On Stability of Automatic Generation Control

J. W. Simpson-Porco and N. Monshizadeh

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

university of groningen

55th Annual Conference on Information Sciences and Systems (CISS), Johns Hopkins University

February 14, 2021

- Inertial response: fast response of rotating machines Time scale: immediate/seconds
- Primary control: turbine-governor control for stabilization Time scale: seconds
- Automatic Generation Control (AGC): multi-area control which eliminates generation-load mismatch within each area Time scale: minutes

- Inertial response: fast response of rotating machines Time scale: immediate/seconds
- Primary control: turbine-governor control for stabilization Time scale: seconds
- Automatic Generation Control (AGC): multi-area control which eliminates generation-load mismatch within each area Time scale: minutes

- Inertial response: fast response of rotating machines Time scale: immediate/seconds
- Primary control: turbine-governor control for stabilization Time scale: seconds
- Automatic Generation Control (AGC): multi-area control which eliminates generation-load mismatch within each area Time scale: minutes

- Inertial response: fast response of rotating machines Time scale: immediate/seconds
- Primary control: turbine-governor control for stabilization Time scale: seconds
- Automatic Generation Control (AGC): multi-area control which eliminates generation-load mismatch within each area Time scale: minutes

• interconnected system consisting of balancing authority areas

• decentralized integral control driven by area control error

$$ACE_{k}(t) := \underbrace{\Delta NI_{k}(t)}_{\text{Net Interchange}} + \underbrace{b_{k}\Delta f_{k}(t)}_{\text{Frequency Biasing}}$$

Characteristics:

- Area-by-area decentralized control, deployed since 1940's
- Eliminates generation-load mismatch within each area
- AGC is slow compared to primary control dynamics

Analysis:

- Textbook analysis considers only equilibrium
- 70+ years of research literature contains no formal dynamic analysis

Our Contribution: a definitive formal stability analysis of AGC in a fairly general interconnected nonlinear power system.

Characteristics:

- Area-by-area decentralized control, deployed since 1940's
- Eliminates generation-load mismatch within each area
- AGC is slow compared to primary control dynamics

Analysis:

- Textbook analysis considers only equilibrium
- 70+ years of research literature contains no formal dynamic analysis

Our Contribution: a definitive formal stability analysis of AGC in a fairly general interconnected nonlinear power system.

Characteristics:

- Area-by-area decentralized control, deployed since 1940's
- Eliminates generation-load mismatch within each area
- AGC is slow compared to primary control dynamics

Analysis:

- Textbook analysis considers only equilibrium
- 70+ years of research literature contains no formal dynamic analysis

Our Contribution: a definitive formal stability analysis of AGC in a fairly general interconnected nonlinear power system.

- Interconnected system with areas $A = \{1, ..., N\}$
- **2** $\mathcal{G}_k = \text{set of generators } w/ \text{ turbine-gov systems in area } k \in \mathcal{A}$
- **③** $\mathcal{G}_{k}^{AGC} \subseteq \mathcal{G}_{k}$ = subset of gen which participate in AGC
- power ref. to gen. $i \in \mathcal{G}_k^{AGC} = u_{ki} \in [\underline{u}_{ki}, \overline{u}_{ki}]$, dispatch value $u_{k,i}^{\star}$
- (i) $\Delta f_k =$ any frequency deviation measurement for area $k \in \mathcal{A}$
- **(1)** $\Delta NI_k =$ net power flow (dev. from set-point) **out** of area $k \in A$
- O Nonlinear interconnected power system model

$$\dot{x}(t) = F(x(t), u(t), w(t))$$
$$(\Delta f(t), \Delta NI(t)) = h(x(t), u(t), w(t)),$$

