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Abstract: This brief history summarizes the ‘supervisory control of discrete-event systems’
as it has evolved in the period 1980-2015. Overall, the trend has been from centralized or
‘monolithic’ control to more structured architectures, and from ‘naive’ to symbolic computation.
Like any ‘history’ this one represents the perspective of the authors; inevitably some important
contributions will have been overlooked or short-changed.

1. BACKGROUND AND EARLY MOTIVATION c.1980

The year 1980 is a convenient point of departure for
supervisory control of discrete-event systems (SCDES) in
the current sense. By that time the broad field known
as ‘modern’ systems control that had evolved over the
previous 20 years was well-established, on the basis of the
five fundamental concepts of feedback, stability, controlla-
bility, observability, and quantitative optimality [AF66]. 1

Of particular relevance later to SCDES were geometric
concepts for regulator synthesis by feedback in linear mul-
tivariable systems [Won85], [BM91], namely the lattice of
subspaces of a linear vector space, including controlled
invariant subspaces, controllability subspaces, supremal
(unique maximal) elements in the sense of partial order by
subspace inclusion, and the concomitant notion of qualita-
tive optimality. The dynamical systems to which systems
control applied were generally those described by ordinary
or partial differential equations and their discrete-time
sampled-data counterparts, the main application drivers
being the industrial process industries and various national
space programs.

By contrast, discrete-event systems (DES) was an area
apart, concerned with systems usually discrete in time
and state space, driven by instantaneous events other than
(or in addition to) the tick of a clock, and ‘nondeter-
ministic’ in the sense of making state-transitional choices
by internal chance or other mechanisms not necessarily
modeled by the system analyst. Such systems were gener-
ally not amenable to the differential techniques of systems
control. The application drivers included manufacturing,

⋆ This work was supported in part by the Natural Sciences and
Engineering Research Council, Canada, Grant no. 7399 and RGPIN-
2015-05699; JSPS KAKENHI Grant no. JP16K18122.
1 For the reader’s convenience, in place of original sources textbooks
or monographs may be cited where references to the former can be
found.

traffic, database management, and logistic systems. Owing
to model complexity and analytical intractability, system
simulation played a major role in analysis and optimiza-
tion; indeed the term ‘DES’ seems to have originated with
the simulation community and computer languages like
SIMULA and SIMSCRIPT [Fis78]. Theoretical analysis
rested on queues [EVW80], Markov chains [How60], Petri
nets [Pet81], and boolean transition structures [Ave74];
while design approaches exploited semaphores [Dij65],
path expressions [Shi79], and computer program repre-
sentation by pseudo-code along with ‘by-hand’ cut-and-
try alternating with informal verification [BAri82]. Formal
attacks evolved in response, especially in software science,
either expressed in process algebras such as communicating
sequential processes (CSP) [Hoa85], the calculus of commu-
nicating systems (CCS) [Mil89], and work of the emerging
Dutch school [Bae04]; or proposed from a language per-
spective in terms of process behaviors [BN80], [AN80]. 2

In this literature control problems were certainly implicit,
but formal synthesis (in the style of systems control) was
broadly lacking. No standard paradigm existed analogous
to optimal control, and there was often no clear separation
of controller and uncontrolled ‘plant’. The need (or at
least the interest) was therefore apparent of a DES control
theory which would (1) be discrete in time and space, asyn-
chronous, event-driven as well as (possibly) clock-driven,
and nondeterministic (supporting autonomous transitional
choices); (2) rest on a simple control ‘technology’ and
exploit standard control concepts; (3) be amenable to
computation and applicable to the DES drivers (such as

2 While in several ways this paper foreshadowed the publications
[RW82], [RW87a] cited below, it was not until 1992 that the respec-
tive authors became aware of each others’ work. We thank Prof.
Arnold for helping to clarify this connection, and retrospectively Dr.
Angelo Bean for mediating between our two communities which, at
that time, were mutually rather isolated.



manufacturing); and (4) be accessible to practitioners and
students of control engineering.

