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Liam S. P. Lawrence Student Member, IEEE, John W. Simpson-Porco, Member, IEEE, and Enrique

Mallada Senior Member, IEEE

Abstract—We consider the problem of designing a feedback
controller for a multivariable linear time-invariant system which
regulates a system output to the solution of an equality-
constrained convex optimization problem despite unknown con-
stant exogenous disturbances; we term this the linear-convex
optimal steady-state (OSS) control problem. We introduce the
notion of an optimality model, and show that the existence of an
optimality model is sufficient to reduce the OSS control problem
to a stabilization problem. This yields a constructive design
framework for optimal steady-state control that unifies and
extends existing design methods in the literature. We illustrate
the approach via an application to optimal frequency control
of power networks, where our methodology recovers centralized
and distributed controllers reported in the recent literature.

Index Terms—Reference tracking and disturbance rejection,
output regulation, convex optimization, online optimization

I . I N T R O D U C T I O N

Many engineering systems are required to operate at an
“optimal” steady-state, specified by the solution of a constrained
optimization problem. A traditional approach for achieving this
is to compute optimal actuator setpoints offline, using a com-
plete steady-state system model and forecasts of disturbances,
and then to feed the resulting setpoints to classical tracking
controllers. We refer to this feedforward-type scheduling of
setpoints as offline optimization. In contrast, one can consider
online optimization as a feedback counterpart, wherein mea-
surements from the system are processed in real time to inform
updates to actuators leading to optimal steady-state operation.
Online optimization may therefore be particularly beneficial
when a complete offline system model and accurate disturbance
forecasts are unavailable.

As an example, consider the problem of optimizing the
production setpoints of generators in an electric power system
while maintaining supply-demand balance. In the traditional
offline approach, optimal generation setpoints are computed in
advance using supply and demand forecasts and a complete
model of the network. The generation setpoints are then
dispatched as reference commands to local controllers at
each generation site [1]. This process is repeated periodically,
using the best available system model and supply-demand
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forecasts; a new optimizer is computed, dispatched, and tracked.
However, the quality of set-points computed using this offline
optimization approach may suffer due to grid model mismatch
and demand forecast errors, leading to suboptimal operation
and potentially to violation of grid constraints. In an online
feedback-based optimization approach, one can expect that
the effect of model uncertainty will be mitigated, and that
unmeasured disturbances can be rejected. Hence, much recent
work in power system control has focused on combining the
local controllers at each generation site with a feedback-based
online optimization algorithm, so that the optimal operating
condition can be tracked in real time [2]–[12].

The same theme of real-time regulation of system variables
to optimal values emerges in diverse areas. Fields of appli-
cation besides the power network control example mentioned
already include network congestion management [13], [14],
chemical processing [15], wind turbine power capture [16], and
temperature regulation in energy-efficient buildings [17]. The
breadth of applications motivates the need for a general theory
and design procedure for controllers that regulate a plant to a
maximally efficient operating point defined by an optimization
problem, even as the optimizer changes over time due to
changing market prices, disturbances to the plant dynamics,
and operating constraints that depend on exogenous variables.
We refer to the problem of designing such a controller as the
optimal steady-state (OSS) control problem.

A number of recent publications have formulated problem
statements and solutions for variants of the OSS control prob-
lem [18]–[27]. Broadly speaking, these design methodologies
consist of modifying an off-the-shelf optimization algorithm
to accept system measurements; the algorithm then produces a
converging estimate of the optimal steady-state control input,
yielding a feedback controller. This procedure, while modular,
unnecessarily restricts the design space of dynamic controllers.
Moreover, none of the reported approaches adequately consider
the impact of the system model on the achievable optimal
operating points. Our goal in this paper is to address these
issues by presenting a framework which widens the design
space of optimal steady-state controllers.

Contributions: We consider the linear-convex OSS control
problem, in which the plant is a finite-dimensional linear
time-invariant (LTI) state-space system, the steady-state op-
timization problem has a convex cost function and affine
equality constraints, and the disturbances are constant in time.
We introduce the notion of an optimality model, a dynamic
filter which reduces the OSS control problem to a nonlinear
stabilization problem, which can then be addressed using well-
established techniques (e.g., [28]). We provide three explicit
designs of optimality models, and highlight how further designs
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can be obtained. For the specific case of quadratic steady-state
optimization problems, we prove that for any of our optimality
models, the existence of a stabilizing controller is guaranteed
under mild assumptions. Finally, we apply our results to the
problem of frequency regulation in power systems, and show
that our framework is flexible enough to recover centralized
and distributed frequency controllers from the recent literature.

Notation: The symbol • in R• indicates that the dimension
of the vector space is unspecified. When the arguments of
a class C1 function f : Rn × Rm → R are separated by a
semicolon, ∇f(x; y) refers to the gradient of f with respect to
its first argument, evaluated at (x, y). The symbol 0 denotes
a matrix or vector of zeros whose dimensions can be inferred
from context. The symbol 1n denotes the n-vector of all ones.
For scalars, vectors, or compatible matrices {v1, v2, . . . , vk},
col(v1, v2, . . . , vk) is a column matrix obtained by vertical
concatenation of v1, . . . , vk.