- Interconnected system with areas $\mathcal{A} = \{1, \dots, N\}$
- **2** G_k = set of generators w/ turbine-gov systems in area $k \in A$
- 3 $\mathcal{G}_k^{AGC} \subseteq \mathcal{G}_k$ = subset of gen which participate in AGC
- power ref. to gen. $i \in \mathcal{G}_k^{AGC} = u_{ki} \in [\underline{u}_{ki}, \overline{u}_{ki}]$, dispatch value $u_{k,i}^{\star}$
- (i) $\Delta f_k =$ any frequency deviation measurement for area $k \in \mathcal{A}$
- **(**) $\Delta NI_k =$ net power flow (dev. from set-point) **out** of area $k \in A$
- O Nonlinear interconnected power system model

$$\dot{x}(t) = F(x(t), u(t), w(t))$$
$$(\Delta f(t), \Delta NI(t)) = h(x(t), u(t), w(t)),$$

- Interconnected system with areas $\mathcal{A} = \{1, \dots, N\}$
- **2** G_k = set of generators w/ turbine-gov systems in area $k \in A$
- **3** $\mathcal{G}_k^{AGC} \subseteq \mathcal{G}_k$ = subset of gen which participate in AGC
- power ref. to gen. $i \in \mathcal{G}_k^{AGC} = u_{ki} \in [\underline{u}_{ki}, \overline{u}_{ki}]$, dispatch value $u_{k,i}^{\star}$
- (i) $\Delta f_k =$ any frequency deviation measurement for area $k \in \mathcal{A}$
- **(**) $\Delta NI_k =$ net power flow (dev. from set-point) **out** of area $k \in A$
- O Nonlinear interconnected power system model

$$\dot{x}(t) = F(x(t), u(t), w(t))$$
$$(\Delta f(t), \Delta NI(t)) = h(x(t), u(t), w(t)),$$

- Interconnected system with areas $\mathcal{A} = \{1, \dots, N\}$
- **2** G_k = set of generators w/ turbine-gov systems in area $k \in A$
- $\mathcal{G}_k^{AGC} \subseteq \mathcal{G}_k$ = subset of gen which participate in AGC
- **③** power ref. to gen. $i \in \mathcal{G}_k^{AGC} = u_{ki} \in [\underline{u}_{ki}, \overline{u}_{ki}]$, dispatch value $u_{k,i}^{\star}$

(i) $\Delta f_k =$ any frequency deviation measurement for area $k \in \mathcal{A}$

- **()** $\Delta NI_k =$ net power flow (dev. from set-point) **out** of area $k \in \mathcal{A}$
- Onlinear interconnected power system model

$$\dot{x}(t) = F(x(t), u(t), w(t))$$
$$(\Delta f(t), \Delta NI(t)) = h(x(t), u(t), w(t)),$$

- Interconnected system with areas $\mathcal{A} = \{1, \dots, N\}$
- **2** G_k = set of generators w/ turbine-gov systems in area $k \in A$
- $\mathcal{G}_k^{AGC} \subseteq \mathcal{G}_k$ = subset of gen which participate in AGC
- **③** power ref. to gen. $i \in \mathcal{G}_k^{AGC} = u_{ki} \in [\underline{u}_{ki}, \overline{u}_{ki}]$, dispatch value $u_{k,i}^{\star}$
- **(**) $\Delta f_k =$ any frequency deviation measurement for area $k \in \mathcal{A}$
- O $\Delta \mathsf{NI}_k =$ net power flow (dev. from set-point) out of area $k \in \mathcal{A}$
- Ø Nonlinear interconnected power system model

$$\dot{x}(t) = F(x(t), u(t), w(t))$$
$$(\Delta f(t), \Delta \mathsf{NI}(t)) = h(x(t), u(t), w(t)),$$

