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Abstract— We consider the problem of designing a feedback
controller which robustly regulates an LTI system to an optimal
operating point in the presence of unmeasured disturbances. A
general design framework based on so-called optimality models
was previously put forward for this class of problems, effectively
reducing the problem to that of stabilization of an associated
nonlinear plant. This paper presents several simple and fully
constructive stabilizer designs to accompany the optimality
model designs from [1]. The designs are based on a low-gain
integral control approach, which enforces time-scale separation
between the exponentially stable plant and the controller. We
provide explicit formulas for controllers and gains, along with
LMI-based methods for the computation of robust/optimal gains.
The results are illustrated via an academic example and an
application to power system frequency control.

I. INTRODUCTION

Many practical engineering systems are subject to both
dynamic response specifications and minimum-cost steady-
state operation specifications. Achieving the former typically
relies on both good process design and the design of one
or more accompanying feedback controllers. In contrast,
the latter optimality criterion is most often addressed in a
hierarchical fashion, wherein actuator set-points are sched-
uled using a model and then forwarded to the lower-level
feedback controllers as references. The quality of set-points
computed via this procedure may however be poor, due to
inaccuracies in the steady-state system model and due to
discrepancies between forecasted and real-time disturbances.
Such inaccuracies will lead to sub-optimal system operation,
and may lead to violation of desired operating constraints;
these issues motivate the incorporation of additional real-time
feedback into the computation of optimal set-points.

Perhaps the most well-known framework which blends
the control and optimization layers is model-predictive con-
trol (MPC), wherein simultaneous control and optimization
is achieved via repeated solution of dynamic optimization
problems [2]. An alternative approach — tailored towards
applications where low-level dynamic controllers are already
in place — is to directly incorporate measurement feedback
into the set-point scheduling process, such that the closed-
loop system converges to a cost-minimizing operating point.
By incorporating feedback, sensitivity to steady-state model
uncertainty can be reduced, and constraint violation can be
eliminated. While not as universally applicable as MPC, this
approach has the benefit of producing simple and explicit

J. W. Simpson-Porco is with the Department of Electrical and Computer
Engineering, University of Toronto, 10 King’s College Road, Toronto, ON,
MS5S 3G4, Canada. Email: jwsimpson@ece.utoronto.ca. This work
was supported in part by the NSERC Discovery Grant RGPIN-2017-04008.

controller designs, which are intuitive and interpretable to
domain experts in particular applications (e.g., [3]-[5]).

The general problem described above been studied recently
under different names, including dynamic KKT controllers
[6], feedback-based optimization [7]-[11], autonomous op-
timization [12], [13], or — the term we will use here —
optimal steady-state (OSS) control [1], [14], [15]; see also
[16]-[19]. While the problem setups in the above references
vary significantly in terms of the assumptions on the plant
model and on the steady-state optimization problem, the
general goal is the design of simple feedback laws which
compute the set-points required to guide the plant towards a
cost-minimizing and constraint-satisfying operating point.

Contributions: This paper continues the development of
the OSS control framework put forward in [1], [15], which
will be reviewed in Section II. In brief, the framework in [1]
was shown to provide substantial flexibility to the designer,
enabling customization of the control architecture (centralized
vs. distributed) through judicious selection of several gain
matrices. However, stabilizability guarantees were provided
only for the case of quadratic steady-state optimization
problems. Here, focusing on the practically-relevant case of a
stable LTI plant, we provide stabilizer designs to accompany
the “optimality models” from [1] (Section IV). This renders
the approach of [1] fully constructive without the restriction
of quadratic costs, and while retaining the design flexibility
inherent in [1]. As a secondary contribution, the development
of optimality models here (Section III) is more streamlined
than in [1]. Taken together, our results provide a library of
constructive solutions for solving the OSS control problem
in the framework of [1] for exponentially stable plants.

II. PROBLEM FORMULATION

Consider the finite-dimensional continuous-time LTI plant

& = Ax + Bu + Byw

(D
z=Cx+ Du+ D,w

with state z(t) € R™, measured output z(¢) € R", control
input u(t) € R™, and constant exogenous signal w € W C
R™»  modelling reference signals and (potentially, unmea-
sured) external disturbances. As we will be subsequently
pursuing a low-gain design philosophy [20], [21], we assume
that (1) is internally exponentially stable, i.e., A is Hurwitz.
This stability may be inherent to the plant model, or may
have been achieved through a previous compensator design.
In this case, the steady-state input-output mapping of (1) is

z=Guu+ Guw 2)



in which z, 4 denote equilibriums value of z and w, and
G,=-CA 'B4+ DeR™>™
Gy =—CA™'B, + D, € R™™

denote the DC gain matrices of (1). Our controller design
specification, which we refer to as the optimal steady-state
(OSS) control problem, roughly follows that in [1].

