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Abstract. We study the reach control problem for affine systems on simplices, and the
focus is on cases when the problem is not solvable by continuous state feedback. We examine
from a geometric viewpoint the structural properties of the system which make continuous
state feedbacks fail. This structure is encoded by so-called reach control indices, which
are defined and developed in the paper. Based on these indices, we propose a subdivision
algorithm and associated piecewise affine feedback. The method is shown to solve the reach
control problem in all remaining cases, assuming it is solvable by open-loop controls.

1. Introduction. This paper studies the reach control problem (RCP)
on simplices1. The problem is for trajectories of an affine system defined on a
simplex to reach a prespecified facet of the simplex in finite time. The overall
concept of the problem and its setting were introduced in [15] and further
developed in [16, 17, 26, 7]. The significance of the problem stems from its
capturing the essential features of reachability problems for control systems:
the presence of state constraints and the notion of trajectories reaching a goal
in a guided and finite-time manner. The problem fits within a larger family of
reachability problems; namely, to reach a target set Xf with state constraint

in a set X , denoted as X
X
−→ Xf . In the present context, we assume that the

state constraints give rise to a state space that is triangulable [18]; then the
reachability specification is converted to a sequence of reachability problems
on simplices of the triangulation. The reader is referred to [7, 15, 16, 17,
26, 21, 2] for further motivations including how the studied problem arises in
fundamental problems concerning hybrid systems [14].

The present paper is a direct outgrowth of [7]. In [7] it was shown that un-
der a special triangulation of the polytopic state space, namely Assumption 11,
continuous state feedback and affine feedback are equivalent with respect to
solvability of RCP. Also, [7] gave necessary and sufficient conditions for solv-
ability of RCP by affine feedback in terms of the problem data, in contrast
with [17, 26] where necessary and sufficient conditions for a given affine feed-
back to solve RCP were given. However, [7] left unresolved the question of
what class of feedbacks suffices to solve RCP when continuous state feedbacks
fail to do so. This paper fully addresses this question. First, we establish some
necessary conditions for solvability of RCP by open-loop controls; they frame
the search for a feedback class. Next, we elaborate ideas on fixed point theory
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and existence of equilibria using continuous state feedback in the context of
RCP, specifically Proposition 7.2 and Theorem 7.3 of [7], to arrive at the reach
control indices. These indices help to classify how a continuous state feedback
fails through the appearance of equilibria in certain sub-simplices. A more
detailed comparison with [7] can be found in Section 6.

RCP is one among several different research paths for analysis and syn-
thesis of piecewise affine (PWA) feedback [4, 11, 27]. Recent progress on
explicit Model Predictive Control (MPC) schemes has fueled the interest in
PWA feedbacks [4], such feedbacks play a prominent role in linear switched
systems [19], and PWA systems have significant applications in engineering
and biology [28, 12, 23, 20]. A feature of our approach is that, rather than
directly computing a controller numerically, we seek conditions for existence of
controllers based on the problem data. This follows classical lines of thought
which are well established in control theory. Another classical underpinning is
to exploit system structure to understand the limits of a control system, again
distinguishing our approach from numerical methods.

2. Contributions. In [7] it was shown that, under a suitable triangu-
lation of the state space, affine feedback and continuous state feedback are
equivalent from the point of view of solvability of the reach control problem.
The approach is based, fundamentally, on fixed point theory. The latter allows
to deduce that continuous state feedbacks always generate closed-loop equilib-
ria in the simplex when affine feedbacks do. The current paper departs from
these findings, and using a geometric approach, we explore the system struc-
ture that gives rise to equilibria. This structure is encoded in the so-called
reach control indices. The first goal of this paper is to elucidate these indices.
The second goal is to use the indices to obtain a subdivision of the simplex and
an associated piecewise affine feedback to solve RCP in those cases when the
problem is not solvable by continuous state feedback. It is shown that RCP
is solvable by piecewise affine feedback if it is solvable by open-loop controls.
This finding gives strong evidence to the relevance of the class of piecewise
affine feedbacks in solving reachability problems.

The main ideas of the paper can be understood informally. Consider a 2D
simplex S = co{v0, v1, v2} the convex hull of vertices v0, v1, and v2, with 1D
facets F0, F1, and F2, as in Figure 2.1(a). Let cone(S) be the cone with apex
at v0 determined by S. Consider a single-input control system ẋ = Ax+bu+a
defined on S. The reach control problem is to find a state feedback u = f(x)
such that all closed-loop trajectories initialized in S leave S in finite time
through the exit facet F0. The procedure to solve this control problem by
continuous state feedback is to select control values ui at the vertices vi such
that the velocity vectors Avi + bui + a lie in the tangent cone to cone(S) at
vi; otherwise trajectories may leave S through F1 or F2, which is disallowed.
The controller u = f(x) is formed as a continuous interpolation of the control
values at the vertices. Label the vertex velocity vectors as y0 = Av0+ bu0+a,
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Fig. 2.1. Main idea in a 2D example.

and bi = Avi + bui + a, i = 1, 2, as in the figure. Let O be the set where
Ax+a ∈ Im(b), and suppose it is a line through v1 and v2. Clearly closed loop
equilibria can only appear on the set OS := S ∩ O. Now it is obvious that
this control problem cannot be solved by any continuous state feedback. For
at v1, b1 has to point down but at v2, b2 has to point up. If we continuously
interpolate along F0 from v1 to v2, the continuous vector field, always in Im(b)
along F0, must pass through zero (by the Intermediate Value Theorem) at
some x along F0. The defect is that there are two vertices v1 and v2 that
“share” the only control direction available, b.

Suppose we now allow discontinuous feedback. Place a point v′ along
the edge from v0 to v1 and define a new simplex S1 = co{v′, v1, v2}. See
Figure 2.1(b). Notice that as we slide v′ from v0 to v1 the cone cone(S1) with
apex at v′ widens at v2 enough that −b2 lies in the tangent cone to cone(S1)
at v2. Notice also that v1 is unaffected by sliding v′. Pick such a v′. Then one
can construct an affine feedback u = K1x+ g1 on S1 that assigns a non-zero
velocity vector at every point on F0, so there is no closed loop equilibrium
in S1. By [17, 26], RCP is solved on S1. For the remaining simplex S2 it
is also possible to devise an affine controller so there is no equilibrium in S2.
This is because equilibria can only appear in S2 at v2 ∈ O. But at v2 we
can select the velocity vector b2 6= 0. Again RCP can be solved on S2 by
affine feedback. Combining the two affine feedbacks, we get a discontinuous
piecewise affine feedback that solves RCP on S. Note that a discontinuity is
introduced because we use two different control values at v2.

The contribution of the paper is to make mathematically rigorous the
informal ideas described above. The most significant outcome is Theorem
14 on equivalence of (discontinuous) piecewise affine feedback and open-loop
controls for solving RCP. The main technical difficulty arises in dealing with
multi-input systems. For this we bring in two tools. First we introduce the
reach control indices to group together vertices in OS that share control in-
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puts. These indices are similar in spirit to the controllability indices to group
together states that share control inputs [10]. As with the controllability in-
dices, the reach control indices require a special ordering of a set of linearly
independent vectors; however, other technical details are different. The second
tool is M -matrices which help to concisely represent the constraints on the
vector field at vertices of OS . The reader is referred to Chapter 6 of [5] for
relevant background.

The paper is organized as follows. In Section 3 we present notation and
background results from linear algebra. In Section 4 we review the reach
control problem. In Section 5 we give necessary conditions for solvability
by open-loop controls. Using the necessary conditions as the foundation, in
Section 5 we present the main result of the paper on equivalence of piecewise
affine feedback and open-loop controls for solving RCP. The main result relies
on a subdivision procedure that uses so-called reach control indices. These
indices are developed in Section 7. In Section 8, the subdivision procedure and
an associated piecewise affine feedback are given to solve RCP when continuous
state feedback does not. Examples are presented in Section 9.

3. Background. In this section we present the notation of the paper and
some background results of linear algebra. The proofs for this section can be
found in the Appendix. For x ∈ R

n, the notation x ≻ 0 (x � 0) means xi > 0
(xi ≥ 0) for 1 ≤ i ≤ n. The notation x ≺ 0 (x � 0) means −x ≻ 0 (−x � 0).
Notation 0 denotes the subset of Rn containing only the zero vector. Let χ
be a finite set of elements. The notation |χ| denotes the cardinality of χ. The
notation B denotes the open unit ball centered at the origin, and B denotes
its closure. The notation co{v1, v2, . . .} denotes the convex hull of a set of
points vi ∈ R

n, and sp{y1, y2, . . .} denotes the span of vectors yi ∈ R
n. The

notation (vi, vj) denotes the open segment in R
n between vi, vj ∈ R

n. Finally,
TS(x) denotes the Bouligand tangent cone to set S at a point x [13].

A matrix M is a Z -matrix if the off-diagonal elements are non-positive;
i.e. mij ≤ 0 for all i 6= j. A matrix M is monotone if Mc � 0 implies c � 0.
A Z -matrix M is a nonsingular M -matrix if it is monotone [5].

The following two results will be used in Section 7 to construct the reach
control indices.

Lemma 1. Let {w1, . . . , wr | wi ∈ R
n} be a set of linearly independent

vectors, and let C be a cone satisfying C 6= 0 and C ⊂ sp{w1, . . . , wr}. There
exists a unique non-empty subset χ ⊂ {w1, . . . , wr} of minimum cardinality
such that C ⊂ sp χ.

The following lemma establishes that one can always find a vector in a
cone C that depends on all the vectors in {w1, . . . , wr}.

Lemma 2 ([8]). Let {w1, . . . , wr | wi ∈ R
n} be a set of linearly independent

vectors, and let C be a cone satisfying C 6= 0 and C ⊂ sp{w1, . . . , wr}. Suppose
that for each i ∈ {1, . . . , r}, C 6⊂ sp{w1, . . . , wi−1, wi+1, . . . , wr}. Then there
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exists y ∈ C such that

y = c1w1 + · · ·+ crwr , ci 6= 0, i = 1, . . . , r . (3.1)

Throughout the paper we make use of simplices, polytopes, and their faces
and facets. An n-dimensional simplex S is the convex hull of n + 1 affinely
independent points in R

n. A face of S is any sub-simplex of S which makes
up its boundary. A facet of S is an (n − 1)-dimensional face of S. An n-
dimensional polytope P is the convex hull of a finite set of points in R

n which
contains (n + 1) affinely independent points. In Section 8 we make use of
triangulations of a polytope P.

Definition 3 ([18]). A triangulation T of an n-dimensional polytope
P is a finite collection of n-dimensional simplices S1, . . . ,SL such that (i)
P =

⋃L
i=1 Si; (ii) for all i, j ∈ {1, . . . , L} with i 6= j, the intersection Si ∩ Sj

is either empty or a common face of Si and Sj.