- Interconnected system with areas $\mathcal{A} = \{1, \dots, N\}$
- **2** G_k = set of generators w/ turbine-gov systems in area $k \in A$
- $\mathcal{G}_k^{AGC} \subseteq \mathcal{G}_k$ = subset of gen which participate in AGC
- **③** power ref. to gen. $i \in \mathcal{G}_k^{AGC} = u_{ki} \in [\underline{u}_{ki}, \overline{u}_{ki}]$, dispatch value $u_{k,i}^{\star}$
- **(**) $\Delta f_k =$ any frequency deviation measurement for area $k \in \mathcal{A}$
- **(**) ΔNI_k = net power flow (dev. from set-point) **out** of area $k \in A$
- Onlinear interconnected power system model

$$\dot{x}(t) = F(x(t), u(t), w(t))$$
$$(\Delta f(t), \Delta \mathsf{NI}(t)) = h(x(t), u(t), w(t)),$$

- Interconnected system with areas $\mathcal{A} = \{1, \dots, N\}$
- **2** G_k = set of generators w/ turbine-gov systems in area $k \in A$
- $\mathcal{G}_k^{AGC} \subseteq \mathcal{G}_k$ = subset of gen which participate in AGC
- **③** power ref. to gen. $i \in \mathcal{G}_k^{AGC} = u_{ki} \in [\underline{u}_{ki}, \overline{u}_{ki}]$, dispatch value $u_{k,i}^{\star}$
- **(**) $\Delta f_k =$ any frequency deviation measurement for area $k \in \mathcal{A}$
- **(** ΔNI_k = net power flow (dev. from set-point) **out** of area $k \in A$
- O Nonlinear interconnected power system model

$$\dot{x}(t) = F(x(t), u(t), w(t))$$
$$(\Delta f(t), \Delta \mathsf{NI}(t)) = h(x(t), u(t), w(t)),$$

Technical Assumptions on Power System Model

There exist domains $\mathcal{X} \subseteq \mathbb{R}^n$ and $\mathcal{W} \subseteq \mathbb{R}^{n_w}$ such that the following hold:

- Model Regularity: F, h, and Jacobians are Lipschitz cont. on X uniformly in (u, w) ∈ U × W;
- Steady-State: there exists a C¹ map x_{ss} : U × W → X which is Lipschitz on U × W and satisfies 0 = F(x_{ss}(u, w), u, w) for all (u, w) ∈ U × W;
- Stability: the steady-state x_{ss}(u, w) is locally exponentially stable, uniformly in the inputs (u, w) ∈ U × W;
- **Steady-State Model:** the values $(\Delta f, \Delta NI) = h(x_{ss}(u, w), u, w)$ satisfy $\Delta f_1 = \Delta f_2 = \cdots = \Delta f_N$ and

$$0 = \sum_{k \in \mathcal{A}} \Delta \mathsf{NI}_k$$
$$\sum_{i \in \mathcal{G}_k} (P_{k,i} - u_{k,i}^*) = D_k \Delta f_k + \Delta P_k^{\mathrm{L}} + \Delta \mathsf{N}$$
$$P_{k,i} = u_{k,i} - \frac{1}{R_{k,i}} \Delta f_k$$

for each $k \in \mathcal{A}$ and $i \in \mathcal{G}_k$.

Technical Assumptions on Power System Model

There exist domains $\mathcal{X} \subseteq \mathbb{R}^n$ and $\mathcal{W} \subseteq \mathbb{R}^{n_w}$ such that the following hold:

- Model Regularity: F, h, and Jacobians are Lipschitz cont. on X uniformly in (u, w) ∈ U × W;
- 2 Steady-State: there exists a C¹ map x_{ss} : U × W → X which is Lipschitz on U × W and satisfies 0 = F(x_{ss}(u, w), u, w) for all (u, w) ∈ U × W;
- Stability: the steady-state x_{ss}(u, w) is locally exponentially stable, uniformly in the inputs (u, w) ∈ U × W;
- **3** Steady-State Model: the values $(\Delta f, \Delta NI) = h(x_{ss}(u, w), u, w)$ satisfy $\Delta f_1 = \Delta f_2 = \cdots = \Delta f_N$ and

$$egin{aligned} \mathbf{0} &= \sum_{k \in \mathcal{A}} \Delta \mathsf{NI}_k \ \sum_{i \in \mathcal{G}_k} (\mathcal{P}_{k,i} - u_{k,i}^\star) &= D_k \Delta f_k + \Delta \mathcal{P}_k^\mathrm{L} + \Delta \mathsf{NI}_k \ \mathcal{P}_{k,i} &= u_{k,i} - rac{1}{R_{k,i}} \Delta f_k \end{aligned}$$

for each $k \in \mathcal{A}$ and $i \in \mathcal{G}_k$.