I I . P R O B L E M S TAT E M E N T

In the linear-convex optimal steady-state control problem,
our objective is to design a feedback controller for a linear
time-invariant plant so that a specified output is asymptotically
driven to a cost-minimizing steady-state, determined by the
solution of a convex optimization problem. In contrast to a
standard static optimization problem, we must contend with
closed-loop stability in addition to optimizing a set of decision
variables. The plant is a linear time-invariant system subject
to an unknown constant disturbance w ∈ Rnw

ẋ = Ax+Bu+Bww , x(0) ∈ Rn ,
y = Cx+Du+Qw ,

ym = hm(x, u, w).

(1)

The measurements ym are permitted to be general nonlinear
functions of state, input, and disturbance, to allow for measure-
ment of variables associated with the optimization problem to
be presented shortly. The vector y ∈ Rp is the optimization
output, containing states, tracking errors, and control inputs that
should be driven to cost-minimizing values in equilibrium.

We will explicitly enforce that the optimization of y is
consistent with steady-state operation of the plant. Let Y (w)
be the set of optimization outputs achievable from a forced
equilibrium of (1):

Y (w) := {ȳ ∈ Rp | there exists an (x̄, ū) such that
0 = Ax̄+Bū+Bww

ȳ = Cx̄+Dū+Qw} .
(2)

We rewrite Y (w) in algebraic form so that we may include
membership in Y (w) as a constraint of the optimization
problem in standard equality form. For each w, the set Y (w)
is an affine subspace of Rp. It may therefore be written as the
sum of a (non-unique) “offset vector” and a unique subspace,
which we denote by sub(Y (w)). In the following lemma, we
construct a matrix G whose columns span this unique subspace.

Lemma 2.1 (Construction of G): Fix a ỹ(w) ∈ Y (w).
If N ∈ R(n+m)×• is a matrix such that rangeN =

null
[
A B

]
, then the columns of the matrix

G :=
[
C D

]
N ∈ Rp×• (3)

span the subspace sub(Y (w)). 4
The proof is straightforward and is omitted. Note that when

A is invertible, one may select N := col(−A−1B, Im) which
yields G = −CA−1B + D. This is precisely the DC gain
matrix of the u→ y channel for the plant (1). One may think
of G in (3) as a generalization of this, which one can compute
regardless of whether or not A is invertible.

For fixed ỹ(w) ∈ Y (w), from Lemma 2.1 it follows that

ȳ ∈ Y (w) ⇐⇒ ∃ v ∈ R• s.t. ȳ = ỹ(w) +Gv . (4)

With l := p − rankG, let G⊥ ∈ Rl×p be any full-row-rank
matrix satisfying nullG⊥ = rangeG. Then from (4), one
finds that

Y (w) = {ȳ ∈ Rp | G⊥ȳ = b(w)} . (5)

where b(w) := G⊥ỹ(w). We will see shortly that, for our
controller design, the matrix G⊥ is important and the vector
b(w) is unimportant.

We can now formulate an optimization problem to determine
the desired optimal point for ȳ as

minimize
ȳ∈Rp

f(ȳ;w) (6a)

subject to G⊥ȳ = b(w) (6b)
Hȳ = Lw. (6c)

The cost f in (6) is our steady-state performance criterion. The
constraint (6b) is the equilibrium constraint just discussed. Note
that if the number of control inputs m is greater than or equal
to the number of optimization outputs p, then it is possible
that Y (w) = Rp — i.e., the set of achievable equilibrium
outputs is the entire space — and the constraint (6b) drops
from the problem. In terms of the associated matrices in this
case, note that rankG = p, so l = p−rankG = 0, and hence
G⊥ is empty. The constraints (6c) represent nec engineering
equality constraints determined by the matrices H ∈ Rnec×p

and L ∈ Rnec×nw . We make a set of assumptions concerning
the optimization problem.

Assumption 2.2 (Optimization Problem Assumptions): For
the optimization problem (6), we assume f is differentiable
and convex in ȳ for each w. We further assume that for every
w, the problem (6) has a unique optimizer ȳ?, and a feasible
region with non-empty relative interior. 4

A general nonlinear feedback controller for (1) is given by

ẋc = fc(xc, ym) , xc(0) ∈ Rnc ,

u = hc(xc, ym).
(7)

The function fc is assumed to be locally Lipschitz in xc and
continuous in ym, while hc is assumed to be continuous. The
dynamics of the closed-loop system consist of (1) and (7).

Our objective in linear-convex OSS control (for brevity,
we will omit “linear-convex” in the sequel) is to drive the
optimization output y of the plant (1) to the solution ȳ?(w)
of the convex optimization problem (6) using a feedback
controller while ensuring well-posedness and stability of the
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closed-loop system. The formal statement is as follows. For
a given w, the closed-loop system is said to be well-posed
if the control input u is uniquely defined for any choice of
(x, xc) ∈ Rn×Rnc , i.e., the equation u = hc(xc, hm(x, u, w))
is uniquely solvable in u.

