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Abstract—In part | of this paper we presented a solution where
to the circular formation stabilization problem of kinematic i1, i1 PN
unicycles when the information flow graph is undirected. This Dy ={x:c"(a") =c'(a"),i € {1,....,n}} 3)
paper extends the results of part | in two directions. First, I'y ={x:L(zs —a) =0 mod 27},
we present a control law that solves the circular formation
stabilization problem when the information flow is described  gnd¢i(27) is defined as
by an arbitrary directed graph with a globally reachable node.
Second, we generalize our results to the case when the unicycles cl(x’) _ (9511 — rsin mé, sz + rcos x73) (4)
are dynamic.
|. INTRODUCTION Additionally, the linear velocities:; and angular velocities

of the unicycles should be bounded away from zerd on

7
. . . . . B
This paper is a_cont|nua_t|0n of part I’. where we deSIgnegnd the unicycles should havecammon asymptotic centre
a control law solving the circular formation control profole of rotation

(CFCP) for a group of, unicycles under the assumption that

the information flow graph is undirected, and it has a glgball In this paper, as in part |, the indicés {1’.' v”}.‘?"e
: . . _evaluated modula so that, for instance; + 1 is identified
reachable node. In this paper, we provide two extensmns.Ith 1

First, we develop a solution to CFCP for arbitrary directe
information flow graphs with a globally reachable node.
Second, we show that all our results can be straightforward[n
. . . h
extended to the setting of dynamic unicycles.
Consider again the system afkinematic unicyclesp >
2, where thei's unicycle model is given by

We derive the solution to this problem for arbitrary infor-
ation flow graphs in two stages: in Section Il, we address
e case of circulant graphs (i.e., graphs whose Laplasian i
a circulant matrix), and in Section Il we further generaliz
the result to general digraphs. Moreover, in Section IV we
show that all our results have a straightforward extension t

&) = uj cos a7 the case of dynamic unicycles.

&b = uj sinz} Q) The results of this paper do not rely on the passivity theory

o reviewed in part |. A more general framework is needed when
3 — %2

. ) o the information flow graph is directed, as we now explain.
with statez’ = (1, 25, 23) € R*x S'. The state space of the Recall the storage function used in part I,

system isY = (R? x S1)", and we lety = col(z?,--- ,z"), )
andzs; = cpl(a:;,, . -‘,xgb). This system can be written inthe /() = C(X)TL(Q) c(x) = 5C(X)T(L(Q) + L(TQ)) e(x),
control affine formy = g(x)u.

We refer the reader to part | of this paper for the definitionsihere L is the Laplacian ofG, and Ly = L ® Is.
of the information flow digraphG and of the notion of We have established in part | that sinGehas a globally
globally reachable node. We recall the problem we wish teeachable nodel. has one eigenvalue at zero, and all its

solve. other eigenvalues have positive real part. This fact, hewev
Circular Formation Control Problem (CFCP) . Consider does not imply thatL ) + L(TQ) is positive semidefinite

the n-unicycles in (1). For a given information flow digraphwhen ., and henceL ), is not symmetric. IfL ) + L(TQ)

G with a globally reachable node, and a desired formatiog not positive semidefinite, the passivity analysis of part
specification expressed by a vector of angles 5™, design  cannot be applied. A second obstacle to the extension of the
a distributed control law which asymptotically stabilizé®  passivity-based design of part | is the fact that, eve¥i(if)

set is positive semidefinite andd —1(0) = 'y, the passive output
I'=T1NTy associated to the storadé
v Dra —a) = 0. AT (2T = di(gpi) 1 <4 <
i bles —a) =0, ) =@ 1 sism h(x) = =1R(zs) (Lez) + L) ()
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where 3; = blockdiag{[l 1/r]",....[1 1/r]"}, B2 = [I. SoLUTION OF CFCPFOR CIRCULANT DIGRAPHS

blockdiag{[0 1]T,...,[0 1]}, @ is a feedback used to _ _ _ o
enforcel-detectability, andi is a PBF stabilizing the sdt In this section we apply the reduction-based set stabgizin

in (3). The simplest PBFi(x) — —h(y), has the property Procedure previously outlined to solve CFCP when the

that @' is affected by rowi — 1 and 2i of (L) + L(T)) information flow digraph Laplacian is circulant, i.e., ik&s
9))-