k

• Recall: ACE defined as

 $\mathsf{ACE}_k(t) := \Delta \mathsf{NI}_k(t) + b_k \Delta f_k(t)$

• AGC controller for area k: integrator & dispatch rule

$$\tau_k \dot{\eta}_k(t) = -\mathsf{ACE}_k(t)$$
$$u_{k,i} = \operatorname{sat}_{k,i}(u_{k,i}^* + \alpha_{k,i}\eta_k)$$

time constants τ_k ∈ [30s, 200s]
constant participation factors α_{k,i} satisfy

$$\alpha_{k,i} \ge 0, \qquad \sum_{i \in \mathcal{C}^{AGC}} \alpha_{k,i} = 1$$

• Recall: ACE defined as

$$ACE_k(t) := \Delta NI_k(t) + b_k \Delta f_k(t)$$

• AGC controller for area k: integrator & dispatch rule

$$au_k \dot{\eta}_k(t) = -\mathsf{ACE}_k(t)$$

 $u_{k,i} = \operatorname{sat}_{k,i}(u_{k,i}^\star + lpha_{k,i}\eta_k)$

- time constants $\tau_k \in [30s, 200s]$
- constant **participation factors** $\alpha_{k,i}$ satisfy

$$\alpha_{k,i} \ge 0, \qquad \sum_{i \in \mathcal{G}_k^{AGC}} \alpha_{k,i} = 1.$$

• Recall: ACE defined as

$$ACE_k(t) := \Delta NI_k(t) + b_k \Delta f_k(t)$$

• AGC controller for area k: integrator & dispatch rule

$$au_k \dot{\eta}_k(t) = -\mathsf{ACE}_k(t)$$

 $u_{k,i} = \operatorname{sat}_{k,i}(u_{k,i}^\star + lpha_{k,i}\eta_k)$

• time constants $\tau_k \in [30s, 200s]$

• constant participation factors $\alpha_{k,i}$ satisfy

$$\alpha_{k,i} \ge 0, \qquad \sum_{i \in \mathcal{G}_k^{AGC}} \alpha_{k,i} = 1.$$

• Recall: ACE defined as

$$ACE_k(t) := \Delta NI_k(t) + b_k \Delta f_k(t)$$

• AGC controller for area k: integrator & dispatch rule

$$au_k \dot{\eta}_k(t) = -\mathsf{ACE}_k(t)$$

 $u_{k,i} = \operatorname{sat}_{k,i}(u_{k,i}^\star + lpha_{k,i}\eta_k)$

- time constants $\tau_k \in [30s, 200s]$
- constant participation factors $\alpha_{k,i}$ satisfy

$$\alpha_{k,i} \ge 0, \qquad \sum_{i \in \mathcal{G}_k^{AGC}} \alpha_{k,i} = 1.$$

Closed-Loop Stability under AGC

Main Theorem: Consider the interconnected power system with AGC under the previous assumptions. There exists $\tau^* > 0$ such that if $\min_{k \in \mathcal{A}} \tau_k \ge \tau^*$, then

- the closed-loop system possesses a unique exponentially stable equilibrium point $(\bar{x}, \bar{\eta}) \in \mathcal{X} \times \mathbb{R}^N$, and
- 2 ACE_k(t) \rightarrow 0 as $t \rightarrow \infty$ for all areas $k \in A$.