4. Problem Statement. Consider an n-dimensional simplex S, the con-
vex hull of n + 1 affinely independent points in R

n. Let its vertex set be
V := {v0, . . . , vn} and its facets F0, . . . ,Fn. The facet will be indexed by the
vertex it does not contain. Let hj ∈ R

n, j = 0, . . . , n be the unit normal vector
to each facet Fj pointing outside of the simplex. Facet F0 is called the exit
facet of S. Define the index set I := {1, . . . , n}. For x ∈ S define the closed,
convex cone

C(x) := {y ∈ R
n | hj · y ≤ 0, j ∈ I s.t. x ∈ Fj} .

We’ll write cone(S) := C(v0) because C(v0) is the tangent cone to S at v0. We
consider the affine control system on S:

ẋ = Ax+Bu+ a , (4.1)

where A ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, and rank(B) = m. Let B = Im(B), the

image of B. We take as open-loop controls for (4.1) any measurable function
µ : [0,∞) → R

m that is bounded on compact intervals. In the sequel, solutions
of (4.1) under either a feedback control u = f(x) or an open-loop control µ(t)
will be interpreted in the sense of Caratheodory. We use the notation φu(t, x0)
to denote the trajectory of (4.1) starting at x0 under a feedback u = f(x).
Similiarly, φµ(t, x0) will denote the trajectory of (4.1) starting at x0 under an
open-loop control µ(t). Finally, define O := { x ∈ R

n | Ax + a ∈ B} and
OS := S ∩O. Note that closed-loop equilibria of (4.1) can only appear in O.

Example 4. Consider Figure 4.1 where we illustrate the notation in a 2D
example. We have a full-dimensional simplex in R

2 given by S = co{v0, v1, v2}
with vertex set V = {v0, v1, v2} and facets F0,F1, and F2. Each facet Fj has
an outward normal vector hj . The only vertex not in facet Fj is vertex vj.
F0 is the exit facet. If we assume that v0 = 0, then the subspace B is shown
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Fig. 4.1. Notation for reach control problem.

passing through v0. The set O is an affine space shown passing through F0.
Notice in this case OS = S ∩ O = co{v1, v2}. The cone cone(S) is the cone
with apex at v0 determined by S. It is indicated in the figure as the shaded
area. The cones C(vi), i = 0, 1, 2 are depicted as darker shaded cones attached
at each vertex. Of course, the apex of each C(vi) is at the origin, but we
depict it as being attached at the corresponding vertex vi since it will be used
to describe allowable directions for the vector field at the vertices. Notice that
C(v0) is the tangent cone to S at v0. Instead the cones C(v1) and C(v2) are
not tangent cones to S at v1 and v2, respectively; however, they are tangent
cones to cone(S) if v0 = 0.

We are interested in formulating a problem to make the closed-loop tra-
jectories of (4.1) exit S through the exit facet F0 only. For this, we require
conditions that disallow trajectories to exit from any other facet Fi, i ∈ I.
We say the invariance conditions are solvable at vertex vi ∈ V if there exists
ui ∈ R

m such that
Avi +Bui + a ∈ C(vi) . (4.2)

We say the invariance conditions are solvable if (4.2) is solvable at each vi ∈ V .
The conditions (4.2) are called invariance conditions. They are used to con-
struct affine feedbacks such that trajectories of the closed-loop system cannot
exit from the facets Fi, i ∈ I [16]. For general state feedbacks, stronger condi-
tions (also called invariance conditions) are needed. We say a state feedback
u = f(x) satisfies the invariance conditions if for all x ∈ S,

Ax+Bf(x) + a ∈ C(x) . (4.3)

Example 5. Consider Figure 4.2. Attached at each vertex is a velocity
vector yi := Avi+Bui+a, i ∈ {0}∪I. The invariance conditions (4.2) require
that yi ∈ C(vi), as illustrated. Notice that velocity vectors at vi ∈ F0 may or
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Fig. 4.2. The invariance conditions state that yi := Avi +Bui + a ∈ C(vi) for i = 0, . . . , n.

may not point out of S. If the control is an affine feedback u = Kx+ g such
that ui = Kvi + g, then since x 7→ (A+BK)x+Bg + a is an affine function,
Fi is a convex set, and the cones C(x) are convex, (4.3) holds at every x ∈ Fi,
i ∈ I. If the input is a continuous state feedback u = f(x), then invariance
conditions for every x ∈ Fi, i ∈ I, must be explicitly stated, since convexity is
not guaranteed; hence (4.3).

Problem 1 (Reach Control Problem (RCP)). Consider system (4.1) de-
fined on S. Find a state feedback u = f(x) such that:

(i) For every x ∈ S there exist T ≥ 0 and γ > 0 such that φu(t, x) ∈ S for
all t ∈ [0, T ], φu(T, x) ∈ F0, and φu(t, x) /∈ S for all t ∈ (T, T + γ).

(ii) There exists ε > 0 such that for every x ∈ S, ‖Ax+Bf(x)+ a‖ > ε.
(iii) Feedback u = f(x) satisfies the invariance conditions (4.3).

We remark that no regularity assumptions are placed on f at this point.
The goal of the paper is to discover a class of feedbacks that have sufficient
regularity to ensure closed-loop solutions in the sense of Caratheodory. In

the sequel we will use the shorthand notation S
S

−→ F0 to denote that (i)-
(iii) of Problem 1 hold under some control law. Condition (i) is the same
condition that appears in the standard formulation of RCP [17, 26]. It states
that all closed-loop trajectories must exit S through F0 in finite time without
first exiting from another facet. Condition (ii) and (iii) are new, and they
are introduced to deal with pathologies that can only happen when using
discontinuous feedbacks. It can be shown that if continuous state feedback is
used, then condition (i) implies conditions (ii) and (iii) [16]. Therefore, results
on affine feedbacks [17, 26] and continuous state feedbacks [7] remain valid.

Example 6. In this example we illustrate the need for condition (ii). Fig-
ure 4.3(a) illustrates a 2D simplex S = co{v0, v1, v2}. Let f1(x) be a continu-
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Fig. 4.3. Illustration of pathologies that arise using discontinuous feedback to solve RCP.

ous vector field on S such that f1(vi) ∈ C(vi), i ∈ {0, . . . , n} and f1(v1) = 0.
Second, let y1 ∈ C(v1) be a non-zero vector. Then we define a discontinuous
vector field f(x) on S given by f(x) = f1(x) for x ∈ S \ {v1} and f(v1) = y1.
The notable feature of f(x) is that it is arbitrarily close to zero on S; neverthe-
less, it can be proved that f(x) satisfies the requirements of RCP. If f(x) is the
closed-loop vector field arising from a discontinuous feedback and the system
parameters (A,B, a) are slightly perturbed, then there can appear an equilib-
rium x of the perturbed system in the interior of S, as shown in Figure 4.3(b).
Thus, RCP is not solved for the perturbed system. Condition (ii) disallows
such non-robust behavior specifically arising from the appearance of unwanted
equilibria (it does not address non-robustness that may arise from chattering
due to discontinuous feedback). Any solution of RCP based on continuous
feedback will never exhibit such non-robust behavior.

Example 7. Next consider Figure 4.3(c) which represents a second patho-
logical solution to RCP using discontinuous feedback. Here trajectories reach
F0 in finite time, and then they slide along F0 out of the simplex along a di-
rection at v2 that violates v2’s invariance conditions. In order to circumvent
this behavior, it is sufficient to disallow feedbacks that violate the invariance
conditions (4.3), particularly on F0. This is the purpose of condition (iii).

5. Necessary Conditions. In this section we present two necessary con-
ditions for solvability of RCP using open-loop controls. First, we define what
is meant by a solution of RCP by open-loop controls.

Definition 8. Consider system (4.1) defined on S. We say S
S

−→ F0 by
open-loop controls if there exists a map T : S → R

+ and a set of open-loop
controls {µx | x ∈ S} such that:

(i) For every x ∈ S there exists γ > 0 such that φµx(t, x) ∈ S for all t ∈
[0, T (x)], φµx(T (x), x) ∈ F0, and φµx(t, x) /∈ S for all t ∈ (T (x), T (x)+
γ).

(ii) There exists ε > 0 such that for every x ∈ S and t ∈ [0, T (x)],
‖Aφµx(t, x) +Bµx(t) + a‖ > ε.

(iii) For every x ∈ S and t ∈ [0, T (x)], (Aφµx(t, x) + Bµx(t) + a) ∈
C((φµx(t, x))).
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The first result of the section is that solvability of the invariance conditions
(4.2) is necessary for solvability of RCP by open-loop controls in the sense of
condition (i) only. This extends the analogous result in [16] on the necessity
of the invariance conditions for solvability of RCP (in the sense of condition
(i) only) for continuous state feedbacks. Proofs are in the Appendix.

Theorem 9. If S
S

−→ F0 by open-loop controls in the sense of condition
(i) only, then the invariance conditions (4.2) are solvable.

The second result says that if RCP is solvable by open-loop controls, then
it is possible to assign non-zero velocity vectors satisfying (4.2) at vertices
vi ∈ V ∩ OS . This is an immediate consequence of condition (ii). We know
that Avi + a ∈ B for vertices vi ∈ OS . Theorem 9 says that if RCP is solvable
by open-loop controls (in the sense of condition (i)), then B ∩ C(vi) 6= ∅, for
vi ∈ V ∩ OS . The next result says that, moreover, the zero vector cannot be
the only element of B ∩ C(vi), vi ∈ V ∩ OS .

Theorem 10. If S
S

−→ F0 by open-loop controls, then B ∩ C(vi) 6= 0,
vi ∈ V ∩ OS .

6. Main Result. In this section we state the main result of the paper.
The next two sections will be devoted to proving the main step of the result.
The necessary and sufficient conditions for a given affine feedback to solve RCP
are: (a) the invariance conditions (4.2) hold; and (b) the closed-loop system
has no equilibrium in S [17, 26]. We wish to study the extent to which affine
feedbacks can solve RCP. For this it is useful to exploit information about O to
determine whether and how equilibria appear in S. For example, if it is known
that OS = ∅, then any affine feedback satisfying the invariance conditions will
solve RCP. If OS = co{v1, . . . , vκ+1}, then one can carefully choose control
values at these vertices to avoid equilibria in S. This observation motivates
the following assumption.

Assumption 11. Simplex S and system (4.1) satisfy the following condi-
tion: if OS 6= ∅, then OS is a κ-dimensional face of S, where 0 ≤ κ ≤ n.

Under Assumption 11, the following cases when affine feedbacks solve RCP
have been identified.

• Suppose OS = ∅. If RCP is solvable by open-loop controls, then it is
solvable by affine feedback (Theorem 6.1 of [7]).

• Suppose B ∩ cone(S) 6= 0. If RCP is solvable by open-loop controls,
then it is solvable by affine feedback (Theorem 6.2 of [7]).

• Suppose v0 ∈ O. If RCP is solvable by open-loop controls, then it is
solvable by affine feedback (Remark 7.1 of [7]).

• SupposeOS = co{v1, . . . , vκ+1} and there exists a linearly independent
set {b1, . . . , bκ+1 | bi ∈ B ∩ C(vi)}. If RCP is solvable by open-loop
controls, then it is solvable by affine feedback (Theorem 6.7 of [7]).