Problem 2.3 (OSS Control): For the plant (1), design, if
possible, a dynamic feedback controller of the form (7) such
that for every w:

(i) the closed-loop system is well-posed;
(ii) the closed-loop system possesses a globally asymptoti-

cally stable equilibrium point;
(iii) for every initial condition of the closed-loop system,

lim
t→∞

y(t) = ȳ?(w). 4

Remark 2.4 (Constant Disturbances): We assume through-
out that the unmeasured disturbances w are asymptotically
constant, which will lead us to incorporate integral action into
our controllers; this is by far the most important case in practice.
In reality, unmeasured disturbances (and hence, the optimal
operating point) will vary over time, and the quality of tracking
of the optimizer in (6) will depend on the rate of variation of
the disturbance and on the closed-loop bandwidth. For example,
if ẇ is bounded, the integral-type controllers we develop will
track the optimal operating point with bounded error (see, e.g.,
[25]). This is acceptable in practice, and we defer study of
more detailed disturbance models to future work. 4

Remark 2.5 (Relation to Optimal Control): The OSS
control problem appears similar to an infinite-horizon optimal
tracking control problem; however, the two are distinct in both
their assumptions and demands. In the latter, one minimizes
a cost functional over system trajectories leading to a HJB
equation; determining the optimal feedback policy is com-
putationally expensive and the policy will require state and
disturbance measurements. The OSS control problem is much
less demanding; we ask only for optimal behaviour asymptot-
ically, not optimal trajectories. As a result, we encounter no
computational bottlenecks, and do not need to assume the full
plant state and all disturbances are measurable. 4

Remark 2.6 (Relation to Extremum-Seeking Control):
The OSS control problem is similar to the online optimization
problems considered in the extremum-seeking control literature,
e.g., [29], [30]. Extremum-seeking is a model-free control
scheme which optimizes a measured objective in steady-state.
A sinusoidal probing signal contained in the control input per-
turbs the plant, allowing estimation of the objective gradient, to
which integral control is then applied. In contrast, our OSS con-
trollers will assume partial plant information, and incorporate
the steady-state sensitivity matrix (3) between control inputs
and measured outputs. This additional information (which can
be estimated from step response experiments, e.g. [31]) allows
for direct evaluation of the objective function gradient, without
the use of a probing signal. Our OSS controllers will therefore
be distinct from (and complementary to) those derived via
extremum seeking. Indeed, as we will see in Section IV, our
framework recovers recent optimizing controllers developed for
power system applications which are not based on extremum
seeking. 4

Under the assumptions on the optimization problem (6),
the Karush-Kuhn-Tucker (KKT) conditions are necessary and
sufficient for optimality [32, Sections 5.2.3 and 5.5.3]. For
each w, the optimal solution ȳ? ∈ Rp is characterized as the
unique vector such that ȳ? is feasible for (6) and there exist
λ? ∈ Rr, µ? ∈ Rnec such that (ȳ?, λ?, µ?) satisfies the gradient
condition

0 = ∇f(ȳ?;w) +GT
⊥λ

? +HTµ? . (8)

I I I . O S S C O N T R O L L E R D E S I G N F R A M E W O R K

The main difficulty in solving the OSS control problem is
that the optimizer ȳ?(w) is unknown, and thus the optimality
error y − ȳ?(w) cannot be directly computed. In our design
framework, we propose using a dynamic filter called an
optimality model to convert the OSS control problem to a
related output regulation problem. One then solves this output
regulation problem using an integral controller and a stabilizing
controller. An optimality model therefore reduces the OSS
control problem to a stabilization problem. For background
on output regulation and integral controllers, see [33] and [34,
Section 12.3].

A. Optimality Models and Reduction to Stabilization Problem

An optimality model is a filter applied to the measured output
ym of the plant that produces a signal ε which acts as a proxy
for the optimality error y − ȳ?(w). To make this idea precise,
consider a filter (ϕ, hε) with state ξ ∈ Rnξ , input ym, output
ε ∈ Rnε , and dynamics

ξ̇ = ϕ(ξ, ym) , ε = hε(ξ, ym). (9)

Definition 3.1 (Optimality Model): The filter (9) is said to
be an optimality model (for the OSS control problem, Problem
2.3) if the following implication holds: if the triple (x̄, ξ̄, ū) ∈
Rn × Rnξ × Rm satisfies

0 = Ax̄+Bū+Bww ,
0 = ϕ(ξ̄, hm(x̄, ū, w))

0 = hε(ξ̄, hm(x̄, ū, w))
(10)

then the pair (x̄, ū) ∈ Rn×Rm satisfies ȳ?(w) = Cx̄+Dū+
Qw . 4

In the OSS control framework, the optimality model is
cascaded with the plant, and we then attempt to solve the
(constant disturbance) output regulation problem with ε as
the (measurable) error signal. This converts the OSS control
problem to stabilization of the augmented plant

ẋ = Ax+Bu+Bww , (11a)

ξ̇ = ϕ(ξ, hm(x, u, w)) , (11b)
η̇ = ε := hε(ξ, hm(x, u, w)) (11c)

using a stabilizer

ẋs = fs(xs, η, ξ, ym, ε) , (12a)
u = hs(xs, η, ξ, ym, ε). (12b)

This design framework (Figure 1) is justified by the following
theorem, a proof of which may be found in the appendix.
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Fig. 1: Block diagram of OSS control architecture.