Problem 2.1 (OSS Control): For the plant (1), design an
output-feedback controller such that for each w € W, the
closed-loop system possesses a unique locally exponentially
stable equilibrium point, and such that the equilibrium pair
(u, z) is an optimal point of the problem

minimize fo(u) + go(2) (3a)
subject to z =G, u+ Guw (3b)
0=H.,z+ Hy,u+ H,w. (3¢)

In the optimization problem (3), fo : 4 — R and gp :
Z — R are convex objective functions to be minimized
(e.g., operational costs, measures of tracking error), where
U CR™ and Z C R" are closed and non-empty convex sets.
The functions fy, go may incorporate barrier or penalty terms
for enforcement of inequality constraints. The constraint (3b)
is the steady-state constraint imposed by the dynamic system
(1). Finally, (3¢c) represents n. additional affine engineering
constraints imposed by the designer, with H, € R"*" H, €
R™*™ and H,, € R"*™_ The goal is to minimize the
objective function, subject to the physical limitations imposed
by the plant in steady-state, and subject to the engineering
constraints imposed by the designer. We make the following
standing assumptions on the problem data.

Assumption 2.1 (Problem Data): On the interiors of their
domains, the maps fy and gy are convex, continuously
differentiable, and have at least locally Lipschitz continuous
gradients. The set of disturbances W is convex and compact.
The problem (3) is strictly feasible and has an optimal solu-
tion for all w € W. Both z(¢) and the engineering constraint
violation H,z(t) + H,u(t) + H,w(t) are measurable.

Uniqueness of a primal solution to (3) is guaranteed if
u > fo(u)+go(Guu+Gyw) is strongly convex on U N{u €
U | Guu+ Gyuw € Z} for each w € W; this holds, for
instance, if fq is strongly convex on U. The dual variable p
associated with the linear constraint

0= H,(Gyu+ Gyw)+ Hyu+ Hyw

will be unique if H.G,, + H, has full row rank; ensuring this
is often simply a matter of the designer properly specifying
the desired additional constraints (3c).

A. Review of OSS Control

In [1] a framework was developed for the construction of
controllers solving Problem 2.1. The key idea introduced was
that of an optimality model, which is a (potentially, dynamic)
nonlinear filter of the form

T:[J’ = @(/’L? Zy U), €= h(u7 2, U) (4)

with state p, output e, and time constant 7 > 0. The filter (4)
is said to be an optimality model if the following statement
holds: if (Z, i, w, Z) is an equilibrium of (1), (4) satisfying
0= h(x,z,u), then (Z,u) is an optimal solution of (3) The
idea is that £ and the error variable e in (4) should together
provide a measure of the optimality gap. Specifically, i1 = 0
along with regulation of e to zero will result in regulation of
(z, @) to an optimal solution of (3), since the plant itself will
enforce the constraint (3b) in equilibrium. To this end, the
error output e from (4) is fed to an integral controller

= e. (5)

The optimality model is appended to the output of the plant
(1), creating a cascade of the plant, the optimality model, and
a bank of integrators. If a stabilizer processing (z,u,n) can
be designed to ensure that the cascade (1), (4), (5) possess
a unique exponentially stable equilibrium point, then the
optimality model, integral controller, and stabilizer together
constitute a solution to the OSS control problem (Figure 1).
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Fig. 1: Block diagram of general OSS control architecture [1].

Y

Y

In [1] several optimality models were designed based on
variations of the KKT conditions for (3), and results on stabi-
lizability and detectability of the cascaded system (1), (4), (5)
were presented for the case of quadratic objective functions
fo,90- When the objective functions are non-quadratic, the
design of a stabilizer becomes more challenging, and no
guarantees or constructive results were provided in [1]. The
goal of this paper is to address this gap for the practically-
relevant case of an exponentially stable plant.

III. DEVELOPMENT OF OPTIMALITY MODELS

Under Assumption 2.1 the KKT conditions provide a
necessary and sufficient characterization of optimal points of
(3) and can be used to construct optimality models. Different
optimality models can be derived by manipulating the opti-
mization problem (3) and the resulting KKT conditions, and
we now pursue this direction. Section III-A is conceptually
identical to [1, Prop. 3.3], while Section III-B and Section
III-C contain new results extending the ideas in [1, Prop. 3.4]
and [1, Prop. 3.5], respectively.