These results show that when OS is non-trivial (neither the empty set nor
containing v0), there are two strategies to avoid closed-loop equilibria in OS .
The first strategy is to select a single control direction 0 6= b ∈ B ∩ cone(S),
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and then assign an affine feedback that inserts a large b component in the
velocity vector at each vertex of S. The second strategy is to assign a linearly
independent set of control directions in B at the vertices of OS . In both cases a
convexity argument shows there can be no closed-loop equilibria in S. Having
identified those cases under Assumption 11 when affine feedback is known to
solve RCP, we can now summarize all remaining cases for which the class of
feedbacks to solve RCP is still unknown. Observe that Assumption (A4) below
is no loss of generality due to Theorem 10.

Assumption 12. Simplex S and system (4.1) satisfy the following condi-
tions.

(A1) OS = co{v1, . . . , vκ+1}, with 0 ≤ κ < n.
(A2) B ∩ cone(S) = 0.
(A3) The maximum number of linearly independent vectors in any set {b1,

. . . , bκ+1 | bi ∈ B ∩ C(vi)} (with only one vector for each B ∩ C(vi)) is
m̂ with 0 ≤ m̂ < κ+ 1.

(A4) B ∩ C(vi) 6= 0, i = 1, . . . , κ+ 1.

Example 13. Consider Figure 4.1. We have OS = co{v1, v2}, which
satisfies (A1). Notice (A1) is a strengthening of Assumption 11 - it imposes
that v0 6∈ OS ; otherwise RCP is not solvable [7]. (A2) is also illustrated in
Figure 4.1. At v0, B has no vectors in common with cone(S) except the zero
vector. Next, we see that (A3) is satisfied with m̂ = m = 1. In particular,
b1 ∈ B ∩ C(v1) and b2 ∈ B ∩ C(v2) are linearly dependent. Note also that (A3)
specifies that m̂ < κ+1. If m̂ = κ+1, then RCP is solvable by affine feedback
[7]. Finally (A4) is taken from Theorem 10. It says that at each vertex in
OS , there exists a non-zero bi ∈ B satisfying the invariance conditions of vi
for i = 1, 2.

It has been shown in Theorem 8.1 of [7] that under Assumption 12, RCP
is not solvable by continuous state feedback. The main result of this paper,
stated next, is that piecewise affine feedbacks are a sufficiently rich class to
solve RCP when it is solvable by open-loop controls. The proof shows by a
process of elimination that either RCP is solvable by affine feedback [17, 26, 7]
or it is solvable by (discontinuous) PWA feedback via a Subdivision Algorithm
to be presented in Section 8. The main result on synthesis of the PWA feedback
appears in Theorem 33 of Section 8.

Theorem 14. Suppose Assumption 11 holds. Then the following are
equivalent:

1. S
S

−→ F0 by piecewise affine feedback.

2. S
S

−→ F0 by open-loop controls.

Proof. (1) =⇒ (2) is obvious.

(2) =⇒ (1) Suppose S
S

−→ F0 by open-loop controls. By Theorem 9, the
invariance conditions are solvable. Let OS := S ∩ O. If OS = ∅, then by

Theorem 6.1 of [7], S
S

−→ F0 by affine feedback. Suppose instead OS 6= ∅. If

B ∩ cone(S) 6= 0, then by Theorem 6.2 of [7], S
S

−→ F0 by affine feedback.
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Suppose instead B∩cone(S) = 0. From Theorem 10, v0 6∈ OS , so by reordering
indices, OS = co{v1, . . . , vκ+1}, where 0 ≤ κ < n. Let {b1, . . . , bm̂ | bi ∈
B ∩ C(vi)} be a maximal linearly independent set as in (A3). If κ < m̂, then

by Theorem 6.7 of [7], S
S

−→ F0 by affine feedback. Suppose instead κ ≥ m̂.
By Theorem 10, B ∩ C(vi) 6= 0 for i ∈ {1, . . . , κ + 1}. Then Assumption 12

holds and by Theorem 33, S
S

−→ F0 by piecewise affine feedback.

The remainder of the paper is devoted to proving Theorem 33, which
provides the piecewise affine feedback to solve RCP under Assumption 12.
This result depends on so-called reach control indices, which will be developed
in the next section. In preparation for their development, we now give some
intuition and motivation for these indices.

Suppose Assumption 12 holds and consider OS . Because each vi, i =
1, . . . , κ + 1 belongs to O, it is possible to select an affine feedback so that
every x ∈ OS is a closed-loop equilibrium. One can say that this is the
maximal set of closed-loop equilibria possible in S. But is there a minimal
set? That is, is it possible to select an affine feedback to achieve a smallest
closed-loop equilibrium set in OS? The reach control indices serve to quantify
this smallest closed-loop equilibrium set.

The indices are motivated by the observation that evidently, when B ∩
cone(S) = 0, equilibria can only be avoided by assigning linearly independent
control directions in B at the vertices of OS . Suppose there are insufficient
independent control directions in B available to the resolve the invariance
conditions at the vertices inOS . Then certain vertices inOS must share control
directions. The reach control indices, denoted r1, r2, . . . effectively partition
the set of vertices of OS into cosets of cardinality ri where the ri vertices in
a coset have available to them only ri − 1 independent control directions in
B to resolve all their invariance conditions. This shortage of one independent
control direction then implies that using any affine feedback, an equilibrium
will arise in the sub-simplex formed by the convex hull of the vertices in the
coset.

This information about the location of equilibria under affine feedback
makes it possible to contrive a subdivision algorithm, presented in Section 8,
whose goal is to remove one vertex from each coset in order to remove the linear
dependence on control directions. This subdivision is orchestrated so that in
each sub-simplex of the obtained triangulation of S, a condition resembling
(A3) is restored.

7. Reach Control Indices. In this section we develop the reach control
indices which will be used to obtain the main result Theorem 14 on equivalence
of open-loop controls and piecewise affine feedback for solving RCP. The reach
control indices are defined in the situation corresponding to Assumption 12
when it is known that RCP is not solvable by continuous state feedback but
it is still solvable by open-loop controls.

In the development that follows we will frequently have use of the following
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operation on the indices I. Let Ĩ = {i1, . . . , in} be a permutation of I with
the property that {i1, . . . , iκ+1} is a permutation of {1, . . . , κ+1}. We say we
reorder indices if we define ṽj := vij , j ∈ I. Second, define h̃j and F̃j , j ∈ I,

according to our convention that F̃j is the facet that does not contain ṽj, and
h̃j is its outward normal vector. If we have a selection {b1, . . . , bκ+1 | bi ∈
B∩C(vi)} then define b̃j := bij , j ∈ {1, . . . , κ+1}. Finally, we drop the tilde’s
so that all data vi, hi, Fi, bi are relabeled with the new indices. This notion
can be extended to reorder subsets of indices of the form {k1, . . . , k2} where
1 ≤ k1 ≤ k2 ≤ n. In that case the remaining indices {1, . . . , k1−1, k2+1, . . . , n}
are left the same.

Example 15. Consider the simplex S := co{v0, v1, v2, v3} ⊂ R
3 with

v0 = (0, 0, 0), v1 = (1, 0, 0), v2 = (0, 1, 0), and v3 = (0, 0, 1). We have
h1 = (−1, 0, 0), h2 = (0,−1, 0), and h3 = (0, 0,−1). Suppose it is required
to perform two consecutive reorderings of indices. The first reordering is ap-
plied to the indices {1, 2, 3} based on a permutation {2, 1, 3}. The second
reordering is applied to the subset of indices {2, 3} (of the newly reordered
indices) based on a permutation {3, 2}. After reordering indices according
to the first permutation, the new assignment of vertices is v1 = (0, 1, 0),
v2 = (1, 0, 0), and v3 = (0, 0, 1) and the new assignment of normal vectors
is h1 = (0,−1, 0), h2 = (−1, 0, 0), and h3 = (0, 0,−1). After reordering in-
dices according to the second permutation, the new assignment of vertices is
v1 = (0, 1, 0), v2 = (0, 0, 1), and v3 = (1, 0, 0) and the new assignment of nor-
mal vectors is h1 = (0,−1, 0), h2 = (0, 0,−1), and h3 = (−1, 0, 0). Similar
operations would be performed on the Fi’s and bi’s.

Now consider assumption (A3). Select any bi ∈ B ∩ C(vi), i = 1, . . . , κ+1,
and write the list {b1, . . . , bκ+1}. Clearly there exists a list with a maxi-
mum number m̂ of linearly independent vectors. W.l.o.g., we reorder indices
{1, . . . , κ+1} (leaving the indices 0, κ+2, . . . , n the same) so that {b1, . . . , bm̂}
are linearly independent. Notice by the maximality of {b1, . . . , bm̂} that for
each i = m̂+1, . . . , κ+1 and for each bi ∈ B∩C(vi), bi ∈ sp{b1, . . . , bm̂}. Now
consider the cone B ∩ C(vm̂+1). By (A4), B ∩ C(vm̂+1) 6= 0. By Lemma 1
there exists a unique, non-empty subset χ of {b1, . . . , bm̂} such that: (i)
B ∩ C(vm̂+1) ⊂ sp χ; (ii) χ has the minimum cardinality among all subsets of
{b1, . . . , bm̂} with property (i). In particular, there exists 2 ≤ r1 ≤ m̂+1 such
that w.l.o.g. (reordering indices 1, . . . , m̂ and leaving the indices 0, m̂+1, . . . , n
the same), B∩C(vm̂+1) ⊂ sp{b1, . . . , br1−1}, where r1−1 is the minimum cardi-
nality of any subset of {b1, . . . , bm̂} whose span contains the cone B∩C(vm̂+1).

The indices involved in the construction above (after the reorderings) are
{1, . . . , r1 − 1, m̂ + 1}. So that these indices are consecutive, we reorder
indices again according to the permutation Ĩ = {1, . . . , r1 − 1, m̂ + 1, r1 +
1, . . . , m̂, r1, m̂+2, . . . , n} of I. That is, we effectively swap the indices m̂+ 1
and r1, so we can write

B ∩ C(vr1) ⊂ sp{b1, . . . , br1−1} . (7.1)
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By Lemma 2 there exists br1 ∈ B ∩ C(vr1) such that

br1 = c1b1 + · · ·+ cr1−1br1−1 , ci 6= 0, i = 1, . . . , r1 − 1 . (7.2)

So far we have only used (A3) and some general facts of linear algebra
comprising Lemmas 1, 34, and 2. In particular, we have not explicitly used
the condition (A2) that B ∩ cone(S) = 0. We will now see that it determines
the nature of the dependency between br1 and b1, . . . , br1−1.

Lemma 16. Suppose Assumption 12 and (7.1)-(7.2) hold. Then the coef-
ficients in (7.2) satisfy ci < 0, i = 1, . . . , r1 − 1.