Theorem 3.2 (Reduction of OSS to Stabilization): Suppose
that (ϕ, hε) is an optimality model. If the stabilizer (fs, hs)
is designed such that the closed-loop system (11)–(12) is
well-posed and possesses a globally asymptotically stable
equilibrium point for every w, then the controller (11b), (11c),
(12a), (12b) solves the OSS control problem. 4

Solving the OSS control problem therefore amounts to (i)
designing an optimality model and (ii) designing (if possible)
a stabilizer for the augmented plant.

B. Optimality Model Design
1) The Gradient Condition: According to Definition 3.1, an

optimality model encodes sufficient conditions for optimality
when it is in equilibrium with the plant and its output ε is held
at zero. We can incorporate the KKT conditions — which
are sufficient for optimality under our assumptions — into an
optimality model for this purpose.

Note that the gradient condition (8) involves the dual variable
λ? associated with the equilibrium constraints. Dual variables
associated with equality constraints are typically calculated
using an integrator on the constraint violation: see [19, Equa-
tion (4a)], or [22, Equation (8f)], for example. Unfortunately
integrating the equilibrium constraint violation G⊥y − b(w)
is impossible, since w is unknown. Luckily, doing so is also
unnecessary, since the constraintG⊥y = b(w) is satisfied at any
forced equilibrium point of the physical plant, by the definition
of G⊥ and b(w); recall (2) and (5). We now describe how to
incorporate the gradient condition (8) into an optimality model
without calculating λ?.

Let G be the matrix of Lemma 2.1. Recall that nullG⊥ =
rangeG; by taking the orthogonal complement of both sides,
it follows that rangeGT

⊥ = nullGT. Rearranging (8) to read
GT
⊥(−λ?) = ∇f(ȳ?;w) + HTµ?, we see that ∇f(ȳ?;w) +

HTµ? ∈ rangeGT
⊥ = nullGT. That is, the existence of a

triple (ȳ?, λ?, µ?) satisfying (8) is equivalent to the existence
of a pair (ȳ?, µ?) satisfying

GT
(
∇f(ȳ?;w) +HTµ?

)
= 0. (13)

The left-hand side of this equation is a natural choice for
inclusion in the proxy error signal ε, since driving ε to zero
will then enforce the gradient KKT condition.

Note however that there are other equivalent ways we could
rewrite the gradient condition. Define a matrix T such that

rangeT = null

[
G⊥
H

]
. (14)

We have nullTT = (rangeT )
⊥, which means

nullTT =

(
null

[
G⊥
H

])⊥
= range

[
GT
⊥ HT

]
.

Rearrange (8) to read GT
⊥(−λ?) + HT(−µ?) = ∇f(ȳ?, w),

and we see that ∇f(ȳ?, w) ∈ range
[
GT
⊥ HT

]
= nullTT.

Therefore, the existence of a triple (ȳ?, λ?, µ?) satisfying (8)
is equivalent to the existence of a ȳ? satisfying

TT∇f(ȳ?;w) = 0. (15)

As we did with (13), we can make the expression on the left-
hand side of (15) one of the components of an optimality
model’s error output. The above construction leading to (15)
can also be generalized by including only some rows of H
in the construction of T . For example, writing H and µ? in
block form as H = col(H1, H2) and µ? = col(µ?1, µ

?
2), we

can select T1 such that rangeT1 = null
[
G⊥
H1

]
and write the

gradient condition as

TT
1 (∇f(ȳ?;w) +HT

2 µ
?
2) = 0 . (16)

2) Optimality Models: We are now ready to construct
optimality models for OSS control. The following three propo-
sitions present the output subspace, feasible subspace, and
reduced-error feasible subspace optimality models. Proving
that these filters are indeed optimality models is done by
examining the closed-loop equilibria and showing that the
resulting equations are equivalent to the KKT conditions; see
the extended online version for details [35].

Proposition 3.3 (Output Subspace Optimality Model (OS-
OM)): Let G be the matrix of Lemma 2.1. The dynamic filter

µ̇ = Hy − Lw
ε = GT

(
∇f(y;w) +HTµ

) (17)

is an optimality model for the OSS control problem. 4
Proposition 3.4 (Feasible Subspace Optimality Model (FS-

OM)): Let T be a matrix satisfying (14). The static filter

ε =

[
Hy − Lw
TT∇f(y;w)

]
(18)

is an optimality model for the OSS control problem. 4
The alternative KKT condition (16) can also be incorporated

into an optimality model, leading to a hybrid between the
OS-OM and the FS-OM; the details are omitted. In special
circumstances, one can modify the FS-OM above to obtain an
optimality model with an error signal of reduced dimension:
this reduces the number of integrators required.

