.1710−2

0 0 0 0 0
0 0 0 0 0











where the perturbed system has a DFM at s = −0.6981
with respect to the information flow constraint K =
[

× ×
0 ×

]

.

5. APPLICATION OF THE REAL DFM RADIUS

Given a multi-input multi-output system that is to be con-
trolled by a decentralized LTI controller, the real DFM ra-
dius can be used to determine how the inputs and outputs
should be paired in order to obtain a robust decentralized
control system structure with respect to parametric per-
turbations. In particular, one can compute the real DFM
radius of the system with various input/output pairing
combinations, and then chose the pairing that maximizes
the real DFM radius. As a preliminary study, this section
will compare the pairing decisions obtained using the real
DFM radius with using the so-called Relative Gain Array
(RGA) approach (see Bristol (1996)), which is an approach
widely used in industry.

Given a stable system (C,A,B,D), the RGA is defined as:

ΓRGA = G(0) ⊗
(

G(0)T
)−1

(39)

where ⊗ denotes element-by-element product, and G(s) :=

C (sI − A)
−1

B + D. In this case the RGA uses only the
steady-state properties of the input/output behaviour of
a given system. The following example shows how the
real DFM radius can be used to choose the “optimal”
input/output pairing, and shows, in contrast, that the
RGA can lead to erroneous results.

5.1 Counterexample to RGA approach

Given the stable system:

ẋ =

[

−1 0 0
0 −0.01 0
0 0 −3

]

x +

[

1 0
0 1
0 1

]

[

u1

u2

]

[

y1

y2

]

=

[

1 1 0
0 0 1

]

x (40)

the RGA is obtained to be ΓRGA =

[

1 0
0 1

]

, which suggests

that the following pairing should be used to control the
system (40) (Bristol (1996)):

[

u1

u2

]

=

[

× 0
0 ×

] [

y1

y2

]

(41)

However, the real DFM radius of (40) for the information
flow constraint:

[

u1

u2

]

=

[

0 ×
× 0

] [

y1

y2

]

(42)

is 0.2333 corresponding to the mode -0.7668, whereas the
real DFM radius of (40) for the information flow constraint
(41) is zero, corresponding to the mode -0.01! This implies
that if the pairing (41), as recommended by the RGA
method is used, then the resulting controller would be
unable to control the dominant mode (-0.01) of the plant!
On the other hand, if the pairing (42), as suggested by the
real DFM radius is used, then all modes of the system can
easily be controlled.

6. CONCLUSIONS

Various new results and properties regarding the real DFM
radius are presented in this paper, which includes the
extension of the radius to deal with structured parametric
perturbations and general information flow constraints. A
procedure for computing the actual system perturbations,
which give rise to the real DFM radius, is also presented.
A study is also carried out using the real DFM radius to
determine how to pair system inputs and outputs such
that the resulting control system structure is robust. An
example in this case is presented to show how effective the
real DFM radius approach can be compared to the RGA
method.
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