
THE INTERNAL MODEL PRINCIPLE OF CONTROL THEORY

W. M. Wonham, 2018.06.17

I. INTRODUCTION

The Internal Model Principle (IMP) of control theory
states (informally) that “a good controller incorporates a
model of the dynamics that generate the signals which the
control system is intended to track.” Briefly, the controller
contains a model of its “exosystem”, or ”outside world.”
While more formal statements have appeared in the control
literature starting in the 1970s, these have been developed
only within rather specialized frameworks such as linear
multivariable systems or certain nonlinear systems defined
on smooth manifolds.
Our aim in this note is to develop a version of the IMP in
as elementary a setting as possible, namely just that of plain
sets and functions. In particular we discuss the necessity of
feedback, and how from feedback structure the controller’s
internal model structure can be naturally derived. While
several questions remain open, this setting has the appeal
of being universal and readily specialized.

II. GENERAL BACKGROUND

In psychology and human experience generally the IMP
is by no means new. According to Kenneth Craik [1],“[O]nly
[an] internal model of reality- this working model [in our
minds]- enables us to predict events which have not yet
occurred in the physical world, a process which saves time,
expense, and even life. [In other words] the nervous system
is viewed as a calculating machine capable of modelling or
paralleling external events, and this process of paralleling is
the basic feature of thought and of explanation.” Mark Twain,
apprenticed as a teenager to a Mississippi river pilot, later
[2] reports his mentor as saying, “You only learn the shape
of the river; and you learn it with such absolute certainty
that you can always steer by the shape that's in your head,
and never mind the one that's before your eyes” (italics in
original). We shall later indicate what that “shape of the
river” might be. Our mimicry of the IMP with automata (or
discrete dynamics) is nothing new either; as Thomas Hobbes
[3] declared, “For seeing life is but a motion of limbs ...
why may we not say, that all automata (engines that move
themselves by springs and wheels as doth a watch) have an
artificial life?”

III. CONTROL BACKGROUND

By the 1930s, thanks to research at the Bell Telephone
Laboratories, the mathematical foundation of “classical”
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linear feedback control based in the frequency domain was
soundly established. Its implications were the following. 1.
Error feedback (i.e. output feedback followed by the precise
differencing of output and input reference signals to form
the tracking error) by itself can reduce parameter sensitivity,
and final tracking error, but only at the expense of high
loop gain. 2. Error feedback, plus an internal model of
the reference signal generator, together reduce final tracking
error to exactly zero (i.e. ensure perfect tracking), regardless
of (reasonable) parameter perturbations, while requiring only
moderate average loop gain. A familiar example is the “inte-
grator” component of PID control used to track (specifically)
step reference inputs. In general the price to be paid for
perfect tracking was extra control complexity, including a
stabilizing compensator, specific to the reference signals to
be tracked. Later, Otto Smith [4] incorporated an internal
model in his scheme of predictive control; while from the
1970s the study of parameter-insensitive perfect asymptotic
tracking led to the recognition of both error feedback and the
internal model as necessary and sufficient structural features
of “robust” linear multivariable systems; for references see
Wonham [5]. In this way the step reference generator of PID
control was generalized to an arbitrary linear “exosystem” as
well as outputs of arbitrary vector dimension.

IV. THE INTERNAL MODEL PRINCIPLE

Since the achievement of “robustness” or structural sta-
bility of perfect regulation with respect to parameter vari-
ations is largely a matter of technology, we shall consider
only the converse questions:

Is error feedback a necessary condition for “good” reg-
ulation (i.e. perfect tracking)?

Is an internal model a necessary condition for “good”
regulation?

If “Yes”, shouldn't these statements hold for a very wide
class of regulator systems, linear or nonlinear?

Thus we shall assert as the Internal Model Principle
(IMP):

For a very general class of systems:

Assertion 1. Error feedback + Perfect regulation ⇒
Internal Model

Assertion 2. Structurally stable (or “robust”) perfect
regulation ⇒ Error feedback + Internal Model



Fig. 1: Total System S

Our goal is to establish the IMP in a general but
rudimentary discrete-time framework, using just ordinary
sets and functions, without any sophisticated technical or
geometric machinery. We begin with the easier Assertion
1. Referring to Fig 1, we consider the total system S =
Exosystem × Controller × Plant = E ×C × P, with state
space the set X = XE × XC × XP, say. While there’s no
need to distinguish sharply between Controller and Plant,
we do so here for the sake of intuition and control tradition.
Bring in the total one-step transition function α : X → X .
We consider XC × XP to be α-invariant, and XE the
corresponding factor with induced map αE : XE → XE.
Thus (XE, αE) is the dynamic model of the exosystem or
“outside world”, providing the reference signal for tracking
by C×P. Think of E as “driving” C×P.

For the total system S we need to define internal stability,
error feedback, and exosystem detectability. For internal
stability we assume that X is a finite set and that (XE, αE)
induces an α-invariant subset of X via an injection iE :
XE → X as shown in the (commutative) diagram of Fig.
2. Thus α ◦ iE = iE ◦ αE . Write X̃E := iE(XE) and
assume (crucially) that X̃E is a global attractor, namely that,
for every initial state xo in X , there is an integer N with
αn(xo) ∈ X̃E for all n ≥ N . [For simplicity we omit the
technical details in case X is infinite.] Think of E as an
orchestra and C×P as an attentive but passive audience.