Proposition 3.5 (Reduced-Error FS-OM (REFS-OM)):
Let G be the matrix of Lemma 2.1 and let T be a matrix
satisfying (14). Then the static filter

ε = Hy − Lw + TT∇f(y;w) (19)

is an optimality model for the OSS control problem if
rangeHG ∩ rangeTT = {0}. 4

To implement any of these optimality models, the mea-
surement vector ym must contain the right-hand side of the
filter. We assume this is the case for the remainder of the
paper. Finally, we note that the only plant model information
embedded in the optimality models (17)–(19) comes through
the generalized DC gain matrix G. Put differently, the con-
struction of an optimality model requires only knowledge of
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the steady-state sensitivity relationship between control inputs
and measured outputs; this is consistent with related studies
on feedback-based optimization [10], [24], [25]. In particular,
and in contrast to offline optimization, no model is required
of the mapping between disturbances and measured outputs.

C. Quadratic Program OSS Control

We now consider the specific case when the optimization
problem (6) is an equality-constrained convex quadratic pro-
gram (QP). We term this variant of the problem QP-OSS con-
trol. Under this assumption, the closed-loop system becomes
LTI, and we can obtain explicit results on the existence of a
stabilizer (Figure 1). Suppose the optimization problem (6) is
of the form

minimize
ȳ∈Rp

1
2 ȳ

TM̄ȳ − ȳTNw

subject to G⊥ȳ = b(w)

Hȳ = Lw,

(20)

where M � 0.1 Since the gradient of the cost function is linear
in this case, we can take the available measurements ym as a
linear function of (x, u, w), i.e., ym = Cmx+Dmu+Qmw.

Under mild assumptions below, we can ensure that the
augmented plant (11) arising from the FS-OM, OS-OM, or
REFS-OM is both stabilizable and detectable, which in turn
guarantees that a solution of the OSS control problem exists
and can be found using standard LTI design methods.

Theorem 3.6 (Solvability of QP-OSS Control): The QP-
OSS control problem is solvable when

(i) (Cm, A,B) is stabilizable and detectable,
(ii) a unique primal solution to (20) exists, and

(iii) at least one of the following holds:
a) a unique dual solution to (20) exists;
b) rangeHG ∩ rangeTT = {0} and (rangeHG)⊥ ∩

(rangeTT)⊥ = {0}. 4

Proof: When (i), (ii), and (iii)(a) hold, one can show that the
augmented plant arising from the FS-OM or OS-OM may be
made stabilizable and detectable. When (i), (ii), and (iii)(b)
hold, one can show that the augmented plant arising from
the REFS-OM is stabilizable and detectable. A proof of the
first case for the FS-OM may be found in the appendix; the
remaining proofs may be found in the online version [35]. �

We close this section by making explicit a simple design
procedure for OSS controllers, motivated by Figure 1.

(i) Generate optimality models, such as those given in (17)–
(19), or other hybrid optimality models associated with
the generalized KKT conditions (16).

(ii) Select one of the candidate optimality models, and design
a stabilizer which renders the closed-loop system inter-
nally stable, possibly while minimizing a desired dynamic
performance criteria (e.g., [28]).

(iii) If closed-loop performance is unsatisfactory, repeat step
(ii) with a different optimality model.

1Any constant term of the form ȳTc with c ∈ Rp may be included in the
term ȳTNw by appropriate redefinition of N and w.

Regarding step (ii) in the above procedure, Theorem 3.6
covers the case of quadratic OSS cost functions f , for each of
the optimality models (17)–(19). Due to space limitations, here
we do not study the case of generic convex functions f , which
result in nonlinear stabilization problems. One approach to such
problems is to apply robust synthesis techniques [28], as ∇f
will typically satisfy sector-boundedness conditions. Another
approach is to leverage recently developed results on low-gain
integral control [36]; this will be a topic of future work.

I V. C A S E S T U D Y: O P T I M A L F R E Q U E N C Y
R E G U L AT I O N I N P O W E R S Y S T E M S

This final section illustrates the application of our theory
to a power system control problem. Our main objective is to
work through the constructions presented in Section III, and to
simultaneously illustrate the many sources of design flexibility
within our proposed framework. In particular, we will show that
centralized and distributed frequency controllers proposed in
the literature are recoverable as special cases of our framework.

