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Abstract— Primal-dual gradient methods have recently at-
tracted interest as a set of systematic techniques for distributed
and online optimization. One of the proposed applications has
been optimal frequency regulation in power systems, where
the primal-dual algorithm is implemented online as a dynamic
controller. In this context however, the presence of exter-
nal disturbances makes quantifying input/output performance
important. Here we use the H2 system norm to quantify
how effectively these distributed algorithms reject external
disturbances. For the linear primal-dual algorithms arising
from quadratic programs, we provide an explicit expression
for the H2 norm, and examine the performance gain achieved
by augmenting the Lagrangian. Our results suggest that the
primal-dual method may perform poorly when applied to large-
scale systems, and that Lagrangian augmentation can partially
(or completely) alleviate these scaling issues. We illustrate our
results with an application to power system frequency control
by means of distributed primal-dual controllers.

I. INTRODUCTION

Primal-dual methods are a class of gradient-based algo-
rithms for solving constrained convex optimization problems.
Introduced in the early 1950’s [1], [2], the methods are also
frequently termed saddle-point algorithms, as they are de-
signed to seek the saddle points of the optimization problem’s
Lagrangian function. These saddle points are in one-to-one
correspondence with the solutions of the first-order opti-
mality (KKT) conditions, and the algorithm’s internal state
asymptotically converges to the global primal-dual optimizer
of the optimization problem; see [3], [4] for technical con-
vergence results. Recently, these algorithms have attracted
renewed attention in the control community for solving
distributed optimization problems, where agents cooperate
through a communication network to solve an optimization
problem without centralized coordination. Standard applica-
tions of distributed optimization include utility maximization
[3] and congestion management in communication networks
[5]. While most optimization algorithms require centralized
information to compute the optimizer, primal-dual algorithms
often yield distributed strategies where agents require only
local information along with inter-agent communication.

Rather than solve the optimization problem only once
offline, it is also desirable to run the primal-dual algorithm
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online as a “controller”, so that the optimizer can be (hope-
fully) tracked in real-time as the problem data changes. How-
ever, like all controllers, when implemented online primal-
dual methods become subject to unknown disturbances. We
therefore arrive at the question of dynamic input/output
performance: how well does the primal-dual method track
the optimal point when subjected to disturbances?

A. Power Networks and Primal-Dual Frequency Controllers

Our particular motivation for studying primal-dual meth-
ods comes from their recent application to optimal frequency
regulation in power networks. Power networks are designed
to operate around a nominal frequency (e.g., 50 Hz or 60 Hz),
and any steady-state deviation from this nominal value
signals a global imbalance of power supply and demand.
So-called primary control is a proportional control layer
implemented at sources [6, Chapter 11] or loads [7] which
attempts to balance supply and demand over fast time-scales,
stabilizing the grid to an off-nominal frequency. Higher-
level centralized control layers termed secondary and tertiary
control are then tasked with regulating the grid frequency
to its nominal value, meeting operational constraints, and
optimizing the grid by minimizing the cost of generation.
We refer to this high-level control/optimization problem as
the optimal frequency regulation (OFR) problem.

Currently however, the rise of distributed generation is
causing us to rethink how we should solve the OFR problem
in future power grids. Leveraging the many new control-
lable power electronic devices within the grid will enable
frequency control to be distributed across both producers
and consumers. This decentralization could increase system
resilience and allow for more localized control actions to be
taken. Due to sensing and communication constraints, these
devices should act based on minimal information, and ideally
without detailed model information or precise knowledge of
system parameters and generation/load forecasts.

Returning to primal-dual methods, in [8], [9] it was shown
that the standard primary/secondary control dynamics of a
power network can themselves be interpreted as a primal-
dual algorithm for solving an optimal frequency regulation
problem. This “reverse engineering” observation was then
translated to a “forward engineering” approach to further
improve the economic efficiency of the network by tweaking
the desired optimization problem and reapplying the primal-
dual method. The final resulting dynamics can then be
interpreted as a concatenation of power system dynamics
along with a real-time distributed control layer for the power
grid, ostensibly replacing the secondary/tertiary centralized



control layers. Extensions of this framework to load-side
OFR and mixed generator-side/load-side OFR were pre-
sented in [10]–[12]; see also [13], [14] for even more recent
work, and [15] for an elegant port-Hamiltonian perspective.
In this power systems context, disturbances can enter the
primal-dual algorithm as noisy power injections, arising from
fluctuating generation and load, from measurement noise, or
from generic process uncertainty. It is presently unknown
how well the controller can tolerate these disturbances while
it attempts to maintain the nominally optimal operating point.