Comments:

- result is **independent** of bias tunings $b_k > 0$
- consistent with **engineering practice**; no coordination required for stable tuning under usual time-scales of operation

Closed-Loop Stability under AGC

Main Theorem: Consider the interconnected power system with AGC under the previous assumptions. There exists $\tau^* > 0$ such that if $\min_{k \in \mathcal{A}} \tau_k \ge \tau^*$, then

- the closed-loop system possesses a unique exponentially stable equilibrium point $(\bar{x}, \bar{\eta}) \in \mathcal{X} \times \mathbb{R}^N$, and
- 2 ACE_k(t) \rightarrow 0 as $t \rightarrow \infty$ for all areas $k \in A$.

Comments:

- result is **independent** of bias tunings $b_k > 0$
- consistent with **engineering practice**; no coordination required for stable tuning under usual time-scales of operation

Closed-Loop Stability under AGC

Main Theorem: Consider the interconnected power system with AGC under the previous assumptions. There exists $\tau^* > 0$ such that if $\min_{k \in \mathcal{A}} \tau_k \ge \tau^*$, then

- the closed-loop system possesses a unique exponentially stable equilibrium point $(\bar{x}, \bar{\eta}) \in \mathcal{X} \times \mathbb{R}^N$, and
- 2 ACE_k(t) \rightarrow 0 as $t \rightarrow \infty$ for all areas $k \in A$.

Comments:

- result is **independent** of bias tunings $b_k > 0$
- consistent with **engineering practice**; no coordination required for stable tuning under usual time-scales of operation

• Set $\varepsilon = (\min_k \tau_k)^{-1}$ and let $t \mapsto \epsilon t$. Then CLS is

$$\varepsilon \dot{x} = F(x, u, w) \qquad \tilde{\tau}_k \dot{\eta}_k = -(\Delta N I_k + b_k \Delta f_k)$$
$$(\Delta f, \Delta N I) = h(x, u, w) \qquad u_{k,i} = \operatorname{sat}_{k,i} (u_{k,i}^* + \alpha_{k,i} \eta_k),$$

Boundary layer dynamics are uniformly exp. stable
 Routine calculations to obtain vectorized reduced dynamics

$$\tilde{\tau}\dot{\eta} = \mathcal{B}(\varphi(\eta) - \Delta P^{\mathrm{L}})$$

where $\varphi_k(\eta_k) = \sum_{i \in \mathcal{G}_k} (\operatorname{sat}_{k,i}(u_{k,i}^* + \alpha_{k,i}\eta_k) - u_{k,i}^*)$ and

$$\mathcal{B} := -\frac{1}{\beta} \begin{bmatrix} \beta + b_1 - \beta_1 & b_1 - \beta_1 & \cdots & b_1 - \beta_1 \\ b_2 - \beta_2 & \beta + b_2 - \beta_2 & \cdots & \cdots \\ \vdots & \ddots & \vdots & b_{N-1} - \beta_{N-1} \\ b_N - \beta_N & \cdots & b_N - \beta_N & \beta + b_N - \beta_N \end{bmatrix}$$

• Set $\varepsilon = (\min_k \tau_k)^{-1}$ and let $t \mapsto \epsilon t$. Then CLS is $\varepsilon \dot{x} = F(x, u, w)$ $\tilde{\tau}_k \dot{\eta}_k = -(\Delta NI_k + b_k \Delta f_k)$ $(\Delta f, \Delta NI) = h(x, u, w)$ $u_{k,i} = \operatorname{sat}_{k,i}(u_{k,i}^* + \alpha_{k,i}\eta_k),$