A. Optimality Model #1

The most obvious initial step is to eliminate the variable z
from the problem (3). Doing so, the resulting Lagrangian is

L(’IL ﬂ) = fO(’U’> + gO(Gua + wa)
+ i (H, (G + Guw) + Hyti + Hyw)



with multiplier 1 € R™¢, leading to the KKT conditions
0=V fo(a) + G} Vgo(Guu + Gyw)
+ (HzGu + Hu)T.u (6)
0=H,(Gyu+ Gyw)+ H,u+ Hyw.
The approach to constructing an optimality model is now
based on replacement of the steady-state output value z =
G, + G, w by the real-time measurement z(t). Following
this idea leads to the optimality model
(7a)
(7b)

Th=H,z+ Hyu+ Hyw
e=Vfo(u)+GIVao(z) + (H.G, + H,) "
where 7 > 0 is a tuning parameter. In [1], (7) was referred
to as the output subspace optimality model; integration of

the constraint violation in (7a) will ensure primal feasibility,
while e = 0 in (7b) will ensure stationarity.

B. Optimality Model #2

A quite different optimality model can be obtained via a

more involved reduction of the linear constraints (3b)—(3c).

First note that (3b)—(3c) can be expressed as
I, —G.|[z] _ [Gu
Al A

Let T = [%L] € R(r+m)Xd pe g matrix such that

(1, —G.
range(7T') = null H. H, } . )
This allows the constraints (3b)—(3c) to be expressed as
zZ| |\ T.| 7, |#0(w)
-l o

where (zo(w), up(w)) is any solution of (8) and ¢ € R is
free. The basic idea is that range(7") captures the subspace
on which the physical steady-state plant constraints intersect
with the specified steady-state engineering constraints.

Using (10), the problem (3) is now equivalent to the
unconstrained minimization problem

mi?ei%ize Jo(Tu€ 4 uo(w)) + go(T=£ + z0(w)) (11)

with stationarity condition
0 =T,V fo(Tué +uo(w)) + T, Vgo(T:£ + z0(w)). (12)

By now re-inserting the real-time signals u(¢) and z(t) in
place of @ and Zz, we obtain the optimality model

o — [61} _ {Tuvao(u) + TV go(2)

€s H,z+ Hyu+ Hyw (13)

In contrast with (7), (13) does not contain a dynamic state
corresponding to any dual variable; in [1], a slightly different
construction of (13) was referred to as the feasible subspace
optimality model. Regulation of the error signal e; € R? to
zero ensures stationarity, while regulation of es € R™ to
zero ensures primal feasibility.

If T is selected to have full column rank, then ¢ = m —nc,
and the total number of error signals in (13) is m —n.+n. =

m, the number of plant inputs. Moreover, in this case, 7,
and T, enjoy several rank properties.

Lemma 3.1: If T = [z ] € RUT™*4 is a matrix of full
column rank satisfying (9), then the following hold:

(i) T, € R™*9 has full column rank;
(ii) T, € R"*? has full column rank if and only if

range(T,) C range(G) = range(GJ); (14)

(iii) T, has full column rank if GG,, has full column rank;

@iv) if G, has full row rank, then T, may be chosen to have
full column rank if and only if there exists a full column
rank matrix X such that (H, +HUGL)X = 0, in which
case one choice is 7, = X and T}, = GLX.

Proof of Lemma 3.1: (i): Suppose by contradiction that
T.& = 0 for some £. From (9), we have that T, = G, T,.
Multiplying this by £, we find that 7. = 0, so £ € null(T),
which contradicts the fact that 7" has full column rank.

(ii): Beginning from T, = G, T, since T, has full column
rank, T, has full column rank if and only if range(T,) C
null(G,)* = range(G)). The final statement follows from
the fact that range(G ) = range(GY) for any pseudoinverse
Gl of G.

(iii): If G has full column rank then, null(G) = {0}, and
thus range(G]) = R™, and the result follows from (ii).

(iv): First note that if G, has full row rank, then GL is given
explicitly as G, = GI(G,G])™!, satisfying G, G}, = I,
and GL has full column rank. From (ii), we can then say
that 7, has full column rank if and only if 7, = GLX
for some full column rank matrix X € R"**_ In this case,
T, = G,GI X = X. Substituting into the second block
equation in (9), X must satisfy

0=(H.+H,G)X

which shows the desired result. O

C. Optimality Model #3

The idea behind the third and final optimality model we
consider is to exploit any available complementarity between
the error signals in (13); the following is an extension of [1,
Prop. 3.5].

Proposition 3.2 (Reduced Error): Suppose that there ex-
ists £ € Z such that 0 < ¢ < min{q, n.} and matrices

Cl c R(‘I_K)Xq 02 c R(nc—i)xnc Cl 0

C = 0 02

C{ e Rfxa Oé € R*me Ci Cé
such that

(a) C has full row rank,
(b) col(C1,0,C7) has full column rank,
(c) col(0,Cq,C%) has full column rank, and
(d) range(CT.)) Nrange(CH(H,G,, + H,)) = {0}.
With col(eq, ep) € R given by (13), define the reduced
set of ¢ + ne — ¢ error signals ¢ = col(e},eh, ef) =
Ccol(eq, e2), or explicitly
6/1 Cl 0
6/2 = 0 02
e 1 Gy

TV fo(u) + T Vgo(2)

H,z+ H,u+ H,w (15)



Then & = 0 if and only if € = 0.

