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Abstract— In part I of this paper we presented a solution
to the circular formation stabilization problem of kinematic
unicycles when the information flow graph is undirected. This
paper extends the results of part I in two directions. First,
we present a control law that solves the circular formation
stabilization problem when the information flow is described
by an arbitrary directed graph with a globally reachable node.
Second, we generalize our results to the case when the unicycles
are dynamic.

I. I NTRODUCTION

This paper is a continuation of part I, where we designed
a control law solving the circular formation control problem
(CFCP) for a group ofn unicycles under the assumption that
the information flow graph is undirected, and it has a globally
reachable node. In this paper, we provide two extensions.
First, we develop a solution to CFCP for arbitrary directed
information flow graphs with a globally reachable node.
Second, we show that all our results can be straightforwardly
extended to the setting of dynamic unicycles.

Consider again the system ofn kinematic unicycles,n ≥
2, where thei’s unicycle model is given by

ẋi
1 = ui

1 cosx
i
3

ẋi
2 = ui

1 sinx
i
3

ẋi
3 = ui

2

(1)

with statexi = (xi
1, x

i
2, x

i
3) ∈ R

2×S1. The state space of the
system isX = (R2×S1)n, and we letχ = col(x1, · · · , xn),
andx3 = col(x1

3, · · · , x
n
3 ). This system can be written in the

control affine formχ̇ = g(χ)u.
We refer the reader to part I of this paper for the definitions

of the information flow digraphG and of the notion of
globally reachable node. We recall the problem we wish to
solve.

Circular Formation Control Problem (CFCP) . Consider
then-unicycles in (1). For a given information flow digraph
G with a globally reachable node, and a desired formation
specification expressed by a vector of anglesα ∈ Sn, design
a distributed control law which asymptotically stabilizesthe
set

Γ = Γ1 ∩ Γ2

= {χ : L(x3 − α) = 0, ci+1(xi+1) = ci(xi), 1 ≤ i ≤ n},
(2)
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where

Γ1 = {χ : ci+1(xi+1) = ci(xi), i ∈ {1, . . . , n}}

Γ2 = {χ : L(x3 − α) = 0 mod 2π},
(3)

andci(xi) is defined as

ci(xi) = (xi
1 − r sinxi

3, x
i
2 + r cosxi

3) (4)

Additionally, the linear velocitiesui
1 and angular velocities

ui
2 of the unicycles should be bounded away from zero onΓ

and the unicycles should have acommon asymptotic centre
of rotation.

In this paper, as in part I, the indicesi ∈ {1, . . . , n} are
evaluated modulon so that, for instance,n+ 1 is identified
with 1.

We derive the solution to this problem for arbitrary infor-
mation flow graphs in two stages: in Section II, we address
the case of circulant graphs (i.e., graphs whose Laplacian is
a circulant matrix), and in Section III we further generalize
the result to general digraphs. Moreover, in Section IV we
show that all our results have a straightforward extension to
the case of dynamic unicycles.

The results of this paper do not rely on the passivity theory
reviewed in part I. A more general framework is needed when
the information flow graph is directed, as we now explain.
Recall the storage function used in part I,

V (χ) = c(χ)⊤L(2) c(χ) =
1

2
c(χ)⊤(L(2) + L⊤

(2)) c(χ),

where L is the Laplacian ofG, and L(2) = L ⊗ I2.
We have established in part I that sinceG has a globally
reachable node,L has one eigenvalue at zero, and all its
other eigenvalues have positive real part. This fact, however,
does not imply thatL(2) + L⊤

(2) is positive semidefinite
when L, and henceL(2), is not symmetric. IfL(2) + L⊤