These rows are different from the corresponding rows dhe form (see [4])

L), unlessL is symmetric, and thereforg(x) violates the

information flow constraint embodied ih. bl e
The considerations above suggest that in order to generate I — R

distributed control laws solving CFCP, we should replaee th Lo :

PBF & = —Kh(x) in equation (21) of part | by a suitable ly Iy - [

distributed feedback that asymptotically stabilizes thel's
in (3). Recalling thatz in (19) of part | was designed to In the development that follows we will need the next lemma.
stabilizeI" relative toI'y, the problem then is to understand
whether the asymptotic stability af relative toI"'; and the
asymptotic stability of*; imply the asymptotic stability of.
This question is an instance of the geneealuction problem
for a dynamical systenx : & = f(z): Consider two closed
setsI" andI'y, with I" C I'y, which are positively invariant Proof: If L is circulant, thenL " is also the Laplacian
for 3; suppose that" is stable, attractive, or asymptotically of a graph with the same node set, which we derte
stable relative td";. When is it thaf is, respectively, stable, Therefore,L.+ L' is the Laplacian of a graph with the same
attractive, or asymptotically stable far? nodes as those @, and whose arcs are the arcs®fand

The answer to this question is contained in the next resuthose ofG ™. Such graph, therefore, has a globally reachable
taken from [1] (see [2] for the full version of the paper). node, and its Laplacial + LT has one eigenvalue at zero
with geometric multiplicity 1 andh — 1 positive eigenvalues.

]

Lemma Il.1. If the Laplacian L of a digraph G with a
globally reachable node is circulant, then the matfix- L "

is positive semidefinite with a simple eigenvalue at 0 with
geometric multiplicity 1.

Theorem 1.1 (Reduction principle for asymptotic stability,
Theorem 1.2 in [1]) LetT" and Ty, I' € I’y C &, be
two closed positively invariant sets. Theh,is [globally] ~Remark. Lemma Il.1 is not applicable to digraphs with non-
asymptotically stable if the following conditions hold: circulant Laplacians because if is the Laplacian oG, in

L . . eneral it is not true thak " is the Laplacian of a digraph.
() T is [globally] asymptotically stable relative tb', g P grap

(i) 'y is locally stable near, Step 1: Asymptotic stabilization of relative toT";

(iii) Iy is locally attractive nearl” [I'; is globally attrac- ~ Consider system (1) with feedback transformation (5). Let
tive], u be defined as in part |,

(iv) if I" is unbounded, thek is locally uniformly bounded

nearT' ' =v — vy sin(Li(zs — ), i=1,...,n, (6)

(v) [all trajectories of are bounded ] and let@ = 0. In the proof of Lemma V.2 of part | it was

Seibert and Florio in [3] proved an analogous result fofoWn that the derivative of the functiéi (zs) = >2i [1-
the case wheil is compact. We refer the reader to [1] forcos(L’(zs — @))] along solutions of the closed-loop system
the definitions of local stability and attractivity near a.4a IS given by
this context, it suffices to say that the asymptotic stabdit

i T U1 T T
Iy implies conditions (i)-(ii) of Theorem 1.1. W = —v18(zs) LS(z3) = - S(zs) (L +L7)S(a3),
By invoking this reduction principle, we propose the fol- N .
lowing design strategy to solve CFCP for general informmatioWhereS(zs) = col(sin(L' (z3 — a)), ..., sin(L" (z3 — a))].
flow graphs. Since, by Lemma Il.1L + LT is positive semidefinite and

, ) has one eigenvalue at zero with geometric multiplicity one,
Step 1. Using the feedback transformation (5) and the feeghg nroof of Lemma V.2 in part | is applicable in this context,

backu in equation (19) of part |, we show thétis 44 it shows that the sdt is asymptotically stable relative
asymptotically stable relative t6; whenu = 0. .

Step 2. We design a distributed feedbadky) which Step 2: Stabilization of, and LUB property

g@gggf%:falg :tt:r?wllIizsefbgnge%?aﬁgii\slef?a\tvtehe Referring to the feedback transformation (5), tetbe
P sy ' ' gefined as in (6), and let

show that, with this feedback, the unicycles have
common asymptotic centre of rotation. a(x) = KR(x3)o(Laye(x))
Step 3. By invoking the reduction theorem for asymptotic @) ’

stability above, we conclude that the feedback ifvhere K > 0 and ¢ (y) = ¢(y)y, with ¢ : R2" — (0, 4-00)
gquestion solves CFCP. a locally Lipschitz function such thatup, cg:» [|¢(y)y|| <



v/(2Kr). Since such that for allK” € (0, K*) the feedback

g _ ul = v — vy sin(L' (23 — ))
i=L g o o
5o uh = =+ Ko(Lipe() [ cosas L) (8)
=— — —sin(L'(z3 — a))+
ror P +smx3L(2)c( )} i=1,...,n
K00 -+ coszy sinzg --- 0 0]p(L2yc(x))L2yc(x),

solves CFCP and renders the goal §eih (2) asymptotically
our choice of¢ guarantees thaftis|| > x > 0 for some stable, andl'; in (3) globally asymptotically stable for the
w > 0. Next, the dynamics of the centres of rotation arelosed-loop system.

given by Remark. If we replace the expression fa#; in (8) by that
H 3n
— K R(za ()i in (22) of part I, and we take the state space totbe- R°",
¢ " (w3(t)) " ulx) then the sef’ becomes globally asymptotically stable relative
= _TK¢(L(2)C(X))R($3) R(xs)Lz)e(x) to I'y, and the feedback above solves CFCP globally. As
= —rK¢(Lg)c(x))R(x3(t))Liayc(x)- pointed out in part | to show this one cannot use the same

method as that of Proposition 11.2 becausgt) is no longer
The above can be viewed as a time-varying system Whoéesolution on the compact sét.

time-dependency is brought about by the signalt). W
use averaging theory to analize this system. Our argumenctﬁ“U""‘“OnS
here are sketched due to space limitations. The averagedNe present simulation results for férunicycles, for the

system is two cases presented in part | of the paper:
B A. The unicycles are uniforml¥ distributed on the circle with
Cavg = —T K ¢(L(2)cavg) RL (2) Cavg, M a=1]0 ng 4(? Ggf 8” 10”

B. The unicycles are umformly distributed on half the circle

where R can be shown to be positive definite. Lettingwith o — [0 2175 %g 6175 ?75 1105r]T_ This time the infor-

p—|1]0 using the coordinate transformations=  Mation flow structure corresponds to cyclic pursuit: unieyc

. Iy ’71 o s 1 gets relative information with respect to unicyéle 1. The
P~'¢, zayg = P~ 'cayg, and partitioningz = (z, 2), zag = corresponding Laplacian is
(Zavg, Zavg), We obtain . L . . .
2= K¢(L)P2)An(t):  Zag= Ké(L(2)Pravg) Ar27avg 8 é _11 01 8 8
zZ= K¢(L(2)PZ)A22 (t)é Zavg = K(ﬁ(L(g)PZavg)Agggavg, L - O O O 1 -1 O
0 0 0 0 1 -1

where the matrixA,, is Hurwitz. By the definition ofP, 10 0 0 0 1
the termsL( yPz and L) Pzayg are linear functions of

only Z and Z,yq, respectively. Since the real-valued functionFigures 1 and 2 show the simulations results for cases A and
#(-) is bounded away from zero on any compact set, thB using feedback (8) with the following parameters= 1,
origin of the Za, Subsystem is exponentially stable and’ = 1, v; = 0.2, and K = 0.7. The functiong : R** —
globally asymptotically stable. By the averaging theoréan, (0, +00) is chosen as

small enoughk the linear time-varying system with matrix B Iyl < ¢
6(y) { s

K Ass(t) is globally exponentially stable. This fact implies /|yl lyll > ¢

that for small enoughk the origin of theZ subsystem is
exponentially stable and globally uniformly asymptotigal wherec = /0.99v/ K.
stable. We thus have that the unicycles have a common
asymptotic centre of rotation and there exigts> 0 such _ _ . _ _
that for all x(0) € &, [le(x()]| < M| Le(x(0)]], thus The solution of CFCP in the case of circulant information
proving that the C|osed_|00p System is LUB néar flow dlgraph relies on the feedback transformation (5) and
Step 3: Solution of CFCP the design of two feedbacks(x) and a(x). The feedback
t?ﬁ@( asymptotically stabilized™ relative toI';, while the
eedbacka(y) asymptotically stabilized™; and yields the
LUB property The stability analysis for the feedbatky)
does not rely on the fact that the graph Laplacianis
Proposition I1.2. Assume that the information flow graphcirculant, and is therefore applicable to general inforamat
has a circulant Laplacian with a globally reachable nodet Leflow graphs that have a globally reachable node. On the other
v>wv; >0andg: R*™ — (0,+00) be a locally Lipschitz hand, the analysis for feedbagks based on Lemma Il.1 and
function such thatsup,cgen [[¢(y)y[| < oo. Then, there Lemma V.2 in part |, and cannot be used in the case when
exists K* > 0 satisfying sup,cgen [|[¢(y)yll < v/(2K*r) isnotcirculant. In this section we develop a different gail

IIl. SoLUTION OF CFCPFOR GENERAL DIGRAPHS

The arguments presented in the previous two steps and
reduction principle for asymptotic stability in Theoreni I.
yield the following result.
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Fig. 1. CFCP Simulation - A: circulant digraph
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Fig. 2. CFCP Simulation - B: circulant digraph

proving that the feedback(y) in (6) stabilizesI" relative to Qynamic unicycles (refer to the vertical rolling disc model
I'; even whenL is not circulant, and thus the distributedin [5]),

feedback (8) solves CFCP in the general case of information Iy = wgcosxy

flow graphs with a globally reachable node. @b =l sin )

Proposition 111.1. Assume that the information flow graph iy =)

has a globally reachable node. Let > v»; > 0 and N ©)
¢ : R — (0,400) be a locally Lipschitz function such T4 T g2

that sup,cpen [|#(y)yl| < oo. Then, there existd(* > 0 = R W

satisfying sup, cgzn [|6(y)yll < v/(2K*r) such that for all T (I+mR2) !

K € (0, K*) the feedback8) solves CFCP and renders the

for i = 1,...,n, with statez!, = (af, 2, 2%, 2% 2%) €

goal setl” in (2) asymptotically stable, ant, in (3) globally R2 x S x R2. We will denote the overall state by

asymptotically stable for the closed-loop system.

The proof is omitted for space limitations.

A. Simulations

col(zh, -+ ,z7). Moreover, as before, we will denote the
kinematic states of each unicycle as= (xi,z%, x%), and
we will let y denote the overall kinematic state of the
unicycles, i.e.,x = col(z!,... 2"). The scalarsk and m

Figures 3 and 4 show the simulations results for cases (9) are, respectively, the radius and mass of the unigcycle
A and B, given in Section Il, using feedback (8) with theand.J are, respectively, the moments of inertia of the unicycle

following parametersr = 1, v = 1, v; = 0.14, K = 1.9

and

1 0 —-10 0 0
0O 1 —-10 0 0
L0 -1 1 0 0 0
0 0 0 1 —1 0
0o -1 0 0 2 -1
0 -1 0 0 0 1

The functiong : R?" — (0, +oc0) is set as in Section II.

IV. SOLUTION OF CFCPFOR DYNAMIC UNICYCLES

about axes perpendicular to and in the plane of the unicycle,
passing through the centre, as shown in Figure 5. Finally,
andwi are the torques about those axes. These are the new
control inputs.

As before, the information flow among the-unicycles
is modeled by a digrapy with LaplacianL. An arc from
node: to node; means that unicyclé has access to the
relative displacement, relative heading, and relativedmn
and angular velocities with respect to unicycje Each
unicycle is also assumed to have access to its own absolute
orientationz}, and its own velocities:’, z%.

Here we extend the solutions of the CFCP presented inIn order to adapt the formulation of CFCP to system (9),
Sections Il and lll, and Section V of part | to a system ofwve note the linear and angular velocities of the kinematic
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Fig. 3. CFCP Simulation - A: general digraph

unicycles on the goal sét are u! = v and u}
i = 1,---,n so that, in steady-state, all unicycles follow
a circle of radiusr counter-clockwise with forward speed
v. In light of this observation, we state CFCP for dynamic

unicycles as follows.

CFCP for dynamic unicycles Consider then dynamic
unicycles in (9). For a given information flow digragh
with a globally reachable node, and a desired formation
specification expressed by a vector of angles S, design
a distributed control law which asymptotically stabilizbe

set

I'y= {Xd : L(xs —a) =0, c”l(az“rl) = Ci(l’i),

i =v/ral =v, 1<i<n},

T2

Fig. 5. Dynamic Unicycle

leverage once again the reduction principle in Theorem 1.1

where ¢i(z%) is defined in (4). Additionally, as before, as follows:
the unicycles should have a common asymptotic centre @ftep 1. Given any of the kinematic feedbaeKsy), ()

rotation.

Note that the goal sef'; in (10) can be expressed as
Tg=Tn{x?: 2, =v/r,zl =v, 1 <i<n}, wherel is
the goal set for the kinematic unicycles, defined in (2). As we
mentioned earlier, all feedbackg (), ub(x) presented in
part | and in this paper have the property thatx)|r = v,

ub(x)|r = v/r. Therefore, letting

%

O:{Xd:mi:u2(X)7 LL‘% :ug(X)vi: L. 777‘}7

we can express the goal def as
I'y=Ino.

All kinematic feedbacks presented earlier guarantee treat t
setl'y is asymptotically stable relative t© for (9). There-

designed earlier, we design distributed feedbacks
wi(x?) and wy(x?), i = 1,---,n, rendering©
globally asymptotically stable. We also show that the
feedbacksui (%), wi(x?) guarantee that the closed-
loop system is LUB neal’;, and that the unicycles
have a common asymptotic centre of rotation.

Step 2. By using the fact thdt,; is asymptotically stable

relative toO, and invoking the reduction theorem for
asymptotic stability, Theorem 1.1, we conclude that
the feedback in question solves CFCP for dynamic
unicycles.

The solution of CFCP for dynamic unicycles is given as
follows.

fore, in order to solve CFCP for dynamic unicycles, we mayroposition IV.1. i. Assume the information flow graph is



A. Simulations

Figures 6 and 7 show the simulations results for cases A
and B, given in Section Il, using feedback (11) withl = 1,
o(y) = lv/2rK(1 + ||y|) with I =0.99, R =1, J =1,
I =1, m =1 and the rest of the parametrs as in Section llI-
A. Notice that K* is unknown and so we used = K*
in ¢(y). From this and the feedback (11) the paraméter
is irrelevant in the controller. Empirically, we observetht
increasing beyond1 gives better convergence of the centres
. of rotation up to a point, beyond which the performance
& 0 ' ] degrages and solutions even become unbounded.
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Fig. 6. Dynamic unicycles, Simulation - A: general digraph (e
_1, ’5Y
undirected and has a globally reachable nodeudfand < 4
ub, ¢ = 1,--- ,n are chosen as in Proposition V.3 in -2r

part |, then the feedback

wh = I i 0 — Ko~ h 000} )
wh = 7 {00 — Ko b))} (AR T

where K7 > 0 is a design constanty} (y) and u5(x)

are, respectively, the Lie derivativeswf(x) andus(x) Fig. 7. Dynamic unicycles, Simulation - B: general digraph
along the dynamic$9), solves CFCP for dynamic uni-

cycles and renders the goal d&j in (10) asymptotically

stable for the closed-loop system. REFERENCES
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and renders the goal sef; in (10) asymptotically

stable for the closed-loop system. In additionyufif is

chosen as in(22) of part | and the state space is taken

to be X = R°?, then the setl'; becomes globally

asymptotically stable relative t@, and the feedback

above solves CFCP for dynamic unicycles globally.