2. LANGUAGE CONTROLLABILITY AND
MONOLITHIC SUPERVISORY CONTROL – 1981-1987

The DES control theory which appeared in response
[RW82] was not startling. The plant was modeled inter-
nally as a finite state machine (FSM) for ease of physical
interpretation and explicit computation; 3 plant external
behavior was thus a regular language, which could op-
tionally be considered the conceptual starting point inde-
pendently of representation. Control specification was also
modeled as an FSM, the corresponding regular language
providing an upper bound on acceptable controlled behav-
ior. The key advantages of this setting were its flexibility,
broad expressiveness, and the technical feature of regu-
lar language closure under the boolean operations. The
proposed control technology was simply a partition of the
language alphabet (of events) into controllable and uncon-
trollable, the former amenable to disablement (prevention
from occurrence) by a hypothetical external agent dubbed
supervisor, the latter events not capable of direct disable-
ment but presumed liable to occur (by chance, or internal
system ‘volition’) whenever defined at the system’s current
state. 4

The supervisory control synthesis problem was then formal-
ized as that of designing a finite-state supervisor which,
on observing the string of events generated by the plant,
would at each state disable a suitable subset of controllable
events to ensure that the generated controlled behavior
(regular language) continued to satisfy the control specifi-
cation, namely remained within the specification or ‘legal’
language. As in standard systems control, the approach
was thus to separate the issues of problem definition and
explicit computation.

Inasmuch as disabling all controllable events (in a sense,
allowing as little as possible) could often yield a (trivial)
formal synthesis, a concept of qualitative optimality was
introduced requiring that the controlled behavior be as
rich as possible (maximally permissive or minimally re-
strictive) subject to the specification constraint. There-
fore the need arose to identify the subclass of (regular)
languages which, for given plant and specification, could
be synthesized as just described, and within which an
optimal behavior could be shown to exist. Thus the final
and key ingredient of the theory [RW82], [RW87a] was the
concept of controllable language, and the crucial fact that
the controllable sublanguages of a given (specification)
language admitted a unique maximal (or supremal) ele-
ment. More technically, the legal controllable sublanguages
form an upper semilattice under the partial ordering of
language (i.e. string subset) inclusion. The solution of the
formal problem of optimal control is thus precisely the
top element of this semilattice, or supremal controllable

3 That the two areas of control theory and automata theory shared
ideas in common had been recognized for some time (see e.g.
[Arb65]).
4 The term supervisor for such a ‘disabling agent’ was adopted
to distinguish it from controller (conventionally a ‘forcing agent’).
Nevertheless, forcing action can effectively be modeled within the
theory when needed.

sublanguage (of the legal language). The latter was shown
to be effectively computable by an algorithm we shall later
call ‘Supcon’. The conceptual debt to previous geometric
regulation theory was evident.

Not uniquely in the annals of interdisciplinary research
[Gol89], the community response to this proposal ranged
from indifference to hostility. Computer specialists dis-
missed the engineering application of FSM and regular
languages as trivial and/or nothing new, while control
specialists regarded FSM as impractical and/or irrelevant:
“Finite automata,” declared one anonymous reviewer for
a leading journal, “have no place in control engineering.”
Eventually the archival paper was accepted by a third
journal as a putative contribution to ‘optimal control’
[RW87a].

3. CONFRONTING THE COMPUTATIONAL
CHALLENGE

Attempts to apply the new theory to industrial prob-
lems encountered the barrier notorious as exponential state
space explosion. Thus a workcell with N machines each
having k states would be modeled as a plant with a priori
state size ∼ k

N , so 10 machines each with 5 states would
result in a global model with state count 510 ∼ 10 million.
Naive extensional representation of such systems (whereby
the transitions are all listed and stored explicitly) rapidly
becomes infeasible. As a first response, researchers there-
fore turned to ‘smart architectures’ involving horizontal
and vertical modularity, or in systems terms decentralized
[RW87b] and hierarchical [ZW90] decompositions, later
including distributed control by supervisor localization
[CW10a] (described below).