(2)

is not positive semidefinite, the passivity analysis of partI
cannot be applied. A second obstacle to the extension of the
passivity-based design of part I is the fact that, even ifV (χ)
is positive semidefinite andV −1(0) = Γ1, the passive output
associated to the storageV ,

h(χ) = −rR(x3)(L(2) + L⊤

(2)) c(χ)

violates the information flow constraint, and thus it cannotbe
used in a passivity-based feedback to generate a distributed
controller. To illustrate, consider the feedback transforma-
tion (12) of part I:

u = β1ū+ β2ũ (5)



where β1 = blockdiag{[1 1/r]⊤, . . . , [1 1/r]⊤}, β2 =
blockdiag{[0 1]⊤, . . . , [0 1]⊤}, ū is a feedback used to
enforceΓ-detectability, and̃u is a PBF stabilizing the setΓ1

in (3). The simplest PBF,̃u(χ) = −h(χ), has the property
that ũi is affected by rows2i − 1 and 2i of (L(2) + L⊤

(2)).
These rows are different from the corresponding rows of
L(2), unlessL is symmetric, and thereforẽu(χ) violates the
information flow constraint embodied inL.

The considerations above suggest that in order to generate
distributed control laws solving CFCP, we should replace the
PBF ũ = −Kh(χ) in equation (21) of part I by a suitable
distributed feedback that asymptotically stabilizes the set Γ1

in (3). Recalling thatū in (19) of part I was designed to
stabilizeΓ relative toΓ1, the problem then is to understand
whether the asymptotic stability ofΓ relative toΓ1 and the
asymptotic stability ofΓ1 imply the asymptotic stability ofΓ.
This question is an instance of the generalreduction problem
for a dynamical systemΣ : ẋ = f(x): Consider two closed
setsΓ and Γ1, with Γ ⊂ Γ1, which are positively invariant
for Σ; suppose thatΓ is stable, attractive, or asymptotically
stable relative toΓ1. When is it thatΓ is, respectively, stable,
attractive, or asymptotically stable forΣ?

The answer to this question is contained in the next result,
taken from [1] (see [2] for the full version of the paper).

Theorem I.1 (Reduction principle for asymptotic stability,
Theorem III.2 in [1]). Let Γ and Γ1, Γ ⊂ Γ1 ⊂ X , be
two closed positively invariant sets. Then,Γ is [globally]
asymptotically stable if the following conditions hold:

(i) Γ is [globally] asymptotically stable relative toΓ1,
(ii) Γ1 is locally stable nearΓ,
(iii) Γ1 is locally attractive nearΓ [Γ1 is globally attrac-

tive],
(iv) if Γ is unbounded, thenΣ is locally uniformly bounded

nearΓ,
(v) [all trajectories ofΣ are bounded.]

Seibert and Florio in [3] proved an analogous result for
the case whenΓ is compact. We refer the reader to [1] for
the definitions of local stability and attractivity near a set. In
this context, it suffices to say that the asymptotic stability of
Γ1 implies conditions (i)-(ii) of Theorem I.1.

By invoking this reduction principle, we propose the fol-
lowing design strategy to solve CFCP for general information
flow graphs.

Step 1. Using the feedback transformation (5) and the feed-
back ū in equation (19) of part I, we show thatΓ is
asymptotically stable relative toΓ1 when ũ = 0.

Step 2. We design a distributed feedback̃u(χ) which
asymptotically stabilizesΓ1 and guarantees that the
closed-loop system is LUB nearΓ. Moreover, we
show that, with this feedback, the unicycles have a
common asymptotic centre of rotation.

Step 3. By invoking the reduction theorem for asymptotic
stability above, we conclude that the feedback in
question solves CFCP.

II. SOLUTION OF CFCPFOR CIRCULANT DIGRAPHS

In this section we apply the reduction-based set stabilizing
procedure previously outlined to solve CFCP when the
information flow digraph Laplacian is circulant, i.e., it takes
the form (see [4])

L =











l1 l2 · · · ln
ln l1 · · · ln−1

...
...

...
l2 l3 · · · l1











In the development that follows we will need the next lemma.

Lemma II.1. If the LaplacianL of a digraph G with a
globally reachable node is circulant, then the matrixL+L⊤

is positive semidefinite with a simple eigenvalue at 0 with
geometric multiplicity 1.