Boundary layer dynamics are uniformly exp. stable
 Routine calculations to obtain vectorized reduced dynamics

$$ilde{ au}\dot{\eta} = \mathcal{B}(\varphi(\eta) - \Delta P^{\mathrm{L}})$$

where $\varphi_k(\eta_k) = \sum_{i \in \mathcal{G}_k} (\operatorname{sat}_{k,i}(u_{k,i}^* + \alpha_{k,i}\eta_k) - u_{k,i}^*)$ and

$$\mathcal{B} := -\frac{1}{\beta} \begin{bmatrix} \beta + b_1 - \beta_1 & b_1 - \beta_1 & \cdots & b_1 - \beta_1 \\ b_2 - \beta_2 & \beta + b_2 - \beta_2 & \cdots & \cdots \\ \vdots & \ddots & \vdots & b_{N-1} - \beta_{N-1} \\ b_N - \beta_N & \cdots & b_N - \beta_N & \beta + b_N - \beta_N \end{bmatrix}$$

• Set $\varepsilon = (\min_k \tau_k)^{-1}$ and let $t \mapsto \epsilon t$. Then CLS is

$$\begin{split} \varepsilon \dot{x} &= F(x, u, w) \qquad \tilde{\tau}_k \dot{\eta}_k = -(\Delta \mathsf{NI}_k + b_k \Delta f_k) \\ (\Delta f, \Delta \mathsf{NI}) &= h(x, u, w) \qquad u_{k,i} = \operatorname{sat}_{k,i} (u_{k,i}^* + \alpha_{k,i} \eta_k), \end{split}$$

Boundary layer dynamics are uniformly exp. stable Routine calculations to obtain vectorized reduced dynamics

$$\tilde{\tau}\dot{\eta} = \mathcal{B}(\varphi(\eta) - \Delta P^{\mathrm{L}})$$

where $\varphi_k(\eta_k) = \sum_{i \in \mathcal{G}_k} (\operatorname{sat}_{k,i}(u_{k,i}^* + \alpha_{k,i}\eta_k) - u_{k,i}^*)$ and

$$\mathcal{B} := -\frac{1}{\beta} \begin{bmatrix} \beta + b_1 - \beta_1 & b_1 - \beta_1 & \cdots & b_1 - \beta_1 \\ b_2 - \beta_2 & \beta + b_2 - \beta_2 & \cdots & \cdots \\ \vdots & \ddots & \vdots & b_{N-1} - \beta_{N-1} \\ b_N - \beta_N & \cdots & b_N - \beta_N & \beta + b_N - \beta_N \end{bmatrix}$$

• Set $\varepsilon = (\min_k \tau_k)^{-1}$ and let $t \mapsto \epsilon t$. Then CLS is

$$\begin{split} \varepsilon \dot{x} &= F(x, u, w) \qquad \tilde{\tau}_k \dot{\eta}_k = -(\Delta \mathsf{NI}_k + b_k \Delta f_k) \\ (\Delta f, \Delta \mathsf{NI}) &= h(x, u, w) \qquad u_{k,i} = \operatorname{sat}_{k,i} (u_{k,i}^* + \alpha_{k,i} \eta_k), \end{split}$$

Boundary layer dynamics are uniformly exp. stable
Routine calculations to obtain vectorized reduced dynamics

$$ilde{ au}\dot{\eta} = \mathcal{B}(arphi(\eta) - \Delta P^{\mathrm{L}})$$

where $\varphi_k(\eta_k) = \sum_{i \in \mathcal{G}_k} (\operatorname{sat}_{k,i}(u_{k,i}^\star + \alpha_{k,i}\eta_k) - u_{k,i}^\star)$ and

$$\mathcal{B} := -\frac{1}{\beta} \begin{bmatrix} \beta + b_1 - \beta_1 & b_1 - \beta_1 & \cdots & b_1 - \beta_1 \\ b_2 - \beta_2 & \beta + b_2 - \beta_2 & \cdots & \cdots \\ \vdots & \ddots & \vdots & b_{N-1} - \beta_{N-1} \\ b_N - \beta_N & \cdots & b_N - \beta_N & \beta + b_N - \beta_N \end{bmatrix}$$

٠

Lemma: The matrix \mathcal{B} is diagonally stable, i.e., there exists a matrix $D = \operatorname{diag}(d_1, \ldots, d_N) \succ 0$ such that $\mathcal{B}^{\mathsf{T}}D + D\mathcal{B} \prec 0$.