Proof: The “if” direction is immediate. To establish
“only if”, note first that by feasibility of (3) in Assumption
2.1, for each w there exists a pair (u(w), z(w)) such that

0=H,z(w)+ Hyu(w) + Hyw
z(w) = Guu(w) + Gw,

which implies that

0= (H,G, + H,)u(w) + (H,Gy + Hy)w. (16)
With this, any equilibrium (Z, ) can be expressed as
(z,0) = (2(w) + Gy, u(w) + v). (17)

for some v € R™. The equilibrium values of the error signals
(e}, ¢eh, es) from (15) can now be computed by substituting
(17) into the definition and simplifying using (16), which
yields the expressions

éll 015
el = | Co(H.Gu+ Hiw

where for compactness ¢ = T,V V fo (@) + T Vgo(Z). Since
T, = G, T, it follows that range(7T]) C range(7.}), so ¢ €
range(7T.]), and therefore there exists ¢ such that ¢ = TJ €.
Obviously, ¢ = 0 if and only if ¢ € null(7.]). With this, we
can express these equilibrium values as

éll (& 0
d=\e| =|0|T]¢+ |Co| (H.Gy+ Hy)v (18)
e 1 C

If & = 0, then properties (a), (b), and (c) above immediately
imply that 7.,J¢ = 0 and (H.G, + H,)v = 0. The first
equality immediately implies that 0 = ( = T,V fo(a) +
TV go(2), so & = 0. After again using (16), the second
equality implies that e = 0, which completes the proof. B

In summary, under the conditions (a),(b), and (c) above,
steady-state zeroing of the g+n.— £ error signals ¢’ in (15) is
equivalent to steady-state zeroing of the q + n. error signals
e in (13). Zeroing ¢’ has the obvious advantage of reducing
the dimension of the bank of integrators (5) required in the
final controller implementation.

IV. STABILIZERS FOR LOW-GAIN OSS CONTROL

This section details stabilizer designs to accompany the
optimality models described in Section III. We follow a
low-gain integral control approach [19]-[21], wherein the
controller is tuned to operate slowly compared to the stable
plant dynamics (1). Taken together, the optimality model (4),
integral controller (5), and stabilizer (to be designed) will
have the nonlinear state-space form

Ti’C:fC(xC,Z,U), u:kc(xc),

with concatenated state x. and time constant 7 > 0. The
maps f. and k. will be (at least) locally Lipschitz continuous
on the domain of interest. When 7 is large, . will change
slowly, as will u, and the plant (1) will quickly converge

to the quasi-steady-state output z(u,w) = Gyu + Gw. It
follows from singular perturbation arguments [22, Chp. 11]
that if the reduced system

Te = fc(gcc,é(u,w)m), U = kc(l'c).

possesses a unique locally exponentially stable equilibrium
point, then there will exist 7* > 0 such that for all 7 €
(0, 7*), the closed-loop system will possess a unique locally
exponentially stable equilibrium point, and the controller
will solve Problem 2.1. In what follows, we therefore jump
immediately to analyses of the reduced dynamics arising
from our different stabilizer designs, and stability results are
stated with the understanding that a full singular perturbation
argument can indeed be made.

A. Optimality Model #1

For the optimality model (7), we present two approaches
for the design of accompanying stabilizers.

1) Primal-Dual Stabilizer: Integrating the error from (7)
as 71 = —e, and selecting the simple stabilizer u = n leads
immediately to the primal-dual-type algorithm

ot = =V fo(u) — GIVgo(2) — (H.Go + Hy) 1t

. (19)
Tapp = H,z + Hyu + Hyw

with time constants 7,,7q > 0. As the stability of closely
related schemes has already been examined in the literature
(e.g., [7]) we simply state the key stability result.
Proposition 4.1 (Primal-Dual): If u — fo(u) + go(Gyu)
is strongly convex on U, and if H,G,,+ H,, has full row rank,
then there exists 7* > 0 such that for all (1, 7q) € (7%, 0)?,

the controller (19) solves Problem 2.1.

2) Inversion-Based Stabilizer: Our second design departs
slightly from the architecture in Figure 1 by omitting the
bank of integrators. If V f is an invertible mapping, then one
may explicitly solve (7b) for u to obtain the controller

Tn=H,z+ H,u+ H,w (20a)
u=(Vfo) (=G Vgo(2) — (H.Gy + Hy) 1), (20b)

consisting of an integration on the constraint violation (20a)
followed by a nonlinear static output feedback (20b). The
following result characterizes a case of interest where this is
well-posed and leads to closed-loop stability.