B. Contributions

As background, in Section II we review primal-dual algo-
rithms for the relevant class of optimization problems, then
recall the basic facts about the H2 norm as a measure of
input/output system performance.

In Section III we consider the effect of disturbances on
the primal-dual dynamics arising from linearly constrained,
strictly convex quadratic optimization problems. While this is
only a small subclass of the types of optimization problems
primal-dual methods are applicable to, it is a particularly
relevant class for the OFR problem, and should indicate a
“best” case performance since it is free of both nonlinearities
and hard inequality constraints. For a relevant input/output
configuration, we derive an explicit expression for the primal-
dual H2 norm (Theorem 3.1). We find that the squared H2

norm scales linearly with the number of disturbances to
both the primal and dual variable dynamics. We then study
the effect of augmenting the Lagrangian of the optimization
problem. Under some simplifying assumptions, we derive
an expression for the H2 norm, precisely quantifying how
input/output performance is improved by augmentation. In
Section IV we apply our results to the OFR problem.

Notation: For A ∈ Rn×n, AT is its transpose and Tr(A) =∑n
i=1Aii. For a positive semidefinite matrix Q ∈ Rn×n, Q

1
2

is its unique square root. The n × n identity matrix is In,
0 is a matrix of zeros of appropriate dimension, while 1n
(resp. 0n) are column n-vectors of all ones and all zeros,
respectively. If f : Rn → R is differentiable, then ∇xf :
Rn → Rn is its gradient.

II. REVIEW OF PRIMAL-DUAL METHODS AND H2

SYSTEM NORM

A. The Primal-Dual Method

Consider the quadratic optimization problem

minimize
x∈Rn

1

2
xTQx+ cTx

subject to Sx = b ,
(1)

where Q = QT > 0 is positive definite, c ∈ Rn, b ∈ Rr and
S ∈ Rr×n where r < n. We make the standard assumption
that S has full row rank (rank(S) = r), which simply means
that the constraints Sx = b are not redundant.∗

∗In some cases, it is desirable to relax this assumption to rank(S) =
r̃ < r, and to also allow for r ≥ n. This introduces some mild technical
complications, so we defer the analysis to a future work.

Under these assumptions the problem (1) has a finite
optimum, the equality constraints are strictly feasible, and (1)
may be equivalently studied through its Lagrange dual with
zero duality gap [16]. The Lagrangian L : Rn ×Rr → R of
the problem (1) is given by

L(x, ν) =
1

2
xTQx+ cTx+ νT(Sx− b) , (2)

where ν ∈ Rr is a vector of Lagrange multipliers. By strong
duality, the KKT conditions

∇xL(x, ν) = 0n ⇐⇒ 0n = Qx+ STν + c ,

∇νL(x, ν) = 0r ⇐⇒ 0r = Sx− b ,
(3)

are necessary and sufficient for optimality. From these linear
equations one may easily compute that the unique global
primal-dual optimizer (x∗, ν∗) is[

x∗

ν∗

]
=

[
−Q−1(STν∗ + c)

−(SQ−1ST)−1(b+ SQ−1c)

]
. (4)

While (4) is the exact solution to the optimization problem
(1), its evaluation requires centralized information. In many
multi-agent system applications, the cost matrix Q is diago-
nal or block-diagonal and xTQx is therefore a sum of local
costs, with Qii known only to the ith agent. Moreover, in
certain applications the vectors b and c may change over
time, and the constraints encoded in S may be quite sparse,
mirroring the topology of an interaction or communication
network between agents. It is therefore desirable to solve the
optimization problem (1) in an online distributed fashion,
where agents in the network communicate and cooperate to
compute and track the global optimizer (4).