Proof: If L is circulant, thenL⊤ is also the Laplacian
of a graph with the same node set, which we denoteG⊤.
Therefore,L+L⊤ is the Laplacian of a graph with the same
nodes as those ofG, and whose arcs are the arcs ofG and
those ofG⊤. Such graph, therefore, has a globally reachable
node, and its LaplacianL + L⊤ has one eigenvalue at zero
with geometric multiplicity 1 andn−1 positive eigenvalues.

Remark. Lemma II.1 is not applicable to digraphs with non-
circulant Laplacians because ifL is the Laplacian ofG, in
general it is not true thatL⊤ is the Laplacian of a digraph.

Step 1: Asymptotic stabilization ofΓ relative toΓ1

Consider system (1) with feedback transformation (5). Let
ū be defined as in part I,

ūi = v − v1 sin(L
i(x3 − α)), i = 1, . . . , n, (6)

and let ũ = 0. In the proof of Lemma V.2 of part I it was
shown that the derivative of the functionW (x3) =

∑n

i=1[1−
cos(Li(x3 − α))] along solutions of the closed-loop system
is given by

Ẇ = −v1S(x3)
⊤LS(x3) = −

v1
2
S(x3)

⊤(L+ L⊤)S(x3),

whereS(x3) = col(sin(L1(x3 − α)), . . . , sin(Ln(x3 − α))].
Since, by Lemma II.1,L + L⊤ is positive semidefinite and
has one eigenvalue at zero with geometric multiplicity one,
the proof of Lemma V.2 in part I is applicable in this context,
and it shows that the setΓ is asymptotically stable relative
to Γ1.

Step 2: Stabilization ofΓ1 and LUB property
Referring to the feedback transformation (5), letū be

defined as in (6), and let

ũ(χ) = KR(x3)ϕ(L(2)c(χ)),

whereK > 0 andϕ(y) = φ(y)y, with φ : R2n → (0,+∞)
a locally Lipschitz function such thatsupy∈R2n ‖φ(y)y‖ <



v/(2Kr). Since

ẋi
3 =

ūi

r
+ ũi

=
v

r
−

v1
r
sin(Li(x3 − α))+

K[0 0 · · · cosxi
3 sinxi

3 · · · 0 0]φ(L(2)c(χ))L(2)c(χ),

our choice ofφ guarantees that‖ẋ3‖ ≥ µ > 0 for some
µ > 0. Next, the dynamics of the centres of rotation are
given by

ċ = −rKR(x3(t))
⊤ũ(χ)

= −rKφ(L(2)c(χ))R(x3)
⊤R(x3)L(2)c(χ)

= −rKφ(L(2)c(χ))R(x3(t))L(2)c(χ).

The above can be viewed as a time-varying system whose
time-dependency is brought about by the signalx3(t). We
use averaging theory to analize this system. Our arguments
here are sketched due to space limitations. The averaged
system is

ċavg = −rKφ(L(2)cavg)R̄L(2)cavg, (7)

where R̄ can be shown to be positive definite. Letting

P =

[

1

∣

∣

∣

∣

0
In−1

]

, using the coordinate transformationsz =

P−1c, zavg = P−1cavg, and partitioningz = (z̄, z̃), zavg =
(z̄avg, z̃avg), we obtain

˙̄z = Kφ(L(2)Pz)A12(t)z̃

˙̃z = Kφ(L(2)Pz)A22(t)z̃

˙̄zavg = Kφ(L(2)Pzavg)Ā12z̃avg

˙̃zavg = Kφ(L(2)Pzavg)Ā22z̃avg,

where the matrixĀ22 is Hurwitz. By the definition ofP ,
the termsL(2)Pz and L(2)Pzavg are linear functions of
only z̃ and z̃avg, respectively. Since the real-valued function
φ(·) is bounded away from zero on any compact set, the
origin of the z̃avg subsystem is exponentially stable and
globally asymptotically stable. By the averaging theorem,for
small enoughK the linear time-varying system with matrix
KA22(t) is globally exponentially stable. This fact implies
that for small enoughK the origin of thez̃ subsystem is
exponentially stable and globally uniformly asymptotically
stable. We thus have that the unicycles have a common
asymptotic centre of rotation and there existsM > 0 such
that for all χ(0) ∈ X , ‖c(χ(t))‖ ≤ M‖L(2)c(χ(0))‖, thus
proving that the closed-loop system is LUB nearΓ.