Proof. Suppose w.l.o.g. (by reordering indices {1, . . . , r1−1}), there exists
1 ≤ ρ < r1−1 such that ci > 0 for i = 1, . . . , ρ and ci < 0 for i = ρ+1, . . . , r1−1.
Consider the vector β := br1 − cρ+1bρ+1 − · · · − cr1−1br1−1 = c1b1 + · · ·+ cρbρ.
Notice that β 6= 0 since {b1, . . . , bρ} are linearly independent. Since bi ∈
B∩C(vi), i ∈ {1, . . . , r1}, we have hj ·β = hj ·

(
br1−cρ+1bρ+1−· · ·−cr1−1br1−1

)
≤

0, j = 1, . . . , ρ, r1 + 1, . . . , n. Also hj · β = hj ·
(
c1b1 + · · · + cρbρ

)
≤ 0,

j = ρ + 1, . . . , n. In sum, hj · β ≤ 0, i ∈ I; that is, β ∈ B ∩ cone(S). By
Assumption (A2), β = 0, a contradiction.

Remark 17.

1. A notable feature of Lemma 16 is that any bi, i = 1, . . . , r1, can be
expressed as a negative linear combination of the remaining vectors
{b1, . . . , bi−1, bi+1, . . . , br1}. This means we may reorder indices within
the set {1, . . . , r1} with impunity in the sense that the formula (7.2)
will still hold with strictly negative coefficients. Such a reordering will
be immediately invoked below to generate the second index r2 and it
will also be invoked in Lemma 27 of the next section.

2. We remark on an implication of Lemma 16 on affine feedbacks. Sup-
pose we assign an affine feedback u = Kx + g on S such that (A +
BK)vi + Bg + a = bi, i = 1, . . . , r1. Lemma 16 implies that 0 ∈
co{b1, . . . , br1}. This means an equilibrium of the closed-loop system
ẋ = (A + BK)x + Bg + a lies in the relative interior of the simplex
co{v1, . . . , vr1}. Notice it cannot lie on a face of co{v1, . . . , vr1} since
any {b1, . . . , bi−1, bi+1, . . . , br1} are linearly independent.

We review the construction so far. Starting from the initial assumption
(A3), adding a new vector br1 via Lemma 2, and applying successive index
reorderings, we have generated a list of vectors associated with vertices in OS

of the form

{b1, . . . , br1−1, br1 , br1+1, . . . , bm̂+1} (7.3)

where bi ∈ B∩C(vi), i ∈ {1, . . . , m̂+1}. This list has the following properties:

(a) Any bi, i = 1, . . . , r1, is a strictly negative linear combination of
{b1, . . . , bi−1, bi+1, . . . , br1}.

(b) Any set of the form {b1, . . . , bi−1, bi+1, . . . , br1}, i = 1, . . . , r1, consists
of r1 − 1 linearly independent vectors.
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(c) Due to the previous property, {b2, . . . , bm̂+1} consists of a maximal
number m̂ of linearly independent vectors. (This set is different than
the one initially proposed in (A3) because of the introduction of br1
and the index reorderings).

(d) Vectors in B associated with vertices {vm̂+2, . . . , vκ+1} of OS have not
yet been defined. However, by the maximality of m̂ we know that for
any i ∈ {m̂+ 2, . . . , κ+ 1} and bi ∈ B ∩ C(vi), bi is linearly dependent
on {b2, . . . , bm̂+1}.

The fact that any r1 − 1 vectors in the set {b1, . . . , br1} are linearly in-
dependent and each vector is a strictly negative linearly combination of the
others puts strong restrictions on B. Indeed for the vectors {b1, . . . , br1} to
meet these properties and to lie in their respective cones, they have a special
geometric relationship with S which is captured in the next result.

Lemma 18. Suppose Assumption 12 and (7.1)-(7.2) hold. Then

hj · bi = 0 , i ∈ {1, . . . , r1} , j ∈ I \ {1, . . . , r1} . (7.4)

Proof. Let br1 be as in (7.2). Since br1 ∈ B ∩ C(vr1), hj · br1 = hj ·
(
c1b1 +

· · · + cr1−1br1−1

)
≤ 0, j ∈ I \ {1, . . . , r1}. Since bi ∈ B ∩ C(vi), hj · bi ≤ 0 for

i ∈ {1, . . . , r1 − 1} and j ∈ I \ {1, . . . , r1}. Also, by Lemma 16, ci < 0. Thus,
every term in the sum c1hj · b1 + · · · + cr1−1hj · br1−1 is non-negative. The
result immediately follows.

Whereas Lemmas 1, 34, and 2 are standard facts of linear algebra, and
Lemma 16 is an easy consequence of the condition B ∩ cone(S) = 0, the con-
straints (7.4) are the most significant property to emerge about {b1, . . . , br1}.
They place strong geometric constraints on B enabling us to find a decompo-
sition of B relative to the simplex.

Example 19. Lemmas 16 and 18 are illustrated for a 3D example in
Figure 7.1. We have S = co{v0, . . . , v3}, OS = S ∩ O = co{v1, v2}, and
with v0 = 0 we see that B ∩ cone(S) = 0. Also, m̂ = m = 1. Vector bi
shown attached at vi lies in the cone B ∩ C(vi), i = 1, 2. Now we observe that
b2 = −c1b1, c1 > 0, to satisfy bi ∈ B∩C(vi). This is the content of Lemma 16.
Second, we observe from the figure that the only way bi ∈ B ∩ C(vi), i = 1, 2,
can hold simultaneously is if h3 · bi = 0, i = 1, 2. That is, b1 and b2 lie in the
2D plane containing F3. This is the content of Lemma 18.

Next we consider the cone B∩C(vm̂+2). Proceeding as above, there exists a
subset of {b2, . . . , bm̂+1} with minimum cardinality r2−1 whose span contains
B∩C(vm̂+2). If we independently reorder each index set {2, . . . , r1} and {r1 +
1, . . . , m̂+1} so that the indices {2, . . . , r1} are only permuted with each other
(this is allowed by Remark 17(1)), we have B∩C(vm̂+2) ⊂ sp{bρ, . . . , bρ+r2−2},
for some 2 ≤ ρ ≤ r1 + 1 and ρ ≤ ρ+ r2 − 2 ≤ m̂+ 1. (Lemma 22 below will
demonstrate that the reordering of {2, . . . , r1} is actually not performed).

Now Lemmas 2 and 16 can be adapted for B ∩ C(vm̂+2) since we have
exactly the same situation as for B ∩ C(vr1), only the indices are different.
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Fig. 7.1. Illustration for Lemma 18.

Thus, we get

B ∩ C(vm̂+2) ⊂ sp{bρ, . . . , bρ+r2−2} (7.5)

(∃bm̂+2 ∈ B ∩ C(vm̂+2)) bm̂+2 = cρbρ + · · ·+ cρ+r2−2bρ+r2−2 , ci < 0 . (7.6)

We can similarly invoke Lemma 18 to obtain

hj · bi = 0 , i = ρ, . . . , ρ+ r2 − 2, m̂+ 2 , j ∈ I \ {ρ, . . . , ρ+ r2 − 2, m̂+ 2} .
(7.7)

We have now generated a list of vectors associated with vertices in OS of
the form

{b1, b2, . . . , bρ, . . . , br1+1, . . . , bρ+r2−2, . . . , bm̂+1, bm̂+2} (7.8)

where bi ∈ B ∩ C(vi). This list has the following properties:

(a) Vectors {b2, . . . , bm̂+1} are linearly independent since reordering the
indices {2, . . . , r1} and {r1 +1, . . . , m̂+1} does not affect linear inde-
pendence.

(b) The properties of {b1, . . . , br1} are the same as before. Namely, any bi,
i = 1, . . . , r1, is a strictly negative linear combination of {b1, . . . , bi−1,
bi+1, . . . , br1}, and any set {b1, . . . , bi−1, bi+1, . . . , br1}, i = 1, . . . , r1,
consists of r1 − 1 linearly independent vectors. This is because these
properties are invariant to permutations of the indices {1, . . . , r1} as
noted in Remark 17(1).

(c) Any bi, i = ρ, . . . , ρ+ r2 − 2, m̂+ 2 is a strictly negative linear combi-
nation of {bρ, . . . , bρ+r2−2, bm̂+2} \ {bi}.
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(d) Any set of the form {bρ, . . . , bρ+r2−2, bm̂+2} \ {bi}, i = ρ, . . . , ρ + r2 −
2, m̂+ 2, consists of r2 − 1 linearly independent vectors.

At this point we know ρ ≤ r1 + 1. Next we show that actually ρ = r1 + 1.
This means that the lists {b1, . . . , br1} and {bρ, . . . , bρ+r2−2} have no vectors
in common. The ensuing proof is facilitated by M -matrices. Let 1 ≤ α ≤ β ≤
κ + 1, bi ∈ B ∩ C(vi), and define Hα,β := [hα · · · hβ], Yα,β := [bα · · · bβ], and
Mα,β := HT

α,βYα,β.
Lemma 20. Suppose B∩ cone(S) = 0. Let 1 ≤ α ≤ β ≤ κ+1 and suppose

{bα, . . . , bβ | bi ∈ B ∩ C(vi)} are linearly independent and satisfy

hj · bi = 0 , i ∈ {α, . . . , β} , j ∈ I \ {α, . . . , β} . (7.9)

Then Mα,β is a nonsingular M -matrix.
Proof. Consider Mα,β = HT

α,βYα,β. First, we know Mα,β is a Z -matrix
because bi ∈ C(vi) implies hj · bi ≤ 0, j 6= i, so the off-diagonal entries of Mα,β

are non-positive. Second, we show Mα,β is monotone. Let c = (cα, . . . , cβ) be
such that Mα,βc � 0. Define y := Yα,βc. Then hj · y ≤ 0, j = α, . . . , β. By
(7.9), hj · y = 0, j = 1, . . . , α − 1, β + 1, . . . , n. Thus, y ∈ B ∩ cone(S). Since
B ∩ cone(S) = 0, y = 0. However, by assumption {bα, . . . , bβ} are linearly
independent, so c = 0. Thus, Mα,β is monotone. Finally, by Theorem 6.2.3,
case (N39), of [5], Mα,β is a nonsingular M -matrix.

Remark 21. A similar result to Lemma 20 first appeared in [7]; a step
of the proof was clarified in [1]. Here we present a simpler argument based on
monotonicity.

Lemma 22. Suppose Assumption 12 holds. Consider the list (7.8) where
br1 and bm̂+2 are given by (7.2) and (7.6), respectively. Suppose {b2, . . . , bm̂+1}
are linearly independent and (7.4) and (7.7) hold. Then ρ = r1 + 1.