A simple continuous-time algorithm to seek this optimal
point is the primal-dual method [3], [4], [17], [18]

τxẋ = −∇xL(x, ν) , τν ν̇ = ∇νL(x, ν) , (5)

which here reduces to the linear dynamical system

τxẋ = −Qx− STν − c , (6a)
τν ν̇ = Sx− b , (6b)

where τx, τν are positive definite diagonal matrices of time
constants. By construction, the equilibrium points of (6) are
in one-to-one correspondence with the solutions of the KKT
conditions (3). The following stability result shows global
convergence, and can be proved using the strict Lyapunov
function: V (x, ν) = (x−x∗)Tτx(x−x∗)+(ν−ν∗)Tτν(ν−
ν∗) + ε(ν − ν∗)TSτx(x− x∗) for ε > 0 sufficiently small.

Lemma 2.1 (Global Convergence to Optimizer): The
unique equilibrium point (x∗, ν∗) given in (4) of the
primal-dual dynamics (6) is globally exponentially stable.

In the remainder of the analysis we assume that we have
changed variables to the error coordinates ∆x = x − x∗,
∆ν = ν − ν∗, and with an abuse of notation we drop the
∆’s and simply refer to the error coordinates as x and ν.



B. System Performance in the H2 Norm

Consider the MIMO continuous-time LTI system

ẋ = Ax+Bη

y = Cx ,
(7)

with input η and output y, and where A is Hurwitz. We
denote the transfer matrix from η to y by G. If (7) is
input/output stable, its H2 norm ‖G‖H2

is defined as the
induced norm from input signals η(t) ∈ L2 to output signals
y(t) ∈ L∞. That is, ‖G‖H2

is the worst-case L∞ output
amplification from square-integrable inputs. Other insightful
interpretations exist, the most useful for our discussion being
that ‖G‖2H2

is the steady-state variance of the output

‖G‖2H2
= lim
t→∞

E[yT(t)y(t)] ,

when each component of η(t) is stochastic white noise with
unit covariance (i.e., E[η(t)ηT(τ)] = δ(t − τ)I). Thus,
‖G‖H2

measures how much the output varies in steady-state
under stochastic disturbances. A convenient formula for the
H2 norm is [19, Chapter 6]

‖G‖2H2
= Tr(BTXB) , (8)

where X = XT > 0 is the observability Gramian satisfying

XA+ATX + CTC = 0. (9)

If the pair (C,A) is observable, then (9) is solvable for
the unique, positive-definite observability Gramian. In what
follows we will derive results on the H2 performance of
primal-dual methods under disturbances by explicitly solving
(9) for particular cases. Recent applications of the H2 norm
to power system performance may be found in [20]–[22].

III. H2 PERFORMANCE OF PRIMAL-DUAL METHODS

After translating the equilibrium point of the system (6) to
the origin, we now equip the primal-dual dynamics (6) with
disturbance inputs η ∈ Rp and performance outputs y ∈ Rm,
leading to the input-output primal-dual dynamics[

τxẋ
τν ν̇

]
=

[
−Q −ST

S 0

] [
x
ν

]
+

[
B1

B2

]
η , (10a)

y =
[
C1 C2

] [x
ν

]
, (10b)

where B1 ∈ Rn×p, B2 ∈ Rr×p and C1 ∈ Rm×n, C2 ∈
Rm×r are the input and output matrices, respectively. With
an abuse of notation, here (x, ν) are now error variables
from the unique equilibrium point (4). The inputs on the
primal variables (resp. dual variables) may be thought of as
a disturbances to the components of the vector c (resp. the
vector b), as measurement/actuation noise, or as modeling
generic process uncertainty.

As the system (10) is written in error coordinates, con-
vergence to the primal optimizer x∗ from (4) is equivalent
to convergence of x(t) to the origin. A very natural way
to measure this convergence is to use the cost matrix Q
from the optimization problem (1) as a weighting matrix,
and study the performance output ‖y(t)‖22 = 1

2x(t)TQx(t),

which is obtained by choosing m = n, with C1 = 1√
2
Q

1
2

and C2 = 0 in (10). We arrive at our first result; all proofs
are deferred to an extended publication.