Step 3: Solution of CFCP
The arguments presented in the previous two steps and the

reduction principle for asymptotic stability in Theorem I.1
yield the following result.

Proposition II.2. Assume that the information flow graph
has a circulant Laplacian with a globally reachable node. Let
v > v1 > 0 and φ : R2n → (0,+∞) be a locally Lipschitz
function such thatsupy∈R2n ‖φ(y)y‖ < ∞. Then, there
existsK⋆ > 0 satisfying supy∈R2n ‖φ(y)y‖ < v/(2K⋆r)

such that for allK ∈ (0,K⋆) the feedback

ui
1 = v − v1 sin(L

i(x3 − α))

ui
2 =

ui
1

r
+Kφ(L(2)c(χ))

[

cosxi
3L

2i−1
(2) c(χ)

+ sinxi
3L

2i
(2)c(χ)

]

, i = 1, . . . , n

(8)

solves CFCP and renders the goal setΓ in (2) asymptotically
stable, andΓ1 in (3) globally asymptotically stable for the
closed-loop system.

Remark. If we replace the expression forui
1 in (8) by that

in (22) of part I, and we take the state space to beX = R
3n,

then the setΓ becomes globally asymptotically stable relative
to Γ1, and the feedback above solves CFCP globally. As
pointed out in part I to show this one cannot use the same
method as that of Proposition II.2 becausexi

3(t) is no longer
a solution on the compact setS1.

Simulations

We present simulation results for for6 unicycles, for the
two cases presented in part I of the paper:
A. The unicycles are uniformly distributed on the circle with
α =

[

0 2π
6

4π
6

6π
6

8π
6

10π
6

]⊤
.

B. The unicycles are uniformly distributed on half the circle
with α =

[

0 2π
10

4π
10

6π
10

8π
10

10π
10

]⊤
. This time the infor-

mation flow structure corresponds to cyclic pursuit: unicycle
i gets relative information with respect to unicyclei+1. The
corresponding Laplacian is

L =

















1 − 1 0 0 0 0
0 1 − 1 0 0 0
0 0 1 − 1 0 0
0 0 0 1 − 1 0
0 0 0 0 1 − 1
− 1 0 0 0 0 1

















.

Figures 1 and 2 show the simulations results for cases A and
B using feedback (8) with the following parameters:r = 1,
v = 1, v1 = 0.2, andK = 0.7. The functionφ : R2n →
(0,+∞) is chosen as

φ(y) =

{

c ‖y‖ ≤ c
c2/‖y‖ ‖y‖ > c

wherec =
√

0.99v/Kr.

III. SOLUTION OF CFCPFOR GENERAL DIGRAPHS

The solution of CFCP in the case of circulant information
flow digraph relies on the feedback transformation (5) and
the design of two feedbacks̄u(χ) and ũ(χ). The feedback
ū(χ) asymptotically stabilizesΓ relative to Γ1, while the
feedbackũ(χ) asymptotically stabilizesΓ1 and yields the
LUB property. The stability analysis for the feedbackũ(χ)
does not rely on the fact that the graph LaplacianL is
circulant, and is therefore applicable to general information
flow graphs that have a globally reachable node. On the other
hand, the analysis for feedbackū is based on Lemma II.1 and
Lemma V.2 in part I, and cannot be used in the case whenL
is not circulant. In this section we develop a different analysis
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Fig. 1. CFCP Simulation - A: circulant digraph

proving that the feedback̄u(χ) in (6) stabilizesΓ relative to
Γ1 even whenL is not circulant, and thus the distributed
feedback (8) solves CFCP in the general case of information
flow graphs with a globally reachable node.