Proof. Suppose by way of contradiction that ρ < r1 + 1. Let σ =
min{r1, ρ+ r2 − 2}. Combining (7.4) with (7.7) we obtain

hj · bi = 0 , i = ρ, . . . , σ , j = 1, . . . , ρ− 1, σ + 1, . . . , n . (7.10)

Consider Mρ,σ = HT
ρ,σYρ,σ. By (A2), (7.10), and the linear independence of

{bρ, . . . , bσ} (since ρ ≥ 2 and σ ≤ m̂+1), we can apply Lemma 20 to conclude
Mρ,σ is a nonsingular M -matrix. By Theorem 6.2.3 (case I28) of [5] there
exists c = (cρ, . . . , cσ) such that c � 0 and Mρ,σc ≺ 0. Define y := Yρ,σc 6= 0.
The statement HT

ρ,σy = Mρ,σc ≺ 0 is equivalent to

hj · y < 0, j = ρ, . . . , σ . (7.11)

By (7.10),

hj · y = hj · (cρbρ + · · ·+ cσbσ) = 0 , j = 1, . . . , ρ− 1, σ+1, . . . , n . (7.12)

In sum, (7.11)-(7.12) imply y ∈ B ∩ cone(S). By Assumption (A2), y = 0, a
contradiction.
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Lemma 22 tells us that ρ + r2 − 1 = r1 + r2 so variable ρ will now be
dropped. We can rewrite the list (7.8) as

{b1, b2, . . . , br1 , br1+1, . . . , br1+r2−1, . . . , bm̂+1, bm̂+2} (7.13)

and each bi ∈ {br1+1, . . . , br1+r2−1, bm̂+2} is a strictly negative linear com-
bination of the others. The indices involved in the construction of r2 (af-
ter the reorderings) are {r1 + 1, . . . , r1 + r2 − 1, m̂ + 2}. So that these in-
dices are consecutive, we reorder indices again according to the permutation
Ĩ = {1, . . . , r1+ r2− 1, m̂+2, r1+ r2+1, . . . , m̂+1, r1+ r2, m̂+3, . . . , n} of I.
That is, we effectively swap the indices m̂+2 and r1 + r2. Notice that indices
{1, . . . , r1} are not changed because r2 ≥ 2 implies r1 + r2 > r1 +1. Therefore
the swapped indices r1 + r2 and m̂+ 2 belong to the index set I \ {1, . . . , r1}.

Two indices r1 and r2 have been put in place. By iterating on Lemmas 18,
22, and our index swap, we can further decompose B relative to the cones
B ∩ C(vi) associated with OS . Let

p := κ+ 1− m̂ , r := r1 + · · · + rp .

The procedure generates a specially ordered list of the form

{b1, . . . , br1 , br1+1, . . . , br1+r2 , . . . , br1+···+rp−1+1, . . . , br, br+1, . . . , bκ+1} .
(7.14)

For each k = 1, . . . , p, br1+···+rk is a strictly negative linear combination of the
previous rk − 1 vectors in the list.

Theorem 23. Suppose Assumption 12 holds. There exist integers r1, . . . ,
rp ≥ 2 such that w.l.o.g. (by reordering indices)

B ∩ C(vi) ⊂ sp{bm1
, . . . , bm1+r1−1} , i = m1, . . . ,m1 + r1 − 1 , (7.15a)

...
...

B ∩ C(vi) ⊂ sp{bmp , . . . , bmp+rp−1} , i = mp, . . . ,mp + rp − 1 , (7.15b)

where bi ∈ B ∩ C(vi) for i ∈ {1, . . . , r}, m1 := 1, and

mk := r1 + · · ·+ rk−1 + 1 , k = 2, . . . , p . (7.16)

Moreover, for each k = 1, . . . , p, {bmk
, . . . , bmk+rk−2} are linearly independent

and

bmk+rk−1 = cmk
bmk

+· · ·+cmk+rk−2bmk+rk−2 , ci < 0 , i = mk, . . . ,mk+rk−2 .
(7.17)

Proof. The vectors bi ∈ B∩C(vi) in (7.15a)-(7.15b) are provided by (7.14),
including those from Lemma 2. Lemma 16 gives (7.17). It remains only to
prove (7.15a)-(7.15b). We consider only (7.15a). Consider any i ∈ {1, . . . , r1}
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and any βi ∈ B ∩ C(vi) such that βi = α1b1 + · · · + αr1br1 + β, where αi ∈ R

and β ∈ B. W.l.o.g. we may assume β is independent of {b1, . . . , br1}. From
(4.2) and Lemma 18, hj · βi = hj · (c1b1 + · · · + cr1br1 + β) = hj · β ≤ 0, for
j = r1+1, . . . , n. By the proof of Proposition 7.2 in [7], β = 0. Hence, for any
i ∈ {1, . . . , r1} and βi ∈ B ∩ C(vi), βi ∈ sp{b1, . . . , br1}, as desired.

Remark 24. A number of relationships between the integers κ, m̂, p, and
r are implied by our construction. The following

∑p
1=1(ri − 1) = r− p vectors

are linearly independent:

{b1, . . . , br1−1, br1+1, . . . , br1+r2−1, . . . , br1+···+rp−1+1, . . . , br−1} .

Therefore, m̂ ≥ r − p. Also, ri ≥ 2, i = 1, . . . , p, so r ≥ 2p. Combining these
two inequalities we have m̂ ≥ p = κ+ 1− m̂. We conclude that

m̂ ≥
κ+ 1

2
.

This condition is interpreted to say that RCP is only solvable if there are
sufficient inputs.

The integers {r1, . . . , rp} are called the reach control indices of system (4.1)
with respect to simplex S.

8. Piecewise Affine Feedback. The reach control indices catalog the
degeneracies (caused by insufficient inputs) that lead to the appearance of
equilibria in S whenever p ≥ 1 and continuous state feedback is applied. Thus,
any control method that overcomes the limits of continuous state feedback
must confront this degeneracy and will necessarily draw upon the degrees of
freedom in B provided to OS which are inscribed by the indices. In this section
we investigate the extent to which piecewise affine feedback can solve RCP, in
cases when continuous state feedback cannot. We construct a triangulation [18]
of the simplex S such that RCP is solvable for each simplex of the triangulation.
The next result shows that because of condition (iii) of Problem 1 a situation
like the one in Figure 4.3(c) cannot happen. Correspondingly one recovers
a third necessary condition for solvability of RCP by open-loop controls - in
essence saying that B cannot be parallel to F0.

Lemma 25. Suppose Assumption 12 and (7.15)-(7.17) hold. If S
S

−→ F0

by open-loop controls, then sp{bmk
, . . . , bmk+rk−2} 6⊂ H0 := {y ∈ R

n | h0 · y =
0} for each k = 1, . . . , p.

Proof. W.l.o.g. we consider only k = 1. Define F̂0 := co{v1, . . . , vr1} ⊂
F0. Let {µx} be open-loop controls satisfying (i)-(iii) of Definition 8. Let
x ∈ S and consider any t ∈ [0, T (x)] such that φµx(t, x) ∈ F̂0. First, by
condition (iii) of Definition 8, hl · (Aφµx(t, x) + Bµx(t) + a) ≤ 0 for l ∈ I,
φµx(t, x) ∈ Fl. Second, let Aφµx(t, x) + Bµx(t) + a = α1b1 + · · · + αr1br1 +
β, where αi ∈ R and β ∈ B. By the same argument as in Theorem 23,
β = 0. Then by Lemma 18, hj · (Aφµx(t, x) + Bµx(t) + a) = 0 for j =
r1 + 1, . . . , n. Suppose by way of contradiction that sp{b1, . . . , br1} ⊂ H0.
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Then h0 · (Aφµx(t, x) + Bµx(t) + a) = 0. On the other hand, for z ∈ F̂0,
T
F̂0
(z) = {y ∈ R

n | hj · y = 0, hl · y ≤ 0, j = 0, r1 + 1, . . . , n, l ∈ I s.t. z ∈ Fl}.

We conclude that for all x ∈ S and t ∈ [0, T (x)], if φµx(t, x) ∈ F̂0, then
Aφµx(t, x) + Bµx(t) + a ∈ T

F̂0
(x). Using uniqueness of solutions, we obtain

F̂0 is a positively invariant set, a contradiction.

Definition 26. Given system (4.1) and a state feedback u = f(x), we say
f(x) is a piecewise affine feedback if there exists a triangulation T of S such
that for each n-dimensional Sj ∈ T, there exist Kj ∈ R

m×n and gj ∈ R
m such

that f(x) = Kjx+ gj , x ∈ Sj.

This definition of piecewise affine feedback allows for discontinuities at the
boundaries of simplices; moreover, the feedback is a multi-valued function,
distinct from the usual notion in algebraic topology where piecewise affine
functions are single-valued and continuous [22]. Resolving what control value
to use at points lying in more than one simplex is treated as a problem of
implementation. The artifact of a discrete supervisory controller [24] will be
introduced to convert the multi-valued function to a single-valued feedback.

We now explain informally an inductive procedure for subdividing S in
order that RCP can be solved by piecewise affine feedback. First, in Lemma 27
we show that because of Lemma 25, each simplex co{vmk

, . . . , vmk+rk−1}, k =
1, . . . , p, has a vertex vi (among {vmk

, . . . , vmk+rk−1}) with bi ∈ B ∩ C(vi)
pointing out of S. By convention, we reorder indices so this vertex is the first
one in each list {vmk

, . . . , vmk+rk−1}. We make a subdivision of S by placing a
new vertex v′ along the edge (v0, vmk

). In particular, at the first iteration we
would have v′ ∈ (v0, v1), and we form two simplices S1 and S ′ as in Figure 8.1.
Lemma 29 shows that because bmk

∈ B ∩ C(vmk
) points out of S at vmk

and because the invariance conditions for S are solvable at v0, a convexity
argument (precisely, (8.3)) gives that v′ can be placed along (v0, vmk

) so that
B ∩ cone(S1) 6= 0. Finally one applies Theorem 6.2 of [7] to obtain that RCP
is solved for S1. Essentially S1 can be removed from further consideration,
and the induction step is repeated with S replaced by the remainder S ′. See
Figure 8.2. To guarantee that the induction is sound, one must show that
S ′ inherits the relevant properties of S, especially the property of Lemma 25.
This is done in Lemma 30. Lemmas 27-30 demonstrate the first step of a
triangulation algorithm that partitions S into a set of p + 1 simplices. Each
step of the algorithm will correspond to one reach control index. The algorithm
is therefore guaranteed to terminate with a finite partition.

Lemma 27. Suppose Assumption 12 and (7.15a)-(7.17) hold. Then w.l.o.g.
(by reordering indices {mk, . . . ,mk + rk − 1}), h0 · bmk

> 0, k = 1, . . . , p.

Proof. We prove the result only for k = 1. If for some i ∈ {1, . . . , r1}, h0 ·
bi > 0, then the proof is finished. Instead suppose that for all i ∈ {1, . . . , r1},
h0 · bi ≤ 0. Using Lemma 25 and by reordering the indices 1, . . . , r1, assume
h0 · br1 < 0. By (7.17), b1 = 1

c1
(br1 − c2b2 − · · · − cr1−1br1−1) with ci < 0.
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Fig. 8.1. Subdivision into two simplices S
′ and S

1.

Thus we obtain

h0 · b1 = h0 ·
1

c1
(br1 − c2b2 − · · · − cr1−1br1−1) ≥

1

c1
h0 · br1 > 0 .