Theorem 3.1 (Primal-Dual Performance): Consider the
input/output primal-dual dynamics (10) with diagonal
cost matrix Q. Let C1 = 1√

2
Q

1
2 and C2 = 0 so that

‖y(t)‖22 = 1
2x

T(t)Qx(t). Then the squared H2 norm of the
system (10) is

‖G‖2H2
=

1

4
Tr(BT

1 τ
−1
x B1) +

1

4
Tr(BT

2 τ
−1
ν B2) . (11)

As a special case, suppose that we have
(i) decoupled, uniform-strength disturbances for each pri-

mal and dual channel: p = n + r, B1 = b1
[
In 0

]
and B2 = b2

[
0 Ir

]
for constants b1, b2 > 0, and

(ii) uniform time constants: τx = τ1In, τν = τ2Ir for
constants τ1, τ2 > 0 .

Then

‖G‖2H2
=

b21
4τ1

n+
b22
4τ2

r . (12)

The most striking feature of the result (11) is that it is
completely independent of both the cost matrix Q and the
constraint matrix S. In other words, the constraints — be
they dense or sparse — are irrelevant to the H2 performance
for this performance output. The result also scales inversely
with the time constants τ1 and τ2, which indicates an inherent
trade-off between fast convergence speed (small τ ), and ro-
bustness against disturbances (large τ ). In the the simplified
case (12), the squared H2 norm scales linearly in the number
of disturbances to the primal dynamics (here equal to n)
and the number of disturbances to the dual dynamics (here
equal to r). This scaling is completely independent of the
constraints. While not an egregiously poor scaling, the lack
of tunable controller gains other than the time constants
means that convergence speed and input/output performance
are always conflicting objectives, and that performance will
typically degrade as the dimension of the problem grows.

A. Performance of Augmented Primal-Dual Methods

One option for improving the H2 performance of primal-
dual methods is to return to the Lagrangian function (2) and
instead consider the augmented Lagrangian

Lρ(x, ν) , L(x, ν) +
ρ

2
‖Sx− b‖22 ,

where we have incorporated the squared constraint ‖Sx −
b‖22 = 0 into the Lagrangian with a gain ρ ≥ 0. One way
to interpret this is that we have modified the cost function
1
2x

TQx + cTx with an additional term ρ
2‖Sx − b‖

2
2 which

penalizes transient equality constraint violation. It follows
that (x, ν) is a saddle point of Lρ(x, ν) if and only if it is a
saddle point of L(x, ν), and hence Lρ and L share the same
optimizer. Applying the primal-dual method (5) to Lρ(x, ν),
we obtain the augmented primal-dual dynamics

τxẋ = −(Q+ ρSTS)x− STν − c+ ρSTb ,

τν ν̇ = Sx− b .
(13)



One may verify that as before, the unique stable equilibrium
point of (13) is given by (4). After translating the equilibrium
point to the origin, we now again consider disturbance inputs
η and performance outputs y = 1√

2
Q

1
2x, leading to[

τxẋ
τν ν̇

]
=

[
−(Q+ ρSTS) −ST

S 0

] [
x
ν

]
+

[
B1

B2

]
η ,

y =
[

1√
2
Q

1
2 0

] [x
ν

]
.

(14)

The additional term −ρSTS in the dynamics (14) com-
plicates the computation of the H2 norm, and we require
additional assumptions to obtain an explicit formula; these
will be relaxed in a future work.

Theorem 3.2 (Augmented Primal-Dual Performance):
Consider the input/output augmented primal-dual dynamics
(14) with uniform parameters Q = qIn, τx = τ1In,
τν = τ2Ir, B1 = b1

[
In 0

]
, and B2 = b2

[
0 Ir

]
for

scalars q, τ1, τ2, b1, b2 > 0, along with the performance
output ‖y(t)‖22 = 1

2x
T(t)Qx(t) = 1

2q‖x(t)‖22. Then the
squared H2 norm of the system (14) is

‖G‖2H2
=

b21
4τ1

(n− r) +

(
b21
4τ1

+
b22
4τ2

) r∑
i=1

q

q + ρσ2
i

,

(15)
where σi is the ith non-zero singular value of S. In particular,
in the high augmentation-gain limit ρ→∞ it holds that

lim
ρ→∞

‖G‖2H2
=

b21
4τ1

(n− r) . (16)

First, note that (15) generalizes (12) under the assumed
restrictions on parameters, since when ρ = 0 the expression
(15) reduces to (12). Second, note that the result (15) decom-
poses cleanly into two terms, the first term representing the
contribution to theH2 norm resulting from the unconstrained
subdynamics, while the second term accounts for the con-
strained subdynamics. The final statement (16) emphasizes
that by increasing the augmentation gain ρ, the contribution
to the H2 norm from the constrained subdynamics can
be made arbitrarily small, leaving only the contribution
from the unconstrained subdynamics. While it is understood
that augmented Lagrangians tend to improve convergence
of optimization algorithms, the expression (15) gives an
analogous input/output performance result. We conclude that
augmentation of the Lagrangian may improve certain perfor-
mance metrics, and may be particularly beneficial when the
underlying optimization problem is heavily constrained.

As an observation, we note that even when ST is a
sparse matrix, STS typically will not be, and hence the
augmented dynamics (13) may not be implementable as a
distributed algorithm. A notable exception occurs when ST

is the incidence matrix of a graph, in which case STS is a
symmetric Laplacian matrix. Incidentally, we will return to
this case in the next section.

IV. APPLICATION TO DISTRIBUTED OPTIMAL
FREQUENCY REGULATION

We now formulate the power system dynamics under con-
sideration and the optimal frequency regulation optimization
problem to be solved, before applying the results derived
in Section III to assess the performance of primal-dual
frequency controllers.

A. Power Network Model & Optimal Frequency Regulation

We model a power network as a weighted graph (V, E)
where V = {1, . . . , n} is the set of nodes (buses), and
E ⊂ V × V is the set of edges (branches) with associated
edge weights Bij > 0 for {i, j} ∈ E . To each bus i ∈ V we
associate state variables (θi, ωi) corresponding to the voltage
phase angle and the frequency deviation from nominal.
Under the linear DC Power Flow approximation, the system
evolves according to the swing dynamics

θ̇i = ωi ,

Miω̇i = −Diωi + P ∗i − Pi(θ) + pi ,
(17)

where Mi > 0 represents inertia or inverter filter time-
constants, Di > 0 models damping and/or droop control,
P ∗i is the constant nominal active power injection (nominal
generation minus nominal load), Pi(θ) =

∑n
j=1Bij(θi−θj)

is the active power injected at bus i, and pi is the control
input, corresponding to additional power generation from
reserves.

When p = 0n, the dynamics (17) converge from ev-
ery initial condition to a common steady-state frequency
ω → ωss1n which can be easily calculated to be ωss =
(
∑n
i=1 P

∗
i )/(

∑n
i=1Di). When ωss 6= 0, this represents

a static deviation from nominal, which we will eliminate
by appropriately selecting the reserve power inputs p. To
determine the the steady-state values for pi, an optimal
frequency regulation problem (OFRP) can be formulated as†

minimize
p∈Rn

∑n

i=1

1

2
kip

2
i (18a)

subject to 0 = 1T
n(P ∗ + p) , (18b)

where we seek to minimize the total cost (18a) of reserve
generation pi ∈ R, for some coefficients ki > 0. The
minimization is subject to network-wide balancing of power
injections (18b). One may deduce from (17) that the con-
straint (18b) also ensures that ω = 0n in steady-state, and
thus the frequency is returned to its nominal value.

B. H2 Performance of Primal-Dual Frequency Controllers

Beginning from the OFRP (18), we roughly follow [7],
[11] to derive the controller dynamics. The Lagrangian of
the OFRP (18) is given by

L(p, µ) =
1

2
pTKp+ µ1T

n(P ∗ + p) ,

†A linear term could also of course be added to the cost, but we omit
it here for simplicity. We assume that any inequality constraints on p are
non-binding, and subsequently drop them from the problem (18), which is
then similar to the classic economic dispatch [6, Page 405].



where K = diag(ki) and µ ∈ R is a multiplier. Computing
argminp∈Rn L(p, µ), one finds that p = −µK−11n is the
unique minimizer. From this one quickly calculates the dual
function Φ(µ) = infp∈Rn L(p, µ), and the dual OFRP is

maximize
µ∈R

Φ(µ) =
∑n

i=1
µP ∗i −

1

2ki
µ2 , (19)

where we seek to maximize Φ(µ) over the common variable
µ ∈ R. To distribute (19), we introduce local variables
µi ∈ R for each bus, and consider the equivalent constrained
optimization problem

maximize
µ∈Rn

∑n

i=1
µiP

∗
i −

1

2ki
µ2
i

subject to 0 = µi − µj , {i, j} ∈ Ec ,
(20)

where Ec is the edge set of a connected, undirected, and
acyclic‡ communication graph (V, Ec) between the buses.
The additional constraints µi − µj = 0 force the local
variables µi to agree at optimality. Letting Ec ∈ Rn×|Ec|
denote the incidence matrix of the communication graph,
the dual OFRP (20) is written in vector notation as

minimize
µ∈Rn

1

2
µTK−1µ− (P ∗)Tµ

subject to 0|Ec| = ET
c µ ,

(21)

where now µ = (µ1, . . . , µn). The problem (21) is a linearly
constrained, strictly convex quadratic program of the form
(1) from Section I, with Q = K−1, c = −P ∗, S = ET

c

and b = 0|Ec|. The corresponding Lagrangian is L(µ, ν) =
1
2µ

TK−1µ− (P ∗)Tµ+ νTET
c µ, where ν ∈ R|Ec| is a vector

of multipliers, and the primal-dual algorithm with control
output p then becomes

τµµ̇ = −K−1µ+ P ∗ − Ecν ,

τν ν̇ = ET
c µ ,

p = −K−1µ ,
(22)

where as before τµ and τν are positive diagonal matrices
of controller gains. Since the graph (V, Ec) is acyclic, the
incidence matrix Ec has full column rank. Therefore by
Lemma 2.1, the controller (22) converges exponentially to
the global optimizer (µ∗, ν∗) of the problem (21). The output
p(t) of (22) is the input to the swing dynamics (17); the
interconnection is a cascade. Since p(t) an exponentially
converging input to the exponentially stable linear system
(17), the cascade is exponentially stable; we omit the details.
It follows from the cascade structure that the map from P ∗

to p given by (22) is the same as the map from P ∗ to p after
the systems are interconnected.

To evaluate the input/output performance of the primal-
dual controller (22), we consider the case where P ∗ is
subject to an additive disturbance, modeling fluctuating gen-
eration/load, noise, or other uncertainity. As in Section II, we
shift the undisturbed equilibrium point of (22) to the origin,
and following Section III we define the performance output

‡The acyclic assumption is made for consistency with our assumption
that rank(S) = r from Section II.

y(t) = 1√
2
K

1
2 p(t), such that ‖y(t)‖22 = 1

2p(t)
TKp(t).

Since p(t) = −K−1µ(t), the performance output becomes
y(t) = − 1√

2
K−

1
2µ or ‖y(t)‖22 = 1

2µ(t)TK−1µ(t). We now
apply Theorem 3.1 to obtain the following result.

Theorem 4.1 (Primal-Dual OFRP Performance): For the
primal-dual OFRP dynamics (22), consider the correspond-
ing shifted, input/output dynamics[

τµµ̇
τν ν̇

]
=

[
−K−1 −Ec

ET
c 0

] [
µ
ν

]
+

[
B1

0

]
η ,

y = − 1√
2
K−

1
2µ ,

(23)

with disturbances η and performance outputs y. Then the
squared H2 norm of (23) is

‖G‖2H2
= Tr(BT

1 τ
−1
µ B1)/4 . (24)

Moreover, assuming that τµ = τIn and B1 = bIn for some
τ, b > 0, we have that

‖G‖2H2
=
b2

4τ
n . (25)

The result indicates that the input/output performance of
the primal-dual frequency controller (22) is completely inde-
pendent of the cost coefficients ki and the incidence matrix
Ec used to implement the distributed control; it depends only
on the controller time-constants τµ, the disturbance strength
B1, and the number of buses subject to disturbances.

Finally, we can consider an augmented Lagrangian leading
to the augmented primal-dual OFRP dynamics

τµµ̇ = −K−1µ+ P ∗ − Ecν − ρEcET
c µ ,

τν ν̇ = ET
c µ ,

p = −K−1µ ,
(26)

The matrix ρEcET
c is in fact a Laplacian matrix for the graph

(V, Ec). The additional term arising from the augmentation is
therefore a distributed proportional consensus-type term on
the µ variables, complementing the integral consensus-type
term −Ecν. Applying Theorem 3.2, we obtain the following.

Theorem 4.2 (Augmented OFRP Performance): For
the primal-dual OFRP dynamics (26) with the uniform
parameters K = kIn, τµ = τ1In and τν = τ2I|Ec| for
constants k, τ1, τ2 > 0, consider the corresponding shifted,
input-output dynamics[

τ1µ̇

τ2ν̇

]
=

[
−( 1

k In + ρEcE
T
c ) −Ec

ET
c 0

][
µ

ν

]
+

[
bIn

0

]
η ,

y = − 1√
2k
µ ,

(27)
with disturbance inputs η and performance outputs y. Then
the squared H2 norm of (27) is

‖G‖2H2
=

b2

4τ1
+

b2

4τ1

n−1∑
i=1

1

1 + ρkσ2
i

, (28)



where σi is the ith non-zero singular value of Ec. Moreover,
in the high augmentation gain limit ρ→∞, we have that

lim
ρ→∞

‖G‖2H2
=

b2

4τ1
.

Proof: The proof is immediate by applying Theorem
3.2 and noting that r = n− 1 for the constraint ET

c µ = 0r,
since the graph (V, Ec) is acyclic.

Remarkably, we find that by designing the frequency
controller based on the augmented Lagrangian and mak-
ing the gain ρ sufficiently high, the performance of the
primal-dual OFR controller (26) becomes independent of
network size, converging to a constant b2/4τ1. Moreover,
due to the special structure of graph incidence matrices,
the algorithm remains distributed. Theorem 4.2 demonstrates
that the performance characteristics of unaugmented primal-
dual frequency controllers (Theorem 4.1) do not represent a
fundamental performance limit for the approach.

V. CONCLUSIONS

We have quantified the input/output performance of
primal-dual methods for online optimization by providing
an explicit formula for the system’s H2 norm from dis-
turbances to a relevant performance output. Under some
parametric restrictions, we extended our results to augmented
Lagrangian primal-dual methods, and we then applied the
results to quantify the performance of distributed secondary
frequency controllers for power systems. Our results indicate
that performance of the primal-dual method will degrade as
the size of the network of cooperating agents grows, and
that this scaling issue can be partially — and sometimes
completely — compensated by using controllers derived
from augmented Lagrangians.

From the perspective of distributed optimization, an open
direction is to extend the system norm calculations consid-
ered herein to allow for more general strictly convex objec-
tive functions and for inequality constraints; the approach
in [23] may be fruitful. Another important question is how
one could further improve the H2 performance of primal-
dual methods via feedback while maintaining the same
distributed architecture of (6). Here we have considered a
specific performance output; other outputs may be important
to examine as well depending on the application of interest.

On the power systems side, the framework introduced here
for measuring performance is by no means all-encompassing,
and other performance metrics such as tracking errors under
time-varying disturbances are of interest. An important ex-
tension of the present work would be to the case of “partial”
primal-dual methods, where only a subset of buses participate
in control. It will also be important to compare the results
here to analogous calculations for both centralized optimal
frequency controllers and distributed optimal frequency con-
trollers based on consensus [24]; some of these extensions
will be pursued in an extended publication to follow.

ACKNOWLEDGMENTS

The authors thank D. Gross and S. Bolognani for their
valuable comments.

REFERENCES

[1] T. Kose, “Solutions of saddle value problems by differential equa-
tions,” Econometrica, vol. 24, no. 1, pp. 59–70, 1956.

[2] K. Arrow, L. Hurwicz, and H. Uzawa, Studies in linear and non-linear
programming. Stanford University Press, 2006.

[3] D. Feijer and F. Paganini, “Stability of primal–dual gradient dynamics
and applications to network optimization,” Automatica, vol. 46, no. 12,
pp. 1974–1981, 2010.

[4] J. Wang and N. Elia, “A control perspective for centralized and
distributed convex optimization,” in IEEE Conf. on Decision and
Control and European Control Conference, Orlando, FL, USA, Dec.
2011, pp. 3800–3805.

[5] S. H. Low and D. E. Lapsey, “Optimization flow control I: Basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–74, 1999.

[6] A. R. Bergen and V. Vittal, Power Systems Analysis, 2nd ed. Prentice
Hall, 2000.

[7] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-
side primary frequency control in power systems,” IEEE Transactions
on Automatic Control, vol. 59, no. 5, pp. 1177–1189, 2014.

[8] C. Zhao, U. Topcu, and S. Low, “Swing dynamics as primal-dual
algorithm for optimal load control,” in IEEE Int. Conf. on Smart Grid
Communications, Tainan, Taiwan, Nov 2012, pp. 570–575.

[9] N. Li, L. Chen, C. Zhao, and S. H. Low, “Connecting automatic
generation control and economic dispatch from an optimization view,”
in American Control Conference, Portland, OR, USA, Jun. 2014, pp.
735–740.

[10] E. Mallada, C. Zhao, and S. H. Low, “Optimal load-side control for
frequency regulation in smart grids,” in Allerton Conf. on Communi-
cations, Control and Computing, Monticello, IL, USA, Sep. 2014, pp.
731–738.

[11] E. Mallada and S. H. Low, “Distributed frequency-preserving optimal
load control,” in IFAC World Congress, Cape Town, South Africa,
Aug. 2014, pp. 5411–5418.

[12] C. Zhao, E. Mallada, and S. Low, “Distributed generator and load-side
secondary frequency control in power networks,” in Conference on
Information Sciences and Systems, Baltimore, MD, USA, Mar. 2015,
pp. 1–6.

[13] S. You and L. Chen, “Reverse and forward engineering of frequency
control in power networks,” in IEEE Conf. on Decision and Control,
Los Angeles, CA, USA, Dec. 2014, pp. 191–198.

[14] X. Zhang and A. Papachristodoulou, “A real-time control framework
for smart power networks: Design methodology and stability,” Auto-
matica, vol. 58, pp. 43 – 50, 2015.

[15] T. Stegink, C. D. Persis, and A. van der Schaft, “A unifying energy-
based approach to optimal frequency and market regulation in power
grids,” 2015, submitted.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[17] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle
point problems,” Acta Numerica, vol. 14, pp. 1–137, 2005.

[18] A. Nedic and A. Ozdaglar, “Subgradient methods for saddle-point
problems,” Journal of Optimization Theory and Applications, vol. 142,
no. 1, pp. 205–228, 2009.

[19] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory,
ser. Texts in Applied Mathematics. Springer, 2000, no. 36.

[20] E. Tegling, B. Bamieh, and D. F. Gayme, “The price of synchrony:
Evaluating the resistive losses in synchronizing power networks,” IEEE
Transactions on Control of Network Systems, vol. 2, no. 3, pp. 254–
266, 2015.

[21] E. Tegling, M. Andreasson, J. W. Simpson-Porco, and H. Sandberg,
“Improving performance of droop-controlled microgrids through dis-
tributed PI-control,” in American Control Conference, Boston, MA,
USA, Jul. 2016, pp. 2321–2327.

[22] B. K. Poolla, S. Bolognani, and F. Dörfler, “Placing Rotational Inertia
in Power Grids,” in American Control Conference, Boston, MA, USA,
Jul. 2016, pp. 2314–2320.

[23] L. Lessard, B. Recht, and A. Packard, “Analysis and design of opti-
mization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, vol. 26, no. 1, pp. 57–95, 2016.

[24] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy:
Distributed control & economic optimality in microgrids,” IEEE
Transactions on Control of Network Systems, 2016, to appear.