Theorem 4.2 (Inversion-Based OSS Control): Consider
the LTI system (1) with the inversion-based controller (20).
Assume that H,G,, + H, has full row rank, and that fj is
strongly convex and essentially smooth! on /. Then there
exists 7% > 0 such that for all 7 € (0,7*), the controller
(20) solves Problem 2.1.

Proof: The reduced dynamics of the closed-loop (1),
(20) are obtained by substituting (2) into (20), yielding

(21a)
21b)

= Nu+ Nw
u=(Vfo) (=G Vgo(Guu+ Gpw) — N'p)

'A continuously differentiable convex function fo : U — R is essentially
smooth on U if f(z) — oo as z tends to the boundary of /.



where for compactness we have set N = H.G, + H,
and N .= H.G,, + H,. By the strong convexity and rank
assumptions, for each w € W, (3) possesses a unique primal-
dual optimal solution (u*,u*), characterized by (6), and
corresponding to the unique equilibrium point of (21). Set
& = -GIVgo(G,u* + G,w) — NTp*. Strong convexity
and essential smoothness of fo on U imply that (Vfo)~! :
R™ — U is well-defined [23, Sec. 26] and globally Lipschitz
continuous. Further, since V f; is locally Lipschitz continuous,
it is Lipschitz continuous on a compact set containing
(Vfo)~1(€¢*), and it then follows by duality results in [24] that
(V fo)~! will be strongly monotone and Lipschitz continuous
on a compact set containing £*. Now define

J’w(u) = fO(“) + gO(Guu + wa)-
With this, (21b) can be expressed as

f=Nu+ Nw, VJu(u) = —NTp.

Making the change of variables i = pu* — p and @ = u —
u* and using that (u*, p*) satisfy (6), we obtain the error
dynamics

fi=—Ni, U, (@):=VJ,(d+u*)—V,(u)=N"j

Since gq is convex with locally Lipschitz continuous gradient,
¥, inherits the same properties as V fy. Thus, \11;1 is well-
defined, and is strongly monotone and locally Lipschtiz on a
compact set containing the origin. Eliminating u, the reduced
dynamics now simplify to

ji=—NU_(NTp)
with equilibrium point at i = 0. With Lyapunov candidate
V() = 3||f1]|3 we compute that
V(i) = =(NTR)T0, (NTR) < —my||N T3

for some m > 0 and all i such that ||z||2 is sufficiently small.
Since N has full row rank, we further have V(1) < —cV (j1)
for some ¢ > 0, which establishes local exponential stability
of the reduced dynamics. [ ]

B. Optimality Model #2

For the optimality model (13), we present two approaches
for the design of accompanying stabilizers.

1) Explicit Two-Loop Stabilizer Design: Integrating both
error signals from the optimality model (13) with two time
constants 71, 7o > 0, we look for an integral feedback design
of the form

min = —e1 = =T, V fo(u) — T, Vgo(2)
Tone = —eg = —(H,z + Hyu + Hyw)
u= Kim + Kon

(22)

for matrices K7, Ky to be designed. Inspired by [20], the
idea we will pursue is the sequential closing of these two
integral control loops. First, the loop involving 7y will be
closed and tuned assuming 7, is absent, then the n; loop will
be closed around the 72 loop, as show in Figure 2.

The following result provides tuning criteria.

]

uy U z | Optimality
Q Plant ==\ 1o del (13)
K
7'2772 = —€9 |*
TN = —€1 [

Fig. 2: Two-loop stabilizer design for OM #2.

Theorem 4.3 (Two-Loop Stabilizer): Consider the plant
(1) with controller (22), and assume that T = [%] has
been selected to have full column rank. Suppose that N =
H,.+G, H, has full row rank and that & — fo(T,{+uo(w))+
90(T=€ + zo(w)) is strongly convex on =, = {¢ | T.§ +
ug(w) € U} for each w € W. Select K5 such that —N K>
is Hurwitz, define the projection matrix

. =1, — K3[NK5] "' N, (23)

and finally, for any P > 0, select Ky of full column rank such
that II. Ky = T}, P. Then the controller (22) solves Problem
2.1 for all sufficiently large tunings of the form 7, > 75 > 0.

The convexity assumptions required in Theorem 4.3 are
slightly weaker than those in the results of Section IV-A.
Specifically, the present convexity condition is a statement
about the behaviour of the objective functions on the affine
solution set to (8), as opposed to, e.g., fo being strongly
convex on its entire domain .