Proposition III.1. Assume that the information flow graph
has a globally reachable node. Letv > v1 > 0 and
φ : R

2n → (0,+∞) be a locally Lipschitz function such
that supy∈R2n ‖φ(y)y‖ < ∞. Then, there existsK⋆ > 0
satisfying supy∈R2n ‖φ(y)y‖ < v/(2K⋆r) such that for all
K ∈ (0,K⋆) the feedback(8) solves CFCP and renders the
goal setΓ in (2) asymptotically stable, andΓ1 in (3) globally
asymptotically stable for the closed-loop system.

The proof is omitted for space limitations.

A. Simulations

Figures 3 and 4 show the simulations results for cases
A and B, given in Section II, using feedback (8) with the
following parameters:r = 1, v = 1, v1 = 0.14, K = 1.9
and

L =

















1 0 − 1 0 0 0
0 1 − 1 0 0 0
0 − 1 1 0 0 0
0 0 0 1 − 1 0
0 − 1 0 0 2 − 1
0 − 1 0 0 0 1

















.

The functionφ : R2n → (0,+∞) is set as in Section II.

IV. SOLUTION OF CFCPFOR DYNAMIC UNICYCLES

Here we extend the solutions of the CFCP presented in
Sections II and III, and Section V of part I to a system of
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Fig. 2. CFCP Simulation - B: circulant digraph

dynamic unicycles (refer to the vertical rolling disc model
in [5]),

ẋi
1 = xi

5 cosx
i
3

ẋi
2 = xi

5 sinx
i
3

ẋi
3 = xi

4

ẋi
4 =

1

J
wi

2

ẋi
5 =

R

(I +mR2)
wi

1

(9)

for i = 1, . . . , n, with statexi
d = (xi

1, x
i
2, x

i
3, x

i
4, x

i
5) ∈

R
2 × S1 × R

2. We will denote the overall state byχd =
col(x1

d, · · · , x
n
d ). Moreover, as before, we will denote the

kinematic states of each unicycle asxi = (xi
1, x

i
2, x

i
3), and

we will let χ denote the overall kinematic state of the
unicycles, i.e.,χ = col(x1, . . . , xn). The scalarsR andm
in (9) are, respectively, the radius and mass of the unicycle; I
andJ are, respectively, the moments of inertia of the unicycle
about axes perpendicular to and in the plane of the unicycle,
passing through the centre, as shown in Figure 5. Finally,wi

1

andwi
2 are the torques about those axes. These are the new

control inputs.
As before, the information flow among then-unicycles

is modeled by a digraphG with LaplacianL. An arc from
node i to nodej means that unicyclei has access to the
relative displacement, relative heading, and relative linear
and angular velocities with respect to unicyclej. Each
unicycle is also assumed to have access to its own absolute
orientationxi

3, and its own velocitiesxi
4, xi

5.
In order to adapt the formulation of CFCP to system (9),

we note the linear and angular velocities of the kinematic
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Fig. 3. CFCP Simulation - A: general digraph

unicycles on the goal setΓ are ui
1 = v and ui

2 = v/r for
i = 1, · · · , n so that, in steady-state, all unicycles follow
a circle of radiusr counter-clockwise with forward speed
v. In light of this observation, we state CFCP for dynamic
unicycles as follows.

CFCP for dynamic unicycles. Consider then dynamic
unicycles in (9). For a given information flow digraphG
with a globally reachable node, and a desired formation
specification expressed by a vector of anglesα ∈ Sn, design
a distributed control law which asymptotically stabilizesthe
set

Γd = {χd : L(x3 − α) = 0, ci+1(xi+1) = ci(xi),

xi
4 = v/r, xi

5 = v, 1 ≤ i ≤ n},
(10)

where ci(xi) is defined in (4). Additionally, as before,
the unicycles should have a common asymptotic centre of
rotation.