In their basic conceptual form these approaches depend
on first computing the ‘global’ centralized or ‘monolithic’
control. Indeed, while control authority may ultimately be
‘local’, namely decomposable into specialized controllers
with authority over just a few plant components, to guar-
antee that these entities interact without mutual conflict
(which could result in system blocking, or even deadlock)
means solving the global nonblocking problem, subject yet
again to exponential computational effort. In other words,
modular control typically requires global coordination,
which threatens as before to be computationally infeasible.

Several approaches, used singly or in combination, emerged
to grapple with this issue. Essentially they sought to com-
bine efficient system architecture with ‘smart’ computa-
tion. Thus the computational model of state charts [Har87]
was adapted for control purposes in the version state tree
structures (STS) [MW05]. These are layered (or hierarchi-
cal) models which make essential use of intensional (as
distinct from extensional) representation of control func-
tions using boolean decision diagrams (BDDs) [Bry86]. 5

With intensional representation a computable entity is
stored not by tabling its values but instead providing an
algorithm by which they are computed explicitly just when
needed (as in the decimal representation of numbers, where
‘123’ is stored instead of, say, a string of 123 1’s). Another
efficient model class to be introduced was extended state

5 For apparently the earliest application of symbolic computation to
supervisory control see the report [Gun97].



machines (ESM) [CL00], [YG05], [SAF07], namely FSM
parametrized by boolean and integer variables for logic
elements and buffers, plus logic-based transition guards
and variable assignments for succinct representation of
state transitions. Other model types found useful included
(bounded) Petri nets [Kro87] or vector DES [LW94] (either
of these usually equivalent to a synchronous product of
buffers), especially when processed using FSM algorithms
of Supcon type to achieve maximal permissiveness with
nonblocking [CL13].

4. LANGUAGE OBSERVABILITY AND
MONOLITHIC CONTROL WITH PARTIAL

OBSERVATIONS

Successful formalization of ‘local’ control structures rests
on some notion of ‘local observability’. In systems control
observability is a property of a plant together with its
output or observation structure, which guarantees that
enough data about plant behavior (or current state) are
available for implementation of a given class of controls
(such as arbitrary state feedback controls). Specialized
to our DES model, ‘observation’ has been modeled by a
channel for transmission of the generated language strings
from plant to supervisor. The simplest type of channel
has zero memory, transmitting selected alphabet symbols
one-by-one without change (in the case of observable
events) or else erasing them altogether (the unobservable
events). Formally, the channel is modeled by a natural
projection from a language over a given alphabet to its
image over a specified observable subalphabet. A language
is then said to be observable, with respect to a given
plant and natural projection if, for every plant-generated
string already in the language, its projection determines
consistently whether a putative one-step (event) extension
of the string remains a member of the language or not. It
is shown that a controllable language can be synthesized
(in a feedback loop with the plant) on observing only
the projected generated strings (i.e. strings ‘output by
the channel’) if and only if the language is observable
([LW88], [CDFV88]). In the regular language framework
observability is decidable in time polynomial in the state
size of the targeted language [Tsi89].

Conceptually, at least, the foregoing developments brought
SCDES into the mainstream of systems control. Unfor-
tunately, observability has turned out to be intractable
for practical synthesis, the technical reason being that,
unlike controllability, this property fails to be closed under
language union; the upper semilattice algebraic structure
that holds for controllable languages alone therefore fails;
hence no optimal (unique maximally permissive) solution
to the problem of supervisory control under partial obser-
vations (SCOP) need generally exist. Relaxing optimality
to require only a ‘maximal’ solution is of no particular
help inasmuch as a designer would generally have no idea
where such a maximal element might be located in the
landscape of solutions; in any case it is currently unknown
how to compute even an ‘adequate’ solution to SCOP on
the sole assumption that one happens to exist.