Proof of Theorem 4.3: 'The proof is based on two sequential
applications of [21, Thm 3.1]; the constructions for the
controller gains K, K5 will be shown to be well-posed along
the way. First, consider the controller

oty = —(H.z + Hyu + Hyw), u= Kona+uy (24)

with constant auxiliary input u;. With the plant (1) intercon-
nected with (24), the reduced dynamics will have the form

772 =—Nu— (Hsz + Hw)w7 (25)

Since N has full row rank, there exists K5 such that — N Ko
is Hurwitz; for instance, take Ky = NT = NT(NNT)~1
It follows that the reduced dynamics (25) are globally
exponentially stable, and we conclude from [21, Thm 3.1]
that we may select 7o > 0 sufficiently large such that the
(LTD) closed-loop system (1) with controller (24) is internally
exponentially stable and achieves ea(t) — 0 as ¢ — oo for
all asymptotically constant exogenous inputs w and uq.

We now consider the plant defined by (1) and (24) with
state (x,72), inputs (u1,w) and nonlinear output e; defined
in (13). By the previous constructions, the state dynamics are
LTI and internally exponentially stable. We seek to compute
the steady-state input-output relation of this system, which
is characterized by the equations

z=Guu+ Gyw, 0=Nu+ (H,Gy+ Hy)w
e1 =T,V fo(a) + T, Vgo(2).

u = Kany + us.

u = Koo + U1,



Solving, one finds that
flo = —[NKy] ' Nu; — Dw
where D = [NK5] "' (H.G,, + H,), and therefore that
o =1 — K3[NKo] ' Niy — KoDw

= Hc’l]]_ - KQDU}
where Il is as in (23). A straightforward calculation shows
that 112 = Il so II. is an oblique projection matrix.

Moreover, for later use, note that null(N) C range(Tl.).
Substituting our expression for % back into the expression
for €1, we obtain the steady-state input-output relationship

e1 =T, V fo(Ilety + up(w))
+ TV go(GuIletiy + zo(w))

where (ug(w), zo(w)) are as in (10). We now consider the
feedback controller

(26)

T = —e1, ur = Kim, 27

where K is selected such that II.K; = T,,P with P > 0.
From Lemma 3.1 (i) we know that T, has full column
rank. Moreover, by construction from (9), we have that
(H.G, + H,)T, =0, meaning that range(T,,) C null(N) C
range(Il.). Thus, the equation II.K; = T,P is always
solvable for a matrix K; of full column rank. To complete
the proof, we verify that the reduced dynamics, given by

i = —TyV fo(Tl.K1m + uo) — T Vgo(Gu Il Kim + 20)

are exponentially stable. Substituting for II.K; and using
from (9) that T, = G, T, we can simplify this to obtain

in = —TVV fo(TuPm1 + uo) — T Vo (G TPy + 20)
= T,V fo(TuPm1 + uo) — T, Vgo(T.Pm + zo)
= —0(Pm)

The main convexity assumption implies that ® is strongly
monotone on the feasible set. Similar to the proof of Theorem
4.2, a simple Lyapunov analysis with candidate V() =
lm — ntl|% now completes the proof of local exponential
stability of the reduced dynamics. g

2) Robust & Optimal Stabilizer Design: Theorem 4.3
provides an explicit design for an appropriate gain K =
[ K1 K2 ] for use in (22). The quality of this design can be
significantly improved by leveraging techniques from robust
and optimal control theory. With the plant in quasi steady-
state as given by (2), the reduced dynamics associated with
(22) will have the form

i =TV fo(u) — TV go(Guu + Gyw) (28a)
M2 = —Nu — Nw (28b)
u= Kin + Kans. (28¢)

where, as before, we set N := H,+G,H,, and N = H,G,+
H,,. We now recognize the design of K1, Ky in (28) a state-
feedback design problem. To the system (28), we associate
the performance outputs

21 =11, z9 = pi2

corresponding to the stationarity and primal feasibility vi-
olations, respectively, with p > 0 a tuning parameter. To
minimize conservatism in the design that follows, we will
separate out any quadratic cost portions from fy and gg, so
that

Vfo(u) = Qiu+ V fo(u)
Vgo(2) = Qaz + Vio(2)
for matrices Q1,Q2 = 0 and fo, jo being convex. With

this, the overall system can be represented in standard linear-
fractional representation (LFR) form [25], [26] as

(] [0 0] —Q | =T —T7 | —=TJQ2Gy] [m]
Mo 0 0| =N | 0 0 -N 2
al oo 1 0 0 0 w
| ool G, | o 0 G L
2l 0 0| —Q [-IT —TT | 1T Q2Gu | |p2
2] |0 0] =pN| 0 0 —pN | |w]

001(771, 12, U, P1, P2, UJ)

where Q := T.TQ, + TT Q2G,,, and with

p1=A1(q1) = Vfolqr)
P2 = A2(q2) = Vjo(ga)-

Since V fy and Vg, are gradients of convex functions, the
blocks A; satisfy (incremental) pointwise sector constraints
of the form [27]