Note that the goal setΓd in (10) can be expressed as
Γd = Γ ∩ {χd : xi

4 = v/r, xi
5 = v, 1 ≤ i ≤ n}, whereΓ is

the goal set for the kinematic unicycles, defined in (2). As we
mentioned earlier, all feedbacksui

1(χ), u
i
2(χ) presented in

part I and in this paper have the property thatui
1(χ)|Γ = v,

ui
2(χ)|Γ = v/r. Therefore, letting

O = {χd : xi
4 = ui

2(χ), xi
5 = ui

1(χ), i = 1 · · · , n},

we can express the goal setΓd as

Γd = Γ ∩ O.

All kinematic feedbacks presented earlier guarantee that the
setΓd is asymptotically stable relative toO for (9). There-
fore, in order to solve CFCP for dynamic unicycles, we may
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Fig. 4. CFCP Simulation - B: general digraph

x1
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x3

x5

I

J

Fig. 5. Dynamic Unicycle

leverage once again the reduction principle in Theorem I.1
as follows:

Step 1. Given any of the kinematic feedbacksui
1(χ), u

i
2(χ)

designed earlier, we design distributed feedbacks
wi

1(χ
d) and wi

2(χ
d), i = 1, · · · , n, renderingO

globally asymptotically stable. We also show that the
feedbackswi

1(χ
d), wi

2(χ
d) guarantee that the closed-

loop system is LUB nearΓd, and that the unicycles
have a common asymptotic centre of rotation.

Step 2. By using the fact thatΓd is asymptotically stable
relative toO, and invoking the reduction theorem for
asymptotic stability, Theorem I.1, we conclude that
the feedback in question solves CFCP for dynamic
unicycles.

The solution of CFCP for dynamic unicycles is given as
follows.

Proposition IV.1. i. Assume the information flow graph is
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Fig. 6. Dynamic unicycles, Simulation - A: general digraph

undirected and has a globally reachable node. Ifui
1 and

ui
2, i = 1, · · · , n are chosen as in Proposition V.3 in

part I, then the feedback

wi
1 =

(I +mR2)

R

{

u̇i
1(χ)−K1(x

i
5 − ui

1(χ))
}

wi
1 = J

{

u̇i
2(χ)−K1(x

i
4 − ui

2(χ))
}

(11)

whereK1 > 0 is a design constant,̇ui
1(χ) and u̇i

2(χ)
are, respectively, the Lie derivatives ofui

1(χ) andui
2(χ)

along the dynamics(9), solves CFCP for dynamic uni-
cycles and renders the goal setΓd in (10) asymptotically
stable for the closed-loop system.

ii. Assume the information flow graph is undirected and has
a globally reachable node. Ifui

1 and ui
2, i = 1, · · · , n

are chosen as in Proposition V.4 in part I, then the
feedback(11) renders the goal setΓd in (10) globally
asymptotically stable for the closed-loop system and
solves CFCP for dynamic unicycles globally when the
state space is taken to beX = R

5.
iii. For a general static information flow graph with a

globally reachable node. Ifui
1 and ui

2, i = 1, · · · , n
are chosen as in Proposition III.1 in this paper, then
then feedback(11) solves CFCP for dynamic unicycles
and renders the goal setΓd in (10) asymptotically
stable for the closed-loop system. In addition, ifui

1 is
chosen as in(22) of part I and the state space is taken
to be X = R

5n, then the setΓd becomes globally
asymptotically stable relative toO, and the feedback
above solves CFCP for dynamic unicycles globally.

A. Simulations

Figures 6 and 7 show the simulations results for cases A
and B, given in Section II, using feedback (11) withK1 = 1,
φ(y) = lv/2rK(1 + ‖y‖) with l = 0.99, R = 1, J = 1,
I = 1, m = 1 and the rest of the parametrs as in Section III-
A. Notice thatK∗ is unknown and so we usedK = K∗

in φ(y). From this and the feedback (11) the parameterK
is irrelevant in the controller. Empirically, we observed that
increasingl beyond1 gives better convergence of the centres
of rotation up to a point, beyond which the performance
degrages and solutions even become unbounded.

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

11

2

2

3

3

4

4

5

5

6

6

x1

x
2

Fig. 7. Dynamic unicycles, Simulation - B: general digraph
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