In mitigation, conditions stronger than full observabil-
ity have been proposed that are tractable and, while a
large catalog of realistic applications has yet to emerge,

in many instances yield a useful result. The earliest and
simplest was normality [LW88], namely that a language
is determined essentially by its inclusion in the plant and
specification languages together with its image under the
given natural projection for partial observation. It is shown
that normality implies observability, and that the family of
controllable normal languages admits a supremal element
that is often tractably computable despite exponential
worst-case complexity. The main shortcoming of this nor-
mality solution to SCOP is that an event can be considered
controllable (i.e. subject to possible disablement) only if
it is observable. In general this means that the supre-
mal normality solution may be empty even though some
observability solution is not, albeit whether or not the
latter exists will in general be problematic. More recently,
however, an improved condition of relative observability
has been proposed [CZW15b], stronger than observability
but strictly weaker than normality and with the same de-
sirable property of closure under language union. Thus the
family of controllable and relatively observable languages
admits a supremal element, yielding a ‘relatively’ optimal
solution to SCOP, which happily places no restriction on
the disablement of unobservable controllable events. As
with normality, this solution can be tractably computable;
examples have shown its practical utility as well as its gen-
erally greater permissiveness than the normality solution
to SCOP.

5. DECENTRALIZED AND DISTRIBUTED
CONTROL WITH PARTIAL OBSERVATIONS

Language observability was first applied to decentral-
ized control via the extended concept of co-observability
[RudW92]. The setup envisaged a global plant, together
with a team of several isolated ‘agents’ each with an
assigned subset of observable events (i.e. channel with
corresponding natural projection) and an assigned subset
of controllable events; an agent may share its observable
and controllable events with other agents (i.e. agents’
alphabets may possess elements in common). For a given
controllable language meeting the (global) control spec-
ification, each agent is assumed independently to decide
whether or not each ‘next’ controllable event should be
enabled or disabled; it then communicates its decision to
a central controlling authority. Employing one of several
possible rules for ‘decision fusion’ [YL02] the latter imple-
ments the collective control decision. The given language
is defined to be co-observable if this decision is always
correct; in the case of just one agent, co-observability re-
duces to observability. With several agents, a controllable
language can then be synthesized in the described decen-
tralized architecture; for this the co-observability property
is both sufficient and necessary.

Unfortunately, just as with the monolithic setup, while co-
observability is effectively decidable [RudWil95] it is not
preserved by language union and in general a supremal
(unique maximally permissive) solution to the decentral-
ized SCOP fails to exist; nor is it obvious how any accept-
able solution might be found, granting that one existed
at all. In mitigation as before, co-observability may be
relaxed to its counterpart co-normality [DL14], or more
subtly to relative co-observability [CZW15a] provided the



decision fusion rule is (severely) restricted to ensure the
property of closure under union.

If the system fails to be co-observable, it is tempting
to adjoin the stronger feature that agents be allowed to
exchange information in accordance with an appropriate
‘topology’ of communication. Unfortunately again, design
of the relevant protocols has turned out to be extremely
difficult, owing to the interaction of agents’ decisions
due to the intertwining of communication and control. A
fallback led to the simpler state disambiguation problem
[RLL03], though bringing with it the technical obstruction
of non-monotonicity, namely that enhanced observation
need not imply improved disambiguation [WLL08]. In
any case, state-dependent (or ‘dynamic’) observation with
either or both observation and communication costs sug-
gested the sensor activation problem [TT07] of optimizing
the relevant tradeoffs; related goals could include optimal
communication strategies to minimize network bandwidth
or preserve network security [SR16].

A successful blend of architectural and observability con-
cepts has been brought to bear in ‘heterarchical’ super-
vision, which exploits both decentralized and hierarchical
control based on suitable system abstractions. First the
given (large) system is split into smaller-scale subsys-
tems, for which decentralized supervisors and coordinators
(which enforce nonblocking) can be efficiently synthesized.
Abstracted models of the resulting controlled subsystems
are then computed by natural projections. These must
be chosen to have the technical properties of being nat-
ural observers [WW96] and in some sense control consis-
tent [FW08], [SB11]. The result is a hierarchical array of
decentralized supervisors and coordinators that achieves
global optimality with nonblocking. This approach has
been demonstrated with the benchmark Production Cell,
of state size 108 [FCW09].