[Ai(qz)i - qui(qg)} T o, [A(qj]z - 2(612)} >0 @9

for all arguments ¢;, ¢; and for some symmetric block two-by-
two matrix ©;. The specific form of ©; depends on whether
the objective function is (i) convex, (ii) convex with Lipschitz
continuous gradient, (iii) strongly convex, or (iv) strongly
convex and with Lipschitz continuous gradient. For example,
if fo is strongly convex with parameter m; and its gradient
has Lipschitz constant Ly, we may take [27]

-2 mf+Lf

0, = merLf 72mef

® I,

For selected ©1,O,, we set

e = {daug(@l/ﬁl,@g/ﬁz) | 91,02 > O}
e’Y = diag(_lnwa ,Y%Iq—i-nc)-

with v > 0, and where daug denotes the diagonal augmen-
tation operation [25]. By standard arguments involving the
S-Procedure, the state feedback v = K [} ]| will render the
reduced dynamics (28) exponentially stable and achieve .%5-
performance on the w — z channel strictly upper bounded



by + if there exists P > 0 and © € © such that

Iogtne 0 0
0 P|O 0 A+ BK B B>
/P 0|0 0 0 Igr 0
(*) 0 00O 0 Ci+ &K D1 D1a <0
0 0] 0|06, 0 0 In,
Co+&EK  Da Do
(30)

Defining Y = P~! = 0, performing a congruence transforma-
tion on (30) using diag(Y’, I, I'), and applying the Dualization
Lemma [26, Cor. 4.10], (30) is equivalent to the LMI problem
(31) of finding Y > 0, Z € R™*(a+7) and 6;,05 > 0
such that The resulting feedback gain is then recovered as
K = ZY~!. A design minimizing ~ can then be obtained
via semidefinite programming by minimizing 72 subject to
(31). We summarize in the following result.

Proposition 4.4 (Robust Optimal Stabilizer): Suppose
that (31) is feasible, and set X = ZY ~!. Then the controller
(22) solves Problem 2.1 for all sufficiently large tunings of
the form 1 = =7> 0.

The interested reader will have no issues extending the
robust/optimal design approach above to other optimality
models; the details are omitted. The only pieces of plant
model information required for this LMI-based design pro-
cedure are the plant DC gain matrices G, and G,,.

V. EXAMPLES
A. Simulation Example

We first illustrate our ideas via an academic example. The
LTI system (1) is a randomly generated underactuated stable
system with z € R30, 4 € R*, and z € R?, and is such
that GG,, has full column rank. The problem of interest is
asymptotic tracking of step reference signals r1, 79 for z1, 25,
while constraining zs, z4, 25 within specified limits. This
should be achieved with minimum control effort, and subject
to hard constraints on controls u. We formulate this as

minimize [ZZ’ L2 +4B(w)| +cP(2)  (32a)
subject to zZ = Guu+ Gyuw (32b)
0=z —r, i€ {1,2} (32¢)

where «y,c > 0 are design parameters for the barrier and
penalty functions

B(“k) = - log( R = ) — log(—up™ + )
=1 Z max(0, 2" — Z, Z), — 20%)2

Note that the obJectlve function fo is strongly convex and

essentially smooth on U = [, [u®, u**x].

In the following tests we set umm = —0.75, up** = 0.75,
z,fg“n = —1, z* =1 for all k, v =0.01, and ¢ = 50. The
response of the closed-loop system to sequential step changes
in the references (ri,72) = (2,—2) at t = 10s and ¢ = 40s
is simulated. We illustrate the performance of the inversion-
based controller (20) in Figure 3, the two-loop controller (22)
in Figure 4, and the optimal controller of Proposition 4.4 in

Figure 5.2 In all cases, the controller asymptotically tracks
the desired reference signals while maintaining the input and
output constraints and minimizing steady-state control effort.
The performance in Figure 4 is slightly poorer than that
in Figure 3 due to cross-coupling effects between the two
dynamic loops. The robust/optimal controller of Figure 5
does not suffer from these cross-coupling effects, and even
provides an improvement over the inversion-based controller.