• Easy to argue that there exists unique $\bar{\eta}$ such that $\varphi(\bar{\eta}) = \Delta P^{L}$, i.e., unique equilibrium $\bar{\eta}$ of the reduced dynamics

$$\tilde{\tau}\dot{\eta} = \mathcal{B}(\varphi(\eta) - \Delta P^{\mathrm{L}})$$

() Lyapunov candidate $V : \mathbb{R}^N \to \mathbb{R}$ given by

$$V(\eta) = \sum_{k=1}^{N} d_k \tilde{\tau}_k \int_{\bar{\eta}_k}^{\eta_k} (\varphi_k(\xi_k) - \varphi_k(\bar{\eta}_k)) \,\mathrm{d}\xi_k.$$

establishes local exp. stability of $ar\eta$ for reduced dynamics

Lemma: The matrix \mathcal{B} is diagonally stable, i.e., there exists a matrix $D = \operatorname{diag}(d_1, \ldots, d_N) \succ 0$ such that $\mathcal{B}^{\mathsf{T}}D + D\mathcal{B} \prec 0$.

So Easy to argue that there exists unique $\bar{\eta}$ such that $\varphi(\bar{\eta}) = \Delta P^{L}$, i.e., unique equilibrium $\bar{\eta}$ of the reduced dynamics

$$ilde{ au}\dot{\eta} = \mathcal{B}(arphi(\eta) - \Delta P^{\mathrm{L}})$$

 ${f 0}\,$ Lyapunov candidate $V:{\Bbb R}^N o{\Bbb R}$ given by

$$V(\eta) = \sum_{k=1}^{N} d_k \tilde{\tau}_k \int_{\bar{\eta}_k}^{\eta_k} (\varphi_k(\xi_k) - \varphi_k(\bar{\eta}_k)) \,\mathrm{d}\xi_k.$$

establishes local exp. stability of $ar\eta$ for reduced dynamics

Lemma: The matrix \mathcal{B} is diagonally stable, i.e., there exists a matrix $D = \operatorname{diag}(d_1, \ldots, d_N) \succ 0$ such that $\mathcal{B}^{\mathsf{T}}D + D\mathcal{B} \prec 0$.

So Easy to argue that there exists unique $\bar{\eta}$ such that $\varphi(\bar{\eta}) = \Delta P^{L}$, i.e., unique equilibrium $\bar{\eta}$ of the reduced dynamics

$$ilde{ au}\dot{\eta} = \mathcal{B}(arphi(\eta) - \Delta P^{\mathrm{L}})$$

() Lyapunov candidate $V : \mathbb{R}^N \to \mathbb{R}$ given by

$$V(\eta) = \sum_{k=1}^{N} d_k \tilde{\tau}_k \int_{\bar{\eta}_k}^{\eta_k} (\varphi_k(\xi_k) - \varphi_k(\bar{\eta}_k)) \,\mathrm{d}\xi_k.$$

establishes local exp. stability of $\bar{\eta}$ for reduced dynamics

Conclusions

The first (to our knowledge) rigorous stability analysis of AGC

- **1** Singular perturbation theory, explicit Lyapunov construction
- Interval 2 Theory backing 70 years of engineering practice

Future Work:

- Incorporating governor deadband and network losses
- Implications for tuning and modernizing AGC

Conclusions

The first (to our knowledge) rigorous stability analysis of AGC

- **1** Singular perturbation theory, explicit Lyapunov construction
- Interval 2 Theory backing 70 years of engineering practice

Future Work:

- Incorporating governor deadband and network losses
- Implications for tuning and modernizing AGC

Questions

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

https://www.control.utoronto.ca/~jwsimpson/ jwsimpson@ece.utoronto.ca