The dynamics of synchronous generators in a connected
AC power network with n buses and nt transmission lines
is modelled in a reduced-network framework by the swing
equations. The vectors of angular frequency (deviations from
nominal) ω ∈ Rn and real power flows p ∈ Rnt along the
transmission lines obey the dynamic equations

Mω̇ = P ? −Dω −Ap+ u, ṗ = BATω, (21)

in which M � 0 is the (diagonal) inertia matrix, D � 0 is the
(diagonal) damping matrix, A ∈ {0, 1,−1}n×nt is the signed
node-edge incidence matrix of the network, B � 0 is the
diagonal matrix of transmission line susceptances, P ? ∈ Rn
is the vector of uncontrolled power injections (generation
minus demand) at the buses, and u ∈ Rn is the controllable
reserve power produced by the generators. The incidence
matrix satisfies nullAT = span(1n), and strictly for simplicity
we assume that the network is acyclic, in which case nt = n−1
and nullA = {0}. We refer to [37, Section VII] for a
first-principles derivation of this model, and remark that our
calculations to follow extend without issue to more complex
models which include turbine-governor dynamics.

We consider the optimal frequency regulation problem
(OFRP), wherein we minimize the total cost

∑
i Ji(ūi) of

steady-state reserve power production in the system subject to
system equilibrium and zero steady-state frequency deviations:

minimize
ū∈Rn,ω̄∈Rn

J(ū) :=
∑n

i=1
Ji(ūi)

subject to G⊥ col(ū, ω̄) = b(w)

Fω̄ = 0.

(22)

We shall compute the matrix G⊥ of the equilibrium constraints
shortly; the vector b(w) is unimportant for controller design.
The matrix F encodes the steady-state frequency constraint.
We will specify the requirements on F later in this section.

With state vector x := col(ω, p), the dynamics (21) can be
put into the standard LTI form (1) with matrices

A :=

[
−M−1D −M−1A
BAT 0

]
, B = Bw :=

[
M−1

0

]
.
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We select the optimization output as y := col(u, ω), so that

C :=

[
0 0
In 0

]
D :=

[
In
0

]
, (23)

and we take the measured output as ym = col(u, Fω).
We will demonstrate the use of the feasible subspace and

reduced-error feasible subspace optimality models of Proposi-
tions 3.4 and 3.5. We begin by constructing the matrix G of
Lemma 2.1 and a matrix T satisfying (14). We first construct
a matrix N satisfying rangeN = null

[
A B

]
. One may

verify that choosing

N :=

 1n 0
0 In

D1n A

 (24)

yields the required property. Using (24) and (23), we calculate
G =

[
C D

]
N to be

G =

[
D1n A
1n 0

]
.

Next, we construct a full-row-rank matrix G⊥ ∈ Rn×2n

satisfying nullG⊥ = rangeG. We find that selecting

G⊥ :=
[
1n1T

n −(1T
nD1n)In

]
yields the required property. We identify the matrix H of the
engineering equality constraints in (6) for the problem (22) as
H :=

[
0 F

]
. Following (14), we select a matrix T satisfying

rangeT = null

[
1n1T

n −(1T
nD1n)In

0 F

]
. (25)

The null space on the right-hand side of (25) is spanned
by vectors of the form col(v,0) where 1T

nv = 0. Inspired
by approaches in multi-agent control, we introduce a con-
nected, weighted and directed communication graph Gc =
({1, . . . , n}, Ec) between the buses, with associated Laplacian
matrix Lc ∈ Rn×n. We assume the directed graph Gc contains
a globally reachable node.2 Under this assumption, we have
that rank(Lc) = n − 1 with null(Lc) spanned by 1n. It
follows that (25) holds with T =

[
LT

c
0

]
.

It further holds that Lc has a left null space of dimension
one spanned by a nonnegative and non-zero vector w ∈ Rn.
Assuming that F is selected such that wTF1n 6= 0, the range
condition of Proposition 3.5 is satisfied, and we may apply the
REFS-OM (19) to obtain the optimality model

ε = Fω + Lc∇J(u). (26)

Therefore, one option for an OSS controller is

η̇ = Fω + Lc∇J(u) (27a)
u = −Kpω −Kiη, (27b)

where Kp,Ki are gain matrices that should be selected for
closed-loop stability/performance. With F := In, Kp = 0
and Ki = 1

k In for k > 0, this design reduces to the
distributed-averaging proportional-integral (DAPI) frequency
control scheme; see [4], [39], [40].

2See [38, Chapter 6] for details.

We can obtain several other control schemes by instead ap-
plying the FS-OM as our optimality model. Let F := cT, where
c is a vector of convex combination coefficients satisfying
ci ≥ 0 and

∑n
i=1 ci = 1. Define L̃c ∈ R(n−1)×n as the

matrix obtained by eliminating the first row from Lc and set
T :=

[
L̃T

c
0

]
. This choice of T also satisfies (25). The FS-OM

(18) yields the optimality model

ε =

[
cTω

L̃c∇J(u)

]
. (28)

It follows that one option for an OSS controller is

η̇1 = cTω (29a)

η̇2 = L̃c∇J(u) (29b)
u = −Kpω −K1η1 −K2η2. (29c)

where again Kp,K1,K2 are gain matrices. The interpretation
of this (novel) controller is that one agent collects frequency
measurements and implements the integral control (29a), while
the other agents average their marginal costs via (29b).