Example 28. Lemmas 25 and 27 are illustrated in Figure 8.1 for a 2D
example. We have OS = co{v1, v2}, B ∩ cone(S) = 0, and B ∩ C(vi) 6= 0,
i = 1, 2, as required by Assumption 12. We observe that B is not parallel to
F0. Otherwise, the only way for trajectories to exit F0 would be by violating
the invariance conditions at v1 or v2 as depicted in Figure 4.3(c). Therefore,
B cannot be parallel to F0. This is the essence of Lemma 25. Next, since B
is not parallel to F0 there is b1 ∈ B ∩ C(v1) that points out of S. This is the
content of Lemma 27.

Following Lemma 27, suppose that b1 satisfies h0 · b1 > 0. We consider any
point v′ in the open segment (v0, v1). That is, let λ ∈ (0, 1) and define

v′ = λv1 + (1− λ)v0 . (8.1)

Now define the following simplices in S:

S ′ = co{v0, v
′, v2, . . . , vn}

S1 = co{v′, v1, v2, . . . , vn} .

Also define the new exit facet for S ′ by F ′
0 := co{v′, v2, . . . , vn}. See Figure 8.1.

Suppose that h0 = −γ1h1 − . . . − γnhn with γi > 0, and let λ ∈ (0, 1). Then
the normal vector to F ′

0 pointing out of S1 is

h′ = γ1h1 + λ
n∑

j=2

γjhj = γ1(1− λ)h1 − λh0 . (8.2)
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For the next result we observe that cone(S1) = {y ∈ R
n | h′ · y ≤ 0 , hj · y ≤

0, j ∈ {2, · · · , n}}.
Lemma 29. Suppose Assumption 12 and (7.15a)-(7.17) hold. There exists

v′ ∈ (v0, v1), such that B ∩ cone(S1) 6= 0. Moreover, b1 ∈ B ∩ cone(S1) with

h′ · b1 < 0. If the invariance conditions for S are solvable, then S1 S1

−→ F0 by
affine feedback.

Proof. We show there is an interval of values for λ such that 0 6= b1 ∈ B ∩
cone(S1), where we assume the index ordering of Lemma 27 so that h0 ·b1 > 0.
First, since b1 ∈ B ∩ C(v1) we know hj · b1 ≤ 0 for j ∈ {2, . . . , n}. We must
only show that there exists λ ∈ (0, 1) such that h′ ·b1 < 0. Using (8.2) we have

h′ · b1 = γ1(1− λ)h1 · b1 − λh0 · b1 . (8.3)

Since h0 ·b1 > 0 (by Lemma 27), it is clear from (8.3) that we can select λ = λ′

sufficiently close to 1 such that h′ · b1 < 0. Setting v′ = λ′v1 + (1 − λ′)v0, we
get b1 ∈ B ∩ cone(S1).

Next, we show that S1 S1

−→ F0 by affine feedback. By assumption, B ∩
cone(S1) 6= 0. We show that the invariance conditions are solvable for S1.
First, consider the vertex v′. Since the invariance conditions for S are solvable,
there exist control inputs u0, u1 ∈ R

m such that the invariance conditions
for S at v0 and v1 are satisfied, i.e. y0 := Av0 + Bu0 + a ∈ cone(S) and
y1 := Av1 + Bu1 + a ∈ B ∩ C(v1). In particular, hj · yi ≤ 0 for i = 0, 1 and
j = 2, . . . , n. Also from above, hj · b1 ≤ 0 for j = 2, . . . , n. Let w1 be such
that b1 = Bw1. Set ǫ1 > 0 and let u′ := λu1 + (1 − λ)u0 + ǫ1w1. Then
y′ := Av′ +Bu′ + a = λy1 + (1− λ)y0 + ǫ1b1. Thus, hj · y

′ ≤ 0 for j = 2, . . . , n
and for ǫ1 > 0 sufficiently large, h′ · y′ < 0. That is, the invariance conditions
for S1 are solvable at v′.

Next consider v1. Since the invariance conditions for S
1 at v1 are identical

to those for S at v1, and since the latter are by assumption solvable, the
former are also solvable. Finally, consider vertices vi, i = 2, . . . , n. There exist
control inputs ui ∈ R

m such that yi := Avi + Bui + a satisfy hj · yi ≤ 0 for
j = 2, . . . , i − 1, i + 1, . . . , n. As above let w1 be such that b1 = Bw1. Set
ǫ1 > 0 and let u′i := ui + ǫ1w1. Then y′i = Avi + Bu′i + a = yi + ǫ1b1. Thus,
hj · y

′
i ≤ 0 for j = 2, . . . , i − 1, i + 1, . . . , n and for ǫ1 > 0 sufficiently large,

h′ · y′i < 0. That is, the invariance conditions for S1 are solvable at vi. In sum,

we can apply Theorem 6.2 of [7] to obtain that S1 S1

−→ F0 by affine feedback.

Lemma 30. Suppose Assumption 12 and (7.15a)-(7.17) hold. Let v′ be as
in Lemma 29. If the invariance conditions for S are solvable then

(i) The invariance conditions for S ′ are solvable.
(ii) (−h′) · bmk

> 0 , k = 1, . . . , p.
Proof. First we prove (i). By assumption the invariance conditions for S

are solvable, and since the invariance conditions for S ′ are identical (the only
facet that changed for S ′ is F0, which plays no role in invariance conditions),
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Fig. 8.2. Notation for the subdivision algorithm.

they are also solvable for S ′. Next we prove (ii). First we have (−h′) · bm1
> 0

by Lemma 29. Second, since bmk
∈ B ∩ C(vmk

), we have h1 · bmk
≤ 0, for

k = 2, . . . , p. Also by Lemma 27, h0 · bmk
> 0, for k = 2, . . . , p. Thus using

(8.2), (−h′) · bmk
= −γ1(1− λ)h1 · bmk

+ λh0 · bmk
> 0, k = 2, . . . , p.

We have demonstrated the first step of a triangulation procedure that par-
titions S into simplices on each of which a reach control problem is solvable.
Now we present a triangulation algorithm that iterates on the presented subdi-
vision method. It consists of p iterations, one for each set {vmk

, . . . , vmk+rk−1},
k = 1, . . . , p. The notation Sk := co{v′, v1, . . . , vn} is understood to mean that
all n+1 vertices of Sk are assigned simultaneously in the order presented. The
vertices of Sk are later identified as {vk0 , . . . , v

k
n}. The algorithm generates sim-

plices S1, . . . ,Sp+1 starting from the given simplex S. At the kth iteration,
the current declaration of S is split into a lower simplex Sk and an upper sim-
plex. The lower simplex is then “thrown away” and the remainder - the upper
simplex - is declared to be S with vertices called {v0, . . . , vn} (overloading the
vertices of the previous S). See Figure 8.2. In this way each iterate mimics
the first subdivision developed in the discussion above.

Subdivision Algorithm:

1. Set k = 1.
2. Select v′ ∈ (v0, vmk

) such that B∩cone(Sk) 6= 0, where Sk := co{v′, v1, . . . , vn}.
3. Set S := co{v0, v1, . . . , vmk−1, v

′, vmk+1, . . . , vn}.
4. If k < p, set k := k + 1 and go to step 2.
5. Set Sp+1 := S.

Example 31. Consider the output of the subdivision algorithm for an
example with p = 3:

• S1 := {v10 , vm1
, . . . , vn} where v10 ∈ (v0, vm1

).
• S2 := {v20 , v

1
0 , vm1+1, . . . , vn} where v20 ∈ (v0, vm2

).
• S3 := {v30 , v

1
0 , vm1+1, . . . , v

2
0 , vm2+1, . . . , vn} where v30 ∈ (v0, vm3

).
• S4 := {v0, v

1
0 , vm1+1, . . . , v

2
0 , vm2+1, . . . , v

3
0 , vm3+1, . . . , vn}.

From this example we observe several features:

• For each k = 1, . . . , p, we have vk0 ∈ Sk ∩ · · · ∩ Sp+1 and vmk
∈ S1 ∩

· · · ∩ Sk.
• Simplex Sp+1 has all the same vertices as S except that the vertices

vm1
, . . . , vmp have been replaced by new vertices v10 , . . . , v

p
0 , respec-
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tively. In particular, v0 is a vertex of both S and Sp+1. This means
that the only difference between S and Sp+1 is the original exit facet
F0 = co{v1, . . . , vn} of S has been modified for Sp+1 to be Fp+1

0 =
{v10 , vm1+1, . . . , vm1+r1−1, . . . , v

p
0 , vmp+1, . . . , vmp+rp−1, vr+1, . . . , vn}.

• Because of Assumption (A1) and the fact that vk0 ∈ (v0, vmk
), we have

v10 , . . . , v
p
0 6∈ O.

• Because of the previous two properties, Op+1
S

:= Sp+1∩O has dropped
in dimension to κ− p = m̂− 1 because p vertices originally in O have
been removed from Sp+1.

Let Fk
0 = co{vk1 , . . . , v

k
n} denote the exit facet of Sk = co{vk0 , . . . , v

k
n}. The

triangulation generated by the algorithm has the property that Sk ∩ Sk−1 =
Fk
0 , k = 2, . . . , p+1, and closed-loop trajectories follow paths through simplices

with decreasing indices. Thus, S
S

−→ F0 is achieved by implementing affine

controllers that achieve Sk Sk

−→ Fk
0 for k = 1, . . . , p+ 1. In order to guarantee

that switching occurs in the proper sequence (with decreasing simplex indices),
a discrete supervisor should accompany the implementation of the piecewise
affine feedback. The supervisor enforces the following rule:
(DS) At a point x ∈ S belonging to more than one simplex Sj, the controller

for the simplex with the highest index is used.

Remark 32. The rule (DS) is imposed to guarantee that condition (iii) of
Problem 1 is met. For example, in the center figure of Figure 8.2, the controller
for the upper simplex would be applied at the points along the segment from v2
to v′. In particular, at v2 that controller would satisfy invariance conditions
at v2 for the simplex S, whereas the controller for simplex S1 violates the
invariance conditions of S at v2.

Theorem 33. Suppose Assumption 12 and (7.15a)-(7.17) hold. If the

invariance conditions for S are solvable, then S
S

−→ F0 by piecewise affine
feedback.

Proof. Form the triangulation {S1, . . . ,Sp+1} of S based on the Subdi-

vision Algorithm. We show by induction that Sk Sk

−→ Fk
0 by affine feedback

for k = 1, . . . , p (momentarily ignoring the rule (DS)). For the initial step, by
assumption the invariance conditions for S are solvable and by Lemma 27,

h0 · bmk
> 0 for k = 1, . . . , p. Thus, by Lemma 29, S1 S1

−→ F0 by affine feed-
back. Now assume that at the jth step the invariance conditions are solvable
for (the current) S and h0 · bmk

> 0 for k = 1, . . . , p. Then by Lemma 29,

Sj Sj

−→ F j
0 by affine feedback. Now consider the (j + 1)th step. By the al-

gorithm S := co{v0, v1, . . . , vmj−1, v
′, vmj+1, . . . , vn} and h0 = −h′, where v′

and h′ are provided by the jth step. By Lemma 30, the invariance conditions
are solvable for S and h0 · bmk

> 0 for k = 1, . . . , p. Then by Lemma 29,

Sj+1 Sj+1

−→ F j+1
0 by affine feedback.