Another effective approach to distributed control has been
introduced called supervisor localization [CW10a]. The lat-
ter envisages a plant composed (using synchronous prod-
uct) of several modular components and a specification
composed of several individual component specifications.
By contrast with decentralized control, which usually
means the allocation of separate specialized controls to
separate component specifications, distributed control al-
locates separate controls to distinct plant components.
This allocation (or localization) is achieved by decom-
position of a given monolithic supervisor (or more gen-
erally each member of a given family of decentralized
supervisors) by means of constructing suitable control con-
gruences [SW04] (equivalence relations that respect both
dynamics and control actions) on the relevant supervisor
state sets. The result is to convert each plant component
into a ‘smart agent’. In general each agent communicates
with an optimistically small number of (logical) ‘neighbors’
for exchange of information on event occurrence that is
essential for control. This pattern of agent intercommu-
nication is not assigned a priori but emerges as part of
the problem solution. It is proved that the resulting dis-
tributed control behavior is identical with the monolithic
or decentralized behavior adopted at the start, so if the
latter is optimal then so is the localized result. There is
thus no question of the latter’s existence or in principle
its feasible computation. In case the monolithic controller

is too large to compute, localization may possibly be
combined with the heterarchical approach described above
[CW10b].

Finally, as with any distributed control architecture, it
has been deemed important to investigate its ‘robustness’
when inter-agent communication is subject to channel
delay. The general problem of SCOP with several agents,
no a priori architectural restrictions, and bounded or
unbounded communication delay, has been proved to be
undecidable [Tri04]. Nevertheless, more narrowly defined
problems of this type have yielded useful insights [Lin14],
[ZCG+16].

6. EXTENSIONS TO SCDES WITH BROADER
FUNCTIONALITY

For completeness’ sake we note several extensions of
SCDES that have been proposed for broader functionality
and richer specifications. One of the earliest was based
on temporal logic [Ram89], allowing (among other things)
the expression of ‘eventuality’, namely the occurrence or
otherwise of some event ‘in the long run’ without regard
to an a priori bound in time. For this the more technical
setting is needed of ω-languages [TW94], which include
infinite strings (as distinct from the regular languages of
SCDES, whose strings are always finite albeit may be of
unbounded length).

Stimulated by earlier work [OW85] on temporal logic, a
timed version of DES, or TDES, was introduced [BW94],
allowing the incorporation of event delays and deadlines
as measured by a global digital clock, and including a
notion of forcible event thought of as preempting the
clock’s tick. An alternative approach via the notion of
timed automaton (properly a generic term, but here with
a specific definition) was proposed [AD90]; this more
technical setting admits multiple local clocks, analogous
to the event ‘timers’ of TDES, but possibly measuring the
‘real time’ of physics.

Timed versions of some of the other DES representations
noted above are an active area of current research.

7. INDUSTRIAL APPLICATIONS

To conclude this historical overview we report that realistic
industrial applications of SCDES are as yet few in number.
This situation is due in part to a lack of experience among
control engineers with modeling and specification in the
framework of automata, but (more seriously) to the lack
of software of industrial strength adapted to engineering
design. While numerous applications have been proposed
in the literature, relatively few have been demonstrated on
actual hardware in a commercial environment. In any case,
the widespread industrial technologies of programmable
logic controllers (PLCs) and sequential function charts
(SFCs) were utilized in experimental SCDES controllers at
an early stage [LW95], [HFL01]; and there is now convinc-
ing evidence that such a bridge between theory and prac-
tice is feasible. One of the first such applications was the
testbed assembly process of the Atelier Interétablissement
Productique (AIP) in Grenoble, France [BC94].



Another application with commercial implications has
been the design of a telephone directory assistance call
center [Sei06].

Finally, the power of SCDES in the control synthesis (as
opposed to cut-and-try design) of a complex DES with
over 6 billion states, namely the patient support system
for a magnetic resonance image (MRI) scanner, has been
impressively demonstrated in [TPS+13].
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