If the objective function J is a positive definite quadratic,
one can use Theorem 3.6 to show that a solution to the present
OSS control problem is guaranteed to exist. Specifically, for
F := In, one uses Theorem 3.6 with condition (iii)b, and for
F := cT, one uses Theorem 3.6 with condition (iii)a. Moreover,
the augmented plant defined by the use of either (27a) or (29a)-
(29b) can be shown to be stabilizable and detectable using the
proof of Theorem 3.6.

As a final example, we can recover the “gather-and-broadcast”
scheme of [6] from the optimality model (28) as follows.
Assume that each Ji is strictly convex, and retain the integral
controller (29a). Next, using the fact that null L̃c = span(1n),
select the input u to zero the second component of ε:

L̃c∇J(u) = 0 ⇐⇒ ∇J(u) = α1n for all α ∈ R
⇐⇒ u = (∇J)−1(α1n), for all α ∈ R.

Selecting α = η leads to the gather-and-broadcast controller

η̇ =
∑n

i=1
ciωi, ui = (∇Ji)−1(η). (30)

In summary, several recent frequency control schemes, and
the novel scheme (29), can be recovered as special cases
of our general control framework. The full potential of our
methodology for the design of improved power system control
will be an area for future study.

V. C O N C L U S I O N S

We have studied in detail the linear-convex OSS control
problem, wherein we design a controller to guide an LTI
system to the solution of an optimization problem despite
unknown, constant exogenous disturbances. We introduced the
idea of an optimality model, the existence of which allows us
to reduce the OSS control problem to a stabilization problem.
Several candidate filters were presented, which under weak
conditions are indeed optimality models, and in Theorem 3.6
we provided natural conditions under which an associated
stabilizer exists for any of these optimality models. The
possibility of constructing multiple optimality models for a



SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL. THIS VERSION: OCTOBER 18, 2020 7

single OSS control problem is a source of flexibility in our
framework. This was illustrated through an example arising in
power systems control, where we are able to recover several
existing controllers from the literature.

Future work will present the analogous discrete-time and
sampled-data OSS control problems, along with a more de-
tailed study of applications in power system control. A large
number of open problems and directions exist, including but
not limited to: OSS control for nonlinear systems subject
to time-varying disturbances, flexibility of the framework for
distributed/decentralized control, formulations and solutions
of hierarchical, competitive, and approximate OSS control
problems, and the application of the OSS control framework
to the design of new optimization algorithms.
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[27] F. D. Brunner, H.-B. Dürr, and C. Ebenbauer, “Feedback design for multi-
agent systems: A saddle point approach,” in Proc. IEEE CDC, Maui, HI,
USA, 2012, pp. 3783–3789.

[28] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory, ser.
Texts in Applied Mathematics. Springer Verlag, 2000, no. 36.
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A P P E N D I X

Proof of Theorem 3.2: By assumption, the closed-loop system
(11)–(12) is well-posed and possesses a globally asymptotically
stable equilibrium point for each w; hence, the first two
requirements of Problem 2.3 are satisfied. It remains to show
that limt→∞ y(t) = y?(w) for each w and every initial
condition. Since the closed-loop system possesses a globally
asymptotically stable equilibrium point for each w, there exists
a unique solution (x̄, ξ̄, η̄, x̄s) to the steady-state equations

0 = Ax̄+Bū+Bww

ȳm = hm(x̄, ū, w)

0 = ϕ(ξ̄, ȳm)

0 = hε(ξ̄, ȳm)
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0 = fs(x̄s, η̄, ξ̄, ȳm,0)

ū = hs(x̄s, η̄, ξ̄, ȳm,0)

for each w. Since (ϕ, hε) is an optimality model, the pair (x̄, ū)
satisfies ȳ?(w) = Cx̄ + Dū + Qw. Because this equilibrium
point attracts all trajectories of the closed-loop system and y(t)
is continuous, it must be the case that limt→∞ y(t) = y?(w)
for every w and every initial condition. Therefore, the controller
(11b), (11c), (12a), (12b) solves the OSS control problem. �

Proof of Theorem 3.6: We will apply the classic result [33,
Theorem 1] which provides necessary and sufficient conditions
for stabilizability and detectability of the augmented plant (11).
We first require the following lemmas.

Lemma A.1 (Unique Primal Solution): Suppose the opti-
mization problem (20) is feasible, and let T ∈ Rp×• be any
matrix satisfying rangeT = null

[
G⊥
H

]
. Then (20) has a

unique optimizer if and only if vTMv > 0 on rangeT .

Proof: Fix a member ỹ(w) of the feasible set of (20). Since
rangeT = null

[
G⊥
H

]
, we can rewrite the optimization

problem (20) as minimizeȳ∈Rp, v∈rangeT
1
2 ȳ

TMȳ − ȳTNw
subject to the constraint ȳ = ỹ(w) + v. Eliminating ȳ
and writing v = T ′r, where T ′ is a full-column-rank
matrix satisfying rangeT ′ = rangeT and r ∈ R• is
a new decision variable, we obtain the equivalent prob-
lem minimizer∈R•

1
2r

TT ′TMT ′r + rTT ′T(Mỹ(w) − Nw) +
ỹ(w)T (Mỹ(w)−Nw). This unconstrained QP has a unique
optimizer r? if and only if T ′MT ′ � 0, which is equivalent
to M being positive definite on rangeT . �

Lemma A.2 (Unique Dual Solution): Suppose the opti-
mization problem (20) has a unique primal solution ȳ?. The
corresponding dual solution is unique if and only if the matrix[
G⊥
H

]
is full row rank.