Fig. 2: Internal stability commutative diagram

To define error feedback, first let K ⊆ X be the target
subset for regulation: in the standard case K is exactly the
subset where tracking error is zero. Also let γ : X → XC

be the natural projection defining state of the controller.
Error feedback is then the property that the controller C
is externally driven only when state of S deviates from
the target K, namely the dynamics of C are autonomous
as long as x ∈ K, or “tracking remains perfect”. Suppose
x ∈ K, so the controller state is xC = γ(x). By feedback
the next controller state x′C = γ(α(x)) depends only on
xC = γ(x), i.e. for x ∈ K, γ ◦ α(x) is computable from
γ(x). Formally ker(γ|K) ≤ ker(γ ◦ α|K), where ker(.)

denotes equivalence kernel of the functional argument and
≤ means “is a refinement of”. Note that K itself need not
be α-invariant and usually isn’t.

Lack of space prohibits formally defining exosystem
detectability (see [6] , [7]); just recall that detectability is
“local observability” on an invariant subspace, defined here
as the property that the global observer congruence for the
pair (γ, α) reduces to “full observation” (bottom element) on
X̃E. Intuitively this means that the controller is effectively
coupled (via error feedback) to the exosystem, namely the
latter is observable by the controller as long as regulation is
perfect. This requirement could be dropped by replacing the
exosystem by its “observable factor”.

With XE as defined above, write α̃E := α|X̃E,
γ̃E := γ|X̃E. Now we can prove

Theorem 1. Internal Model Principle: Assertion 1 above

Assume that S satisfies internal stability, perfect regula-
tion, error feedback, and exosystem detectability. Then

1) There exists a unique mapping αC : XC → XC

determined by αC ◦ γ|K = γ ◦ α|K
2) αC ◦ γ̃E = γ̃E ◦ α̃E

3) γ̃E is injective

Statement 1 defines the controller's dynamics, as autonomous
under the condition of regulation. Statement 2 identifies these
controller dynamics as a copy of the dynamics of E on
the global attractor (i.e. exosystem dynamics). Statement 3
asserts that this copy is faithful, namely incorporates fully the
exosystem dynamics. The result is shown in the commutative
diagram Fig. 3. The proof (omitted) amounts to building up
the commutative diagram Fig. 4.

Fig. 3: Commutative diagram for Assertion 1

Fig. 4: Commutative diagram for Theorem 1

To formalize Assertion 2 above we enlarge the state



structure by forming products with a parameter set M; and re-
quire that internal stability, perfect regulation, and exosystem
detectability hold for every element µ in M . For realism and
to avoid overkill we specialize M =ME ×MC ×MP, µ =
(µE, µC, µP), resulting in the commutative diagrams of Fig.
5. The resulting perturbation model (Fig. 6) leads in turn to
the equation

αC [R(µE)(xE), S(µP) ◦ iP(xE), T (µC) ◦ iC(xE)] =
T (µC) ◦ iC ◦ αE(xE)

(a) (b)

(c)

Fig. 5: Admissible transformations

Fig. 6: Perturbation model commutative diagram

We must make the final crucial assumption of Rich
Parameter Perturbation:

For each fixed xE, as µE varies through ME and µP

varies through MP, R(µE)(xE) varies through XE and
S(µP) ◦ iP(xE) varies through XP. It follows that

αC[R(µE)(xE), S(µP) ◦ iP(xE), T (µC) ◦ iC(xE)]

depends only on T (µC) ◦ iC(xE). In other words, for each
fixed parameter value µ, the system S has feedback structure
on the attractor X̃E(µ), namely for every µ the controller
C is autonomous when regulation is perfect. As before, we
deduce that C contains an internal model of E, establishing
Assertion 2 above.

So what is the shape of Mark Twain’s river (which
wanders about under perturbation)? Note that in Fig. 5,

αE ◦ R(µ) = R(µ) ◦ αE, where R(µ) is in fact an
automorphism. Thus a “small” perturbation µ merely shifts
the current state of E to one on a “neighboring” trajectory
of the same dynamics (XE, αE). For the shape take any
”nominal” trajectory you like!

V. CONCLUSIONS

The scheme above may provide a basis for versions of
the IMP in a variety of more structured technical settings,
for example bang-bang or sliding mode. Not to mention
refinements topological, metric, differentiable ..., where (es-
sentially) the same commutative diagrams ought to work.

As stated here, the IMP crudely represents only a primi-
tive “intelligence”; issues of adaptation, learning, computing
power, and “real” problem-solving intelligence are open for
investigation.

REFERENCES

[1] K. Craik, The Nature of Explanation. Cambridge U. P., Cambridge
UK, 1943.

[2] M. Twain, Life on the Mississippi. Osgood, Boston, 1883.

[3] T. Hobbes, Leviathan. London, 1651.

[4] O. J. M. Smith, Feedback Control Theory. McGraw-Hill, 1958.

[5] W. M. Wonham, Linear Multivariable Control: A Geometric Approach.
Third ed., Springer, 1985.

[6] ——, “Towards an abstract internal model principle,” IEEE Transac-
tions on Systems, Man, and Cybernetics, 6(11), pp. 735–740, 1976.

[7] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems, Monograph Series Communications and Control Engineering,
Springer, 2018, in press.