B. Frequency Control in Power Systems

Dynamic models of high-voltage AC power systems have
the property that they are internally stable, and that the steady-
state frequency deviation in the system is proportional to the
net imbalance between generation and load [28]. This leads
to a steady-state model (2) of the form

Aw =1 1,”1T At — (33)

m w.

where Aw € R™ denotes frequency deviations at m buses
of the system, Au € R™ denotes steady-state generation
change at those buses, w denotes the total loading change in
the system, and 8 > 0 is a constant. The problem of interest
is minimization of generation cost, subject to regulation of
frequency, expressed as

mininize Zi:l Ji(Au;) (34a)
subject to (33) and 0 = SAw,, (34b)

where J; captures the ith generation cost and embeds any
associated unit limits. Under appropriate assumptions on .J;,
our previous results immediately yield several provably stable
controllers for the solution of this problem. The primal-dual
controller (19) reduces to

oAl = =V Ji(Au;) — p, Taft = Awpy,

which consists of a single frequency integrator and a de-
centralized update for u;; the inversion-based controller (20)
reduces to

Th = AWy, Au; = VJ (p),

which precisely recovers the control scheme proposed in [29].
For the two-loop design of Section IV-B.1, we follow (9) and
must compute

I, -G, L =31l
null{H i, ]null{ﬁT 0 ,

where e, is the mth unit vector of R™. This nullspace is
spanned by vectors of the form col(0, &) where £71,, = 0.
Let L = LT denote the Laplacian matrix of an undirected,
connected, and weighted graph over m nodes [30, Chp. 6—
8]. In this case null(L) = 1,,, and therefore range(LT) =
{€| €71, = 0}. If we block partition L as

Ly Lo
L =
oo

L21
2The primal-dual controller (19) produces results similar to the inversion-
based controller when the time constant 73, is small compared to 74.
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Fig. 3: System with inversion-based stabilizer; T = 2.
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Fig. 4: System with two-loop stabilizer; 71 = 5,72 = 1.

with Ly; € Rm=Dx(m=1) then it follows that an eligible

selection of T'is T, = 0 and T,, = ﬁl} Since H.G,, +

12
H, = 1;, to satisfy Theorem 4.3 we may select Ky = e,,.

In this case, II. = I, — eml;rn, and one may then verify
that an eligible selection of K7 satisfying II.K; = T, P

Plant Output

Control Signal

0 10 20 30 40 50 60 70
Time (s)

Fig. 5: System with optimal stabilizer; p = 100, 7 = 0.02.

is K1 = Lgl P. Selecting P = Lj;' = 0, we obtain
the simpler choice K7 = [[]. With these constructions, the
stabilizing controller of Theorem 4.3 becomes

— Z;il CLU(VJl(AUZ) - VJJ<AUJ))
7'2772 = —Awm
Au = col(m,n2)

fori € {1,...,m—1}, where J(Au) = >7", J;(Au;). This
novel controller has the interpretation that the mth generation
unit implements integral control on the frequency deviation,
while generators {1,...,m — 1} implement a distributed
averaging scheme to reach agreement on their marginal costs
VJ;(Au;) of power production.

For the final design leveraging the results of Section III-C,
it is convenient to rewrite (34) in the equivalent form

TN, =

mg%lyrgéze Zi:l Ji(Au;) (35a)
subject to  (33) and 0,,, = A® (35b)

where now the frequency constraint is vectorized to hold at
all buses. We now compute that

I, -G I —11.1T
T u — m /8 m=m
null [ H. H, } null [ I 0 } ,

and following similar steps to before, we may selection T, =
0 and T, = L7; note that in this case, we have selected 7T},



to not have full column rank. The error signals (13) now
become

e1 = LVJ(Au), er = Aw

In this case, we have ¢ = n. = m. Following Proposition
3.2, consider the selection ¢ = m, C; and C5 being empty,
and Cf = CY = I,,,. With this, we have

range(C1T)] ) Nrange(Cy(H.G,, + H,))
= range(L) Nrange(1,,1} ) = {0}
so conditions (a)—(c) in Proposition 3.2 are verified, and
e = Aw+ LV J(Au)

is an optimality model. Integrating and selecting the stabilizer
Awu =7, we obtain the control scheme

TAU = —Aw — LVJ(Au)

which is a distributed-averaging proportional integral (DAPI)
frequency controller. While we have not developed here
a general theory of low-gain integral control stabilizers
associated with the optimality model of Section III-C, this
particular frequency controller has been extensively studied
and is known to be stable for sufficiently large 7; see [31]
and the references therein.

Our results herein establish that the above controllers — and
many others, which can be obtained by varying the above
constructions — lead to provably stable closed-loop systems.
These stability guarantees can even be pushed to nonlinear
power system models by mirroring the arguments in, e.g.,
[29], [31].

VI. CONCLUSIONS

Several low-gain controller designs have been presented
which can be used to drive a stable LTI system towards
the solution of a linearly-constrained convex optimization
problem. This renders the general OSS control framework
presented in [1] constructive for a practically-relevant class
of systems, and examples have been presented to illustrate
the design procedure and the flexibility inherent within it.
Open directions include the extension of this framework to
nonlinear and discrete-time systems, along with continued
exploration of applications for optimal steady-state control.
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