Proof: Let ȳ? denote the unique primal solution of (20). Under
our assumptions, the pair (λ?, µ?) is a dual solution if and only
if (λ?, µ?) satisfies the gradient KKT condition (8), which in
the present context is given by 0 = Mȳ? − Nw + GT

⊥λ
? +

HTµ? . The assumption of a primal solution implies that at
least one dual solution (λ?, µ?) to the preceding exists; this
solution is unique if and only if

[
GT
⊥ HT

]
is full column

rank. �

We move on to the main proof; we will show that when
using the FS-OM (18), the OSS control problem is solvable
if and only if the stated conditions (i),(ii),(iii)a hold; a similar
argument can be made for the OS-OM. A modified version
of the same argument can be made for the REFS-OM when
(i),(ii),(iii)b hold. Condition (i) is exactly conditions (a) and
(b) of [33, Theorem 1]; condition (e) of [33, Theorem 1] is
automatically satisfied here. We show conditions (ii) and (iii)a
are equivalent to conditions (c) and (d) of [33, Theorem 1].
Define the matrices N , G, and G⊥ as done in Section II, and
without loss of generality, assume T in (14) is selected to have
full column rank. The augmented plant using the FS-OM is

ẋ = Ax+Bu+Bww

η̇ =

[
HC

TTMC

]
x+

[
HD

TTMD

]
u−

[
L

TTN

]
w.

Following [33, Equation (13)], we check whether

RFS :=

[
In 0
0

[
H

TTM

] ] [A B
C D

]
(31)

has full row rank. Let col(α, β, γ) ∈ nullRT
FS, so that[

α
HTβ +MTγ

]T [
A B
C D

]
= 0. (32)

Multiplying on the right by N and recalling that rangeN =
null

[
A B

]
and also that G =

[
C D

]
N , we find

(HTβ +MTγ)TG = 0. (33)

Hence, HTβ+MTγ ∈ (rangeG)⊥. Because (rangeG)⊥ =
rangeGT

⊥ by the definition of G⊥, the above is equivalent to
the existence of a vector v such that

HTβ +MTγ = GT
⊥v. (34)

Recall that rangeT = (nullG⊥) ∩ (nullH), so G⊥T = 0
and HT = 0. Multiplying (34) on the left by γTTT we find

γTTTMTγ = 0. (35)

For the sufficient direction, we show that if conditions (ii) and
(iii)a hold, then col(α, β, γ) = 0. From condition (ii), it follows
by Lemma A.1 that the matrix TTMT is positive definite and
hence from (35) that γ = 0. Equation (34) then implies that[

v −β
]T [G⊥

H

]
= 0. (36)

By condition (iii)a and Lemma A.2, the coefficient matrix (36)
in has full row rank, and hence (36) implies that v = 0 and
β = 0. Equation (32) then implies that αT

[
A B

]
= 0.

Since (A,B) is stabilizable, the left null space of
[
A B

]
is empty. Therefore α = 0, we conclude that RFS has full
row rank, and thus by [33, Theorem 1] the augmented plant
is stabilizable/detectable; it follows by Theorem 3.2 that the
OSS control problem is solvable.

For the necessary direction, we show that if either of condi-
tions (ii) or (iii)a fails, then we can construct col(α, β, γ) 6= 0
satisfying (32), which in turn will violate the transmission
zero condition in [33, Theorem 1] and show the augmented
plant is not stabilizable. Suppose (iii)a fails. Then by Lemma
A.2 there exists a nonzero solution to (36). It cannot be the
case that β = 0, for then v would be zero since G⊥ is full
row rank by construction. As a result, if we set γ := 0, (33)
implies that there exists a β̄ 6= 0 such that β̄THG = 0.
We observe β̄THG =

[
β̄THC β̄THD

]
N = 0. Since

rangeN = null
[
A B

]
, the preceding implies that[

CTHTβ̄
DTHTβ̄

]
∈
(
null

[
A B

])⊥
= range

[
AT

BT

]
.

As a result, a solution ᾱ exists to
[
CTHTβ̄

DTHTβ̄

]
=
[
AT

BT

]
ᾱ. Let

ᾱ satisfy the preceding. Then col(α, β, γ) := col(−ᾱ, β̄,0)
satisfies (32). Now suppose instead condition (ii) fails. Then
by Lemma A.1 there exists a γ̄ 6= 0 such that γ̄TTTMTγ̄ =
0, which by positive semidefiniteness of TTMT implies that
TTMTγ̄ = 0, and hence that MTγ̄ = 0. It follows that the
vector col(α, β, γ) := col(0,0, γ̄) satisfies (32). �


