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Abstract— The feasibility problem is studied of achieving a point by virtue of having arrived at one. Besides being
specified formation among a group of autonomous unicycles of relevance to the rendezvous problem, convergence to a
by local distributed control. The directed graph defined by oo mmon point is also of interest because if it is feasible,
the information flow plays a key role. Necessary and sufficient then so is convergence to other formations, as shown for
conditions are presented for formation stabilization of multiple ; . i ;
unicycles to a point and a line. A similar result is given for for- ~ €xample in [17]. In [11], Jadbabaie et al. studied a differen
mation stabilization to more general geometric arrangements agreement problem in discrete-time: Getting autonomous
with the condition that a group of unicycles have a common agents in the plane to move in a common direction. Within
sense of direction. a discrete-time setting, Moreau in [22] generalized and
extended the work in [11] by presenting necessary and
sufficient conditions for the convergence of the individual

The problem of coordinated control of a group of auagents’ states to a common value.
tonomous wheeled vehicles is of recent interest in control In addition to the references mentioned so far, there
and robotics due to the broad range of applications of multhkave been many results on the mathematical analysis of
vehicle systems in space missions, operations in hazarddasmation control. In [23], formation stabilization of aayrp
environments, and military missions. Distributed velscle of agents with linear dynamics (double-integrator) is &dd
can readily exhibit the attractive characteristics of stru using structural potential functions. An alternative is to
tural flexibility, reliability through redundancy, and gike  use artificial potential functions and virtual leaders as in
hardware as compared to sophisticated individual vehicled5]. The approach known as leader-following has been

Despite the many advantages inherent in distributegsed in maintaining a desired formation while moving, e.g.,
multi-vehicle systems, there are challenges in coordinati [6], [7]. In [19], stability of asynchronous swarms with a
and control due to the absence of a centralized supervisiixed communication topology is studied, where stability is
and global information. Individual vehicles in a distribdt used to characterize the cohesiveness of a swarm. In [28]
system must be capable of collectively accomplishing taskend [29], Tanner et al. investigate the stable flocking of
using only locally sensed information and little or nomobile agents for fixed topology and dynamic topology,
direct communication. Coordinated control of multi-véaic respectively. Similarly to [11], Lin et al. [17] focus on the
systems includes many aspects, one of the most importgiroblem of achieving a specified formation among a group
and fundamental being formation control. of mobile autonomous agents by distributed control when

Over the past decade, many researchers have workié@ communication topology is dynamic because agents
on formation control problems with differences regardingome into and go out of sensor range. In [12], Justh and
the types of agent dynamics, the varieties of the contré{rishnaprasad study achievable equilibrium formations of
strategies, and the types of tasks demanded. In 199fhicycles each moving at unit speed and subject to steering
Sugihara and Suzuki [26] proposed a simple algorithm fozontrol and presents stabilizing control laws, whereirheac
a group of point-mass type robots to form approximationanicycle senses all others. And in [20], a circular formatio
to circles and simple polygons. And in the years followingijs achieved for a group of unicycles using the strategy of
distributed algorithms were presented in [3], [2], and [27Fyclic pursuit.
with the objective of getting a group of such robots to Motivated by the fact that no continuous time-invariant
congregate at a common location. Moving synchronously ifeedback control law can stabilize a nonholonomic system
discrete-time steps, the robots iteratively observe rmigh to a point, in 1991 Samson and Ait-Abderrahim [25] showed
within some visibility range and follow simple rules to that smooth time-varying feedback can stabilize a unicycle
update their positions. Lately in [16], both synchronoud anSince then, much work (for instance, [21], [24]) has focused
asynchronous maneuvering strategies are described for i@ smooth time-varying feedback control of nonholonomic
multi-agent rendezvous problem. systems, and averaging theory has been used to study

Convergence to a common point is an example of astability [21] and also motion planning [10]. On the questio
agreement problemAgents initially without a common of formations, in [31], [32] a time-varying feedback contro
reference frame eventually come to agree upon a referenesv is proposed for multiple Hilare-type mobile robots and
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averaging theory is used to analyze stability. components are the relative positions — z;, asm ranges
As a natural extension of our previous work [20], [17],over N;. Thusy;, a vector of dimension the cardinality of
and motivated by the proposed strategy in [32], [31], in thisV;, represents the information available 4. We allow
paper the feasibility problem is studied of achieving a speaontrollers of the formu; = F;y;, or u; = 0 if N; is empty.
ified formation among a group of unicycles by distributedrhus, y; = 0 = w; = 0 = %; = 0; that is, roboti
control. Each unicycle is equipped with an onboard sensatpes not move if all robots it senses are collocated with it
by which it can measure relative displacements to certafjor if it does not sense any other robot). The problem of
neighbors; in particular, we do not assume that the unisycleonvergence to a common point is this:
possess a common reference frame. Problem 1: Find, if possiblefy, ..., F,, such that
Central to a discussion of formation control is the nature ) )
of the information flow throughout the formation. This (Vie{l,...,n})(¥ 2(0))3 2s5) tlinolozi(t) = Zss-
information flow can be modeled by sensor digraph Now define the sensor gragh for this setup: There is a
(directed graph), where a link from nodeto node j directed edge from nodeto nodem if and only if m € ;.
indicates that vehiclé can sense the position of vehicle Before giving our results, we review some notions in
j—but only with respect to the local coordinate frame ofraph theory. For a digrapd = (V,¢), if there is a path
vehicle i. In this paper, we assume the sensor digrapf ¢ from one nodey; to another node;, thenv; is said
is static—the dynamic case, where ad hoc links can H& bereachablefrom v;, writtenv; — v;. If not, thenv; is
established or dropped, is harder. Our analysis relies &id to be not reachable from, writtenv; -+ v;. If a node
several tools from algebraic graph theory [9], non-negativv: IS reachable from every other node in the digraph, then
matrix theory [5], [14], and averaging theory [1], [13], [21 We say it isglobally reachableIf ¢/ is a nonempty subset
Our first main result is that formation stabilization to aof V andu - v for all u € ¢/ andv € V — U, thenl{ is
common point is feasible if and only if the sensor digrapt$aid to beclosed More information can be found in [4],
has a globally reachable node (a node to which there is[&l-
directed path from every other node). That is, there exists Theorem 1: 1) Problem 1 is solvable if and only §
at least one unicycle that is viewable, perhaps indirectly ~ has a globally reachable node.
by hopping from one unicycle to another, by all other 2) When Problem 1 is solvable, one solution is
unicycles. This is precisely the degree of connectedness Fo— [ 1 .1
required and is much weaker than strong connectedness o ‘

tge sensorddlgrgph (asltm cyclic pufrsmt E.ZO]' ffrb.el.xarpple)ldentify the real planeR?, and the complex planeC,
ur second main result concerns formation stabilization t "y viiving a column vectorz;, and a complex num-

a line. This turns out to be feasible if and only if there are ?‘er, z;. Now consider a wheeled vehicle with coordinates

Now we turn to the main topic of unicycles. We can

most two dISJOIn'[. closed sets of no_des in the sensor dlgra}p % yi,0;) with respect to a global frame> (see Fig. 1).
In addition, we introduce a special sensor digraph whic
guarantees that all vehicles converge to a line segment,
equally spaced. This is an extension to unicycles of a line-
formation scheme of Wagner and Bruckstein [30]. Finally,
we show how formation stabilization to a common pointcan
be adapted to any geometric pattern under the assumption Yi
that a group of vehicles have a common sense of direction.
The proofs of the main results appear in [18] and hence 4
are omitted.

trajectory
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Fig. 1. Wheeled vehicle. Fig. 2. Frenet-Serret frame.
Il. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we introduce the problems addressed The location of the vehicle in the plane is

in this paper and then present three of our main results: .
point formation, line formation, and any geometric pattern Z; = { y? } or z; =x; + jyi.
formation. v
The vehicle has the nonholonomic constraint of pure rolling

A. Problem Description and non-slipping and is described kinematically as

Before treating unicycles, it is perhaps illuminating to & = vicos(0;), . o
give a result for the much simpler case of point masses. Gi = vy sin(6;) or { z; = viel", )
Considern “point-mass robots” whose positions are mod- ] ’ 0 = wi.

. 0; = w;
eled by complex numbers;, . .., z,, in the plane. Assume L

a kinematic model of velocity controk; = w,;. Assume Following [12], we construct a moving framee, the
each robot senses the relative positions of a subgrouprenet-Serret frame, that is fixed on the vehicle (see Fig.
N;, of the other robots. Let; denote the vector whose 2). Letr; be the unit vector tangent to the trajectory at the



current location of the vehicle{is the normalized velocity whereg;, h; are smooth functions of their arguments, and

vector) and lets; ber; rotated byr /2. Since the vehicle is g; is such that{(V m € N;) z,, = z;} = {v; = 0}.

moving at speed;, v;r; = 2;, and so in complex form Notice that in our definition a vehicle does not translate

(but it can rotate) when either it cannot sense any other

. — pdbi Gy . . . . ..
Ti=er 8 =Jr. vehicle or its neighbors have all converged to its position.

Thus In what follows, we present two main problems inves-
d tigated in this paper, together with necessary and suffi-
P, = o ( 191) = jeﬂ”iéi =s,w;, §; = ji; = —rjw;. cient conditions for their solution. In Section II-C we also

introduce a special sensor digraph which guarantees that
The kinematic equations using the Frenet-Serret frame aegl vehicles converge to a line segment, equally spaced.
In Section 1I-D we show how our solution to Problem 2

721 iZ’Z’ ) can be employed to achieve formation stabilization to any
! L geometric pattern.
S; = —W;Tr;.

Now considem wheeled vehicles, indexed llyWe refer B. Formation Stabilization to a Point
to the individual vehicles as nodes and the information flows proplem 2: (Formation Stabilization to a Poingind, if
as links. Although the vehicles in the group are dynamicallyossible, a local information controller such that for all
decoupled, meaning the motion of one vehicle does NQYL, (¢,), y;(to),6:(to)) € R3, i = 1,...n, and allt, € R,
directly affect any of the other vehicles, they are coupleghere exists:,, € R2 such that lim z;(t) = z,, for all i.
through the sensor information flow. A natural way to model 1 .orem 2: Problem 2 is ts_>oOI?/abIe if and only if the

the interconnectiqn topology is a _digragh: (V,€) with sensor digraph has a globally reachable node.
Y}ZI.{i’Z“”?} in which the \aehmlles are the nfodes 'and The above result shows that, if and only if a certain
the links are directed edges. The directed edge from tod raphical condition holds, all the wheeled vehicles glgbal

t.o nodem is onehpfl the erﬁph's_ efdges Just 'fT case Vel_?'d symptotically converge to a point formation (or we say
¢ can sense veniclen. ( us, Information flows in the they achieve an agreement about a common point) through
direction opposite to the orientation of the edges.) WerrefeSimple local actions by proper choice of controller. One-pos

to this as asensor digraph i sible time-varying feedback controller to solve this peshl
Let NV; denote the set of labels of those vehicles sensqg given by

by vehiclei. In this paper, we assumg; is time-invariant,
meaning the information flow topology is static. In the vi(t) =k 3 zim(t),
control law that we study, no vehicle can access the absolute mEN; i=L2...,m, (4)
o . . o . w;(t) = cos(t),

positions of other vehicles or its own. Specifically, vedicl
i can measure only the relative positions of sensed vehiclederek > 0 is small enough.
with respect to its own Frenet-Serret frame (see Fig. 3), An alternative choice of controller is

vit) = 2 wim(t),

meN; i=1,2,...,n. (5)

{ Tim = (Z'rn - Zz) < T, me Ni> (3)
wi(t) = ycos(7),

Yim = (Zm - Z?) © S,

where dot denotes dot product. This leads to the followingy applying a time scalingr = £, one can use Theorem

definition. 2 and conclude that if the sensor digraph has a globally
my reachable node, there exists a positive constarsuch that,
for all v* < v < o0, (5) achieves formation stabilization to
. Dy N ) a point.
> “ Notice that the sensor digraph is required to have just one
N <x globally reachable node. So if we treat a beacon placed at
Yim*~, e the proper location as one member of the group of vehicles
Zm, B AR and it is the globally reachable node that is viewable,
2 D)) perhaps indirectly by hopping from one vehicle to another,
9% by all other vehicles, the local actions of each individual
vehicle result in the group gathering at the beacon.
Fig. 3. Local information. Fig. 4 depicts a simulation result for formation stabiliza-

tion to a point of ten wheeled vehicles using the smooth
Definition 1: A controller (v;,w;), i = 1,...n, is said time-varying feedback control law (4) with the choice of

to be alocal information controllerif k = 1. The initial conditions are randomly produced and
v = gilt, s )l the sensor digraph is given in Fig. 5. For example, node 5
i T Gikb Tims Yim) ImeNs - 1,...,n is globally reachable, while node 1 is not.
wi = hi(t, Zim, Yim)|men,



We now state that in this special case all vehicles converge
to a uniform distribution on the line segment specified by
the two edge leaders.

Theorem 4: Consider a group efwheeled vehicles with
two stationary edge leaders labelddand n. Then, there
exists a positive constait® such that for all0 < k£ < k*,
the following smooth time-varying feedback control law

{ ’Ul(t):k Z l’ij(t), le{l—l,l+1},

JEN; (6)
w;(t) = cos(t), i=2,....,n—1
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guarantees that all the vehicles converge to a uniform
distribution on the line segment specified by the two edge

-80

-10-?00 -80 -60 -40 -20 0 20 40 60 80 100 |eaders
Fig. 7 shows a simulation result of four wheeled vehicles
Fig. 4. Ten wheeled vehicles gather at a common position. and two stationary edge leaders to form a uniform distribu-
tion on a line using the control law (6) with the choice of
k=1
100
80
60 AN
Fig. 5. The sensor digraph of a group of ten wheeled vehicles.
40
20 ) A
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C. Formation Stabilization to a Line 0 N
Problem 3: (Formation Stabilization to a Lineffind, if = X
possible, a local information controller such that for all -40 A
(xl(t0)7y7(t0)797(t0)) € RS! t=1,...n, and all to € R, -60 < 4
all vehicles converge to form a line. o =
Theorem 3: Problem 3 is solvable if and only if there - <
are at most two disjoint closed sets of nodes in the sensor Mo w0 w0 40 2 o 2 40 @ w10

digraph. _
Theorem 3 has an interesting special case when the t\&%
disjoint closed sets of nodes in the sensor digraph both
have only one member, say nodesndn. Vehicles1 and
n are callededge leadersThe edge leaders here are not i . )
necessarily wheeled vehicles. They can be virtual beacoRs Formation Stabilization to Any Geometric Pattern
or landmarks. But the vehicles respond to these edge leaderdn this section, we turn our attention to the problem of
much like they respond to real neighbor vehicles. The pufermation stabilization to any geometric pattern. Follogi
pose of the edge leaders is to introduce the mission: totdird@7], we letIl be a predicate describing a geometric pattern,
the vehicle group behavior. We emphasize that the edgeich as a point, a regular polygon, a line segment, etc.
leaders are not central coordinators. They do not broadca$tich a predicate specifies a formation up to translation and
instructions. They only play the role of individual vehige rotation. Byformation stabilization of a group ot vehicles
but cannot sense other vehicles or communicate with theri®. II, we mean that the vehicles (globally exponentially)
As for the remaining vehiclesi, i = 2,...,n — 1, we converge to a distribution satisfyirig.
assume that each agent can sense agentandi+1. This We suppose that a group of wheeled vehicles have a
gives the sensor digraph in Fig. 6. It is readily seen that theommon sense of directiprepresented by the angile in
Fig. 8 . For instance, each vehicle carries a navigationcgevi
1 2 3 n—2n—1n such as a compass. Alternatively, all vehicles initiallyesg
O~ o= O= OO0 on their orientation and use it as the common direction.
The common direction may not coincide with the positive
Fig. 6. The sensor digraph for a group of wheeled vehiclebi ito  ._5vis of the global frame. Lep; = 6; — 1 (see Fig. 8).
edge leaders. . .
We assume that vehiclecan measure its owa,;.
It is worth noting that, for al( R, b) € SE(2), the vectors
digraph in Fig. 6 has exact®y disjoint closed sets of nodes. ¢; = Rc; + b describe the same geometric formation as the