Next consider Sp+1. We observe that Sp+1 and S share the same invariance
conditions since they only differ in their exit facets, so the invariance conditions
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for Sp+1 are solvable. Now let Op+1
S

:= Sp+1 ∩ O. Then by the algorithm,

Op+1
S

= co{v2, . . . , vm2−1, vm2+1, . . . , vmp−1, vmp+1, . . . , vκ+1}. We can see that
the algorithm has removed the p vertices vm1

, vm2
, . . . , vmp from OS . There

remain m̂ linearly independent vectors in B associated with Op+1
S

(an (m̂ −
1)-dimensional simplex) given by {b2, . . . , bm2−1, bm2+1, . . . , bmp−1, bmp+1, . . . ,

bκ+1}. Therefore, we can apply Theorem 6.7 of [7] to obtain Sp+1 Sp+1

−→ Fp+1
0 .

Next, we must prove that trajectories progress through simplices with
decreasing indices only. Consider w.l.og. the boundary between S1 and S2

given by F2
0 = co{v′, v2, . . . , vn}, and let u = K1x+ g1 be the affine feedback

obtained for S1. We show that for any x0 ∈ S1 \ F2
0 , closed-loop trajectories

do not reach F2
0 . This in turn means that trajectories never return to S2

from S1 after leaving S2. This can be deduced from the proof of Lemma 29
where it is shown that the controls {u′, u2, . . . , un} can be selected so that
h′ · (Av′ + Bu′ + a) < 0 and h′ · (Avi + Bui + a) < 0, i = 2, . . . , n. Since
x 7→ (A +BK1)x+Bg1 + a is an affine function, F2

0 is a convex set, and the
cones C(x) are convex, h′ · (Ax + B(K1x + g1) + a) < 0 for all x ∈ F2

0 , from
which the result easily follows.

Finally we verify conditions (ii) and (iii) of RCP. Condition (ii) follows
immediately because there is a finite number of affine feedbacks each defined
on a compact set Sk that does not contain an equilibrium. For (iii) we must
verify that the piecewise affine feedback u = f(x) resulting from (DS) satisfies
(4.3). We show that it satisfies (4.2) and therefore also (4.3). First consider
Sp+1. Its exit facet is

Fp+1
0 = {v10 , vm1+1, . . . , vm1+r1−1, . . . , v

p
0 , vmp+1, . . . , vmp+rp−1, vr+1, . . . , vn}.

The invariance conditions for Sp+1 are identical to those for S and the con-
troller for Sp+1 takes precedence over controllers for simplices with lower index.
This implies the invariance conditions for S hold at v0 and all vertices of Fp+1

0 .

The only vertices of F0 that are not in Fp+1
0 are vm1

, vm2
, . . . , vmp . For these

vertices we have: vm1
∈ S1, vm2

∈ S1 ∩ S2,...,vmp ∈ S1 ∩ · · · ∩ Sp. We use
the affine controller for the simplex with the highest index. But the invariance
conditions for Sk at vmk

are precisely those for S. We can see this because
the invariance conditions for vmk

do not include the normal vector −h′ given
in (8.2).

9. Examples.

9.1. Example 1. Consider the system

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u+

[
0
0

]
.

Safety constraints on both x1 and x2 determine a polyhedral state space
within which the dynamics evolve. The polyhedral state space is triangu-
lated according to Assumption 11. We focus on the reach control problem
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Fig. 9.1. Closed-loop vector fields using (a) affine feedback and (b) piecewise affine
feedback.

for a specific simplex of the triangulation: consider the simplex S determined
by vertices v0 = (−1, 1), v1 = (1, 0) and v2 = (0, 0). It can be verified that
O = {x ∈ R

2 | x2 = 0}, OS = co{v1, v2}, κ = 1, and m̂ = m = 1. Also
B ∩ cone(S) = 0. By the results of [7], RCP is not solvable by continuous
state feedback. For example, suppose we choose control values u0 = −3

4 ,
u1 = −1, and u2 = 1 to satisfy the invariance conditions (4.2). By the method
in [16], this yields an affine feedback u =

[
−2 −3.75

]
x+ 1. Simulation of

the closed-loop system is shown in Figure 9.1(a). We observe there exists a
closed-loop equilibrium point on OS . Now we show the problem is solvable by
piecewise affine feedback.

Let b1 = (0,−1) ∈ B ∩ C(v1). Since h0 = (0,−1), we have h0 · b1 > 0,
verifying Lemma 27. Next, we choose v′ = (0.5, 0.25) along the simplex edge
(v0, v1) such that from (8.2), h′ = (−0.25, 0.5). Then h′ · b1 < 0 and b1 ∈
B∩cone(S1), verifying Lemma 29. Let S1 := co{v′, v1, v2}, S

2 := co{v0, v
′, v2},

and F ′
0 = co{v′, v2}. To satisfy the invariance conditions for S1 we choose

control inputs at the vertices to be u′ = −1, u1 = −1, and u12 = −1. Similarly,
for S2 we choose u0 = −3

4 , u
′ = −1, and u22 = 1. The piecewise affine feedback

is

u :=

{ [
0 0

]
x− 1 , x ∈ S1

[
−2.0833 −3.833

]
x+ 1 , x ∈ S2 .

By Theorem 6.2 of [7], S1 S1

−→ F0 using u. Because O2
S := S2 ∩ O = {v2}, we

have m̂2 = 1 and κ2 = 0 for S2. By Theorem 6.2 of [7], S2 S2

−→ F ′
0 using u.

The closed-loop vector field is shown in Figure 9.1(b), where it is clear that
RCP is solved.

9.2. Example 2. Consider the simplex S in R
4 defined by the vertices

v0 = (0, 0, 0, 0), v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0), and v4 =
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(0, 0, 0, 1). Consider the system

ẋ =




−3 −3 −3 1
0 0 0 −2

−3 −3 −3 1
0 0 0 −2


x+




0 −2
0 1

−2 0
1 0


u+




1
1
1
1


 .

We compute O = {x ∈ R
4 | x1 + x2 + x3 + x4 − 1 = 0}. Thus, OS = F0, and

we note that κ = 3, m̂ = m = 2, and B ∩ cone(S) = 0. By the results of [7],
RCP is not solvable by continuous state feedback. Now we show it is solvable
by piecewise affine feedback. First we examine the structure of B (note that
indices are not reordered, as is the convention in our proofs). We find by
inspect that b1 := (−2, 1, 0, 0) ∈ B ∩ C(v1), b3 := (0, 0,−2, 1) ∈ B ∩ C(v3), and
B = sp{b1, b3}. In particular, b2 := −b1 ∈ B∩C(v2) and b4 := −b3 ∈ B∩C(v4).
Thus, r1 = 2 and r2 = 2.

9.2.1. First subdivision. In the first iteration S is subdivided into
simplices S1 and S ′. Since b2 · h0 > 0, we choose v′ = (0, 0.75, 0, 0) ∈
(v0, v2) such that we obtain the condition B ∩ cone(S1) 6= 0. Hence S ′ =
conv{v0, v1, v

′, v3, v4} and S1 = conv{v′, v1, v2, v3, v4}. In order to satisfy the
invariance conditions for S1 the control inputs at the vertices of S1 are cho-
sen as u′ = (−1,−2), u11 = (−1,−2), u12 = (−1,−2), u13 = (−1,−2), and
u14 = (1, 0). This yields an affine feedback

u :=

[
0 0 0 2
0 0 0 2

]
x+

[
−1
−2

]
, x ∈ S1 .

For S1 the invariance conditions are solvable and B ∩ cone(S1) 6= 0, so by

Theorem 6.2 of [7], S1 S1

−→ F0 using u. For S ′ we have O′
S := S ′ ∩ O =

co{v1, v3, v4}. Since κ′ = 2 and m = 2, RCP is not solvable by continuous
state feedback on S ′, and further subdivision of S ′ is required.

9.2.2. Second subdivision. Consider the simplex S ′ = co{v0, v1, v
′, v3, v4},

where v′ ∈ (v0, v2) = (0, 0.75, 0, 0) and the exit facet is F ′
0 =conv{v1, v

′, v3, v4}.
We subdivide S ′ into simplices S3 and S2 and use a piecewise affine feedback
law to solve RCP on S ′. It is clear that b4 ·h

′
0 > 0 and therefore we can choose

v′′ ∈ (v0, v4) such that B ∩ cone(S2) 6= 0. One choice is v′′ := (0, 0, 0, 0.8).
Let S3 = co{v0, v1, v

′, v3, v
′′} and S2 = co{v′′, v1, v

′, v3, v4}. It can be veri-
fied that b4 ∈ B ∩ cone(S2). To satisfy the invariance conditions for S2 we
choose u′′ = (−4, 0.6), u21 = (−5,−1), u′ = (−1,−2), u23 = (−5,−1), and
u24 = (−3, 1). To satisfy the invariance conditions for S3 we choose u0 = (0, 0),
u31 = (−1, 0), u′ = (−1,−2), u33 = (0,−1), and u′′ = (−4, 0.6). This yields a
piecewise affine feedback

u =





[
−1 −1.33 0 −5
0 −2.66 −1 0.75

]
x , x ∈ S3

[
3 9.33 3 5
0 −1.33 0 2

]
x+

[
−8
−1

]
, x ∈ S2 .
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For S2 the invariance conditions are solvable and B ∩ cone(S2) 6= 0, so by

Theorem 6.2 of [7], S2 S2

−→ F ′
0 using u. For S3 we have OS

3 := S3 ∩ O =

co{v1, v3}. Since κ3 = 1 and m̂3 = 2, by Theorem 6.7 of [7], S3 S3

−→ F ′′ using
u. Indeed, {b1, b3 | bi ∈ B∩C(vi)} is a linearly independent set associated with
OS

3.

10. Conclusion. The paper studies the reach control problem on sim-
plices, and we investigate cases when the problem is not solvable by contin-
uous state feedback. It is shown that the class of piecewise affine feedbacks
is sufficient to solve the problem in all cases of interest; namely, those cases
when the problem is solvable by open-loop controls.

Acknowledgements. The authors are grateful to the reviewers for valu-
able comments which helped us improve the readability of the paper.

REFERENCES

[1] G. Ashford and M. Broucke Reach control on simplices by time-varying affine feedback.
Automatica. Vol. 49, issue 5, pp. 1365–1369, May 2013.

[2] C. Belta and L.C.G.J.M. Habets. Controlling a class of nonlinear systems on rectangles.
IEEE Trans. Autom. Control. vol. 51, no. 11, pp. 17491759, Nov. 2006.

[3] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and
constraints. Automatica. vol. 35, pp. 407–428, March 1999.

[4] A. Bemporad, M. Morari, V. Dua, E. Pistikopoulos. The explicit linear quadratic reg-
ulator for constrained systems. Automatica. vol. 38, pp. 3-20, 2002.

[5] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
Academic Press, New York. 1979.

[6] K. Border. Fixed Point Theorems with Applications to Economics and Game Theory.
Cambridge University Press, 1985.

[7] M.E. Broucke. Reach control on simplices by continuous state feedback. SIAM Journal
on Control and Optimization. vol. 48, issue 5, pp. 3482-3500, February 2010.

[8] M.E. Broucke. On the reach control indices of affine systems on simplices. 8th IFAC
Symposium on Nonlinear Control Systems. August 2010.

[9] M.E. Broucke and M. Ganness. Reach control on simplices by piecewise affine feedback.
American Control Conference. pp. 2633-2638, June 2011.

[10] P. Brunovsky. A classification of linear controllable systems. Kybernetika. vol. 3, pp.
173-187, 1970.

[11] M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher. Algebraic necessary and
sufficient conditions for the controllability of conewise linear systems. IEEE Trans.
on Automatic Control. 53(3), pp. 762–774, 2008.

[12] R. Casey, H. De Jong, and J.L. Gouze. Piecewise linear models of genetic regulatory
networks: Equilibria and their stability. Journal of Mathematical Biology, 52(1),
pp. 27 56, 2006.

[13] F.H. Clarke, Y.S. Ledyaev, R.J. Stern, and P.R. Wolenski. Nonsmooth Analysis and
Control Theory. Springer, 1998.

[14] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid Dynamical Systems. IEEE Control
Systems Magazine. vol. 29, no. 2, pp. 28–93, April 2009.

[15] L.C.G.J.M. Habets and J.H. van Schuppen. Control of piecewise-linear hybrid sys-
tems on simplices and rectangles, in: M.D. Di Benedetto and A.L. Sangiovanni-
Vincentelli (Eds.) Hybrid Systems: Computation and Control, Lecture Notes in
Computer Science. Springer Verlag, vol. 2034, pp. 261–274, 2001.

27



[16] L.C.G.J.M. Habets and J.H. van Schuppen. A control problem for affine dynamical
systems on a full-dimensional polytope. Automatica. no. 40, pp. 21–35, 2004.

[17] L.C.G.J.M. Habets, P.J. Collins, and J.H. van Schuppen. Reachability and control
synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Automatic
Control. no. 51, pp. 938–948, 2006.

[18] C. W. Lee. Subdivisions and triangulations of polytopes. Handbook of Discrete and
Computational Geometry. CRC Press Series Discrete Math. Appl., pp. 271–290,
1997.

[19] D. Liberzon. Switching in Systems and Control. Boston, MA: Birkhauser, 2003.
[20] H.H. Lin, C.L. Beck, and M.J. Bloom. On the use of multivariable piecewise linear

models for predicting human response to anesthesia. IEEE Trans. on Biomedical
Engineering. 51(11), pp. 18761887, 2004.

[21] Z. Lin and M.E. Broucke. On a reachability problem for affine hypersurface systems on
polytopes. Automatica. vol. 47, issue 4, pp. 769-775, April 2011.

[22] J.R. Munkres. Elements of Algebraic Topology. Perseus Books Publishing, Cambridge,
Massachusetts, 1984.

[23] H. Oktem. A survey on piecewise linear models of regulatory dynamical systems. Non-
linear Analysis: Theory Methods and Applications. 63(3), pp. 336349, 2005.

[24] R.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
processes. SIAM J. Control and Optimization. vol. 25, no. 1, pp. 206-230, 1987.

[25] R.T Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey
1970.

[26] B. Roszak and M. E. Broucke. Necessary and sufficient conditions for reachability on
a simplex. Automatica. vol. 42, no. 11, pp. 1913–1918, November 2006.

[27] B. de Schutter and T.J.J. van den Boom. MPC for continuous piecewise-affine systems.
Systems and Control Letters. 52(3-4), pp. 179192, 2004.

[28] F. Tahami and B. Molaei. Piecewise affine system modeling and control of PWM con-
verters. Journal of Circuits Systems and Computers, 16(1), pp. 113 128, 2007.

[29] W.M. Wonham. Linear Multivariable Control: a Geometric Approach. 3rd Edition,
Springer, 1985.

11. Appendix. The proof of Lemma 1 relies on a fact about subspace
intersection.

Lemma 34. Let {w1, . . . , wr | wi ∈ R
n} be a set of linearly independent

vectors. Given integers q, p, and s such that 1 ≤ q ≤ p ≤ r and q ≤ s ≤ r,
define W1 = sp{w1, . . . , wp} and W2 = sp{wq, . . . , ws}. Then W1 ∩ W2 =
sp{wq, . . . , wp}.

Proof. [Proof of Lemma 34] First, it is clear that sp{wq, . . . , wp} ⊂ W1 ∩
W2. Now we show the converse. Let 0 6= β ∈ W1 ∩ W2. Then there exist
c1, . . . , cp ∈ R (not all zero since {w1, . . . , wp} are linearly independent) and
dq, . . . , ds ∈ R (not all zero since {wq, . . . , ws} are linearly independent) such
that

β = c1w1 + · · ·+ cpwp

β = dqwq + · · · + dsws .

Then

0 = c1w1+· · ·+cq−1wq−1+(cq−dq)wq+· · ·+(cp−dp)wp−dp+1wp+1−· · ·−dsws .

Since {w1, . . . , ws} are linearly independent, we obtain ci = 0, i = 1, . . . , q−1,
and di = 0, i = p+1, . . . , s. Thus, β ∈ sp{wq, . . . , wp}. We concludeW1∩W2 ⊂
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sp{wq, . . . , wp} as desired.
Proof. [Proof of Lemma 1] By assumption C ⊂ sp{w1, . . . , wr} so trivially

there exists a non-empty subset of {w1, . . . , wr} whose span contains C. It
remains to show there exists a unique subset of minimum cardinality whose
span contains C. Let χ, χ′ ⊂ {w1, . . . , wr} such that C ⊂ sp χ and C ⊂ sp χ′.
Let |χ| denote the cardinality of χ. Moreover, suppose p := |χ| = |χ′| ≥ 1 is the
minimum cardinality of any subset of {w1, . . . , wr} whose span contains C 6= 0.
We want to show χ = χ′. Suppose not. Define the subspaces W := sp χ and
W ′ := sp χ′. Clearly W 6= W ′. Since C ⊂ W and C ⊂ W ′, then C ⊂ W ∩W ′,
so W ∩W ′ 6= 0.

W.l.o.g. let χ = {w1, . . . , wp} and χ′ = {wq, . . . , wq+p−1}, where 1 ≤
p, q + p− 1 ≤ r. Then the following statements can be made about p and q:

W ∩W ′ 6= 0 =⇒ q ≤ p

W 6= W ′ =⇒ 1 < q .

We conclude that
1 < q ≤ p ≤ r . (11.1)

By Lemma 34, we get C ⊂ W ∩W ′ = sp{wq, . . . , wp}, and by (11.1), p − q +
1 < p. This contradicts that p is the minimum cardinality of any subset of
{w1, . . . , wr} whose span contains C.

Proof. [Proof of Theorem 9] Let x0 ∈ S \ F0. By assumption there exists
µx0

(t) and a time T (x0) > 0 such that φµx0
(t, x0) ∈ S for all t ∈ [0, T (x0)].

Since µx0
(t) is an open-loop control, there exists c ≥ 0 such that ‖µx0

(t)‖ ≤ c,
for all t ∈ [0, T (x0)]. Define Y(x) :=

{
Ax+ Bw + a | w ∈ R

m
}
and Yc(x) :={

Ax+Bw+ a | w ∈ R
m, ‖w‖ ≤ c

}
. Now take a sequence {ti | ti ∈ (0, T (x0)]}

with ti → 0. Since {y ∈ Yc(x) | x ∈ S} is bounded, there exists M > 0

such that ‖φµx0
(ti, x0) − x0‖ ≤ Mti. Therefore

{
φµx0

(ti,x0)−x0

ti

}
is a bounded

sequence, and there exists a convergence subsequence (with indices relabeled)
such that

lim
i→∞

φµx0
(ti, x0)− x0

ti
=: v .

Since φµx0
(ti, x0) ∈ S, by the definition of the Bouligand tangent cone, v ∈

TS(x0). On the other hand, we have

φµx0
(ti, x0)− x0

ti
=

1

ti

∫ ti

0

[
Aφµx0

(τ, x0) +Bµx0
(τ) + a

]
dτ . (11.2)

Taking the limit, we get

v = Ax0 +B lim
i→∞

µx0
(ti) + a ∈ Y(x0) .

Note that limi→∞ µx0
(ti) exists by passing to a subsequence, if necessary, be-

cause µx0
is bounded on compact intervals. We conclude that Y(x0)∩TS(x0) 6=
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Avi + a
Ax+ a

Y(vi)
Y(x)

B

0 C(vi)

Fig. 11.1. Illustration for the proof of Theorem 9.

∅, x0 ∈ S \ F0. Since TS(v0) = cone(S), and TS(x) = C(vi) for x ∈ (v0, vi),
it follows that the invariance conditions are solvable at v0 and along simplex
edges (v0, vi), i ∈ I.

Now consider vi, i ∈ I. If vi ∈ O, then the invariance conditions are
solvable by selecting ui ∈ R

m such that Avi + Bui + a = 0. Instead suppose
vi 6∈ O. Suppose by way of contradiction that Y(vi) ∩ C(vi) = ∅. Then Y(vi)
and C(vi) are non-empty disjoint polyhedral convex sets in R

n. By Corollary
19.3.3 of [25], they are strongly separated. That is, there exists ǫ > 0 such
that infy∈Y(vi),z∈C(vi) ‖y − z‖ > ǫ. By the upper semicontinuity of x 7→ Y(x),
there exists δ > 0 such that if ‖x − vi‖ < δ, then Y(x) ⊂ Y(vi) +

ǫ
2B. Now

taking any x ∈ (v0, vi) with ‖x − vi‖ < δ, we get Y(x) ∩ C(vi) = ∅. See
Figure 11.1. However, this is a contradiction with the result obtained above
that for x ∈ (v0, vi), Y(x) ∩ TS(x) = Y(x) ∩ C(vi) 6= ∅.

Proof. [Proof of Theorem 10] Consider vi ∈ V ∩OS . Suppose B∩C(vi) = 0.
Since Avi + a ∈ B, there exists ui ∈ R

m such that Avi +Bui + a = 0. By (ii)-
(iii) of Definition 8, there exists ε > 0 such that for all x ∈ S \F0, there exists
ux ∈ R

m such that Ax+Bux+a ∈ TS(x) and ‖Ax+Bux+a‖ > ε. By continuity
there exists δ > 0 such that if ‖x− vi‖ < δ, then ‖Ax+Bui+a‖ < ε/2. Thus,
for x ∈ S \ F0 with ‖x − vi‖ < δ, we have ‖B(ux − ui)‖ > ε/2. Since
B ∩ C(vi) = 0 and C(vi) is a closed cone, there exists α > 0 such that if b ∈ B
satisfies ‖b‖ > ε/2, then (b + αB) ∩ C(vi) = ∅. In particular, we can choose
x ∈ (v0, vi) sufficiently close to vi such that ‖Ax + Bui + a‖ < min{α, ǫ/2}.
Then Ax + Bux + a = (Ax + Bui + a) + B(ux − ui) 6∈ C(vi) = TS(x), a
contradiction.
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