7. Formation stabilization to a line of four wheeled s and two
e leaders.



a common sense of direction and formation stabilization to
Ok .-~ a point is feasible. Then there exists a positive consként
‘ ’\1# such that for all0 < k& < k*, the smooth time-varying
_ feedback control law (7) witll = L ,)c guarantees global
‘ ‘b? exponential formation stabilization tf.
H }111 o As an example, a simulation result for a circle formation
of ten wheeled vehicles with the sensor digraph in Fig. 5
is shown in Fig. 10. The circle formation is described by

2(i—1)w

c; =75eU "1 ) i=1,...,10. The initial conditions are

g
z 2(0) = [10, 10, 10,0,0,0,0, —10, —10, —10] ",

y(0) = [~5,0,5,10,3, -3, -10,-5,0,5] ",
Fig. 8. A group of wheeled vehicles have a common sense of wirect A A

00=[%%5555555%5

and the control law (7) is used with the parametees 1,

one specified by;. So given a desired geometric formationd; = 61.74 —j107.72, da = 78.26 — j25.43, d3 = 91.63 +
pictured byc;, i = 1,...,n, our objective is to stabilize j66.57, dy = 35 + j25.43, d5 = j82.29, dg = —48.37 +
the position state; of each vehicle ta; = Re; + b, 1 =  §66.57, d7 = —78.26 + j25.43, dg = —78.26 — j25.43,
1,...,n for someR andb. To achieve a desired geometricdg = —35 — j25.43, d1g = —;82.29.

formation characterized by = [ --- cI]7, we can
simply translate the formation vecterinto a control offset 100
d = Ly)c so that the forward control velocity is 0 when a0

the group of vehicles has achieved a formation. We denote
the offset for each vehicle by

d; = l: grl :| or d; = dajl —‘r]d% 20
Yi

As an example, consider the simple sensor digraph shown 73
in Fig. 9(a) and a triangle formation described &y i =

1,2, 3. The corresponding control offseds, i = 1,2,3 are -40
shown in Fig. 9(b). %0
2 80

O 1 d -109

c 1\ -100  -80 -60 -40 -20 0 20 40 60 80 100
2
C1 1 ) . . .
Fig. 10. Ten wheeled vehicles form a circle formation.
do
3 3

20— =03 3/

(a) Sensor digraph (b) llustration fe; andd; Ill. CONCLUSIONS

In this paper, the feasibility problem of achieving a
specified geometric formation of a group of unicycles was
) , investigated. Necessary and sufficient graphical corditio
Next, we show that the time-varying control law for eaCI”\’or the existence of local information controller to asstime

unicyclei € {1,...,n} asymptotic convergence of the closed system were derived.
Further research issues include developing more general
vit)=kq[ 1 0 JR(=¢i(t))di + > zim(t) ¢,

Fig. 9. An example of a simple triangle formation.

< results for the dynamic sensor graph case, where ad hoc
meN;

links can be established and dropped.
w;(t) = cos(t),

(7)
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