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Abstract— The feasibility problem is studied of achieving a
specified formation among a group of autonomous unicycles
by local distributed control. The directed graph defined by
the information flow plays a key role. Necessary and sufficient
conditions are presented for formation stabilization of multiple
unicycles to a point and a line. A similar result is given for for-
mation stabilization to more general geometric arrangements
with the condition that a group of unicycles have a common
sense of direction.

I. I NTRODUCTION

The problem of coordinated control of a group of au-
tonomous wheeled vehicles is of recent interest in control
and robotics due to the broad range of applications of multi-
vehicle systems in space missions, operations in hazardous
environments, and military missions. Distributed vehicles
can readily exhibit the attractive characteristics of struc-
tural flexibility, reliability through redundancy, and simple
hardware as compared to sophisticated individual vehicles.

Despite the many advantages inherent in distributed
multi-vehicle systems, there are challenges in coordination
and control due to the absence of a centralized supervisor
and global information. Individual vehicles in a distributed
system must be capable of collectively accomplishing tasks
using only locally sensed information and little or no
direct communication. Coordinated control of multi-vehicle
systems includes many aspects, one of the most important
and fundamental being formation control.

Over the past decade, many researchers have worked
on formation control problems with differences regarding
the types of agent dynamics, the varieties of the control
strategies, and the types of tasks demanded. In 1990,
Sugihara and Suzuki [26] proposed a simple algorithm for
a group of point-mass type robots to form approximations
to circles and simple polygons. And in the years following,
distributed algorithms were presented in [3], [2], and [27]
with the objective of getting a group of such robots to
congregate at a common location. Moving synchronously in
discrete-time steps, the robots iteratively observe neighbors
within some visibility range and follow simple rules to
update their positions. Lately in [16], both synchronous and
asynchronous maneuvering strategies are described for the
multi-agent rendezvous problem.

Convergence to a common point is an example of an
agreement problem: Agents initially without a common
reference frame eventually come to agree upon a reference

point by virtue of having arrived at one. Besides being
of relevance to the rendezvous problem, convergence to a
common point is also of interest because if it is feasible,
then so is convergence to other formations, as shown for
example in [17]. In [11], Jadbabaie et al. studied a different
agreement problem in discrete-time: Getting autonomous
agents in the plane to move in a common direction. Within
a discrete-time setting, Moreau in [22] generalized and
extended the work in [11] by presenting necessary and
sufficient conditions for the convergence of the individual
agents’ states to a common value.

In addition to the references mentioned so far, there
have been many results on the mathematical analysis of
formation control. In [23], formation stabilization of a group
of agents with linear dynamics (double-integrator) is studied
using structural potential functions. An alternative is to
use artificial potential functions and virtual leaders as in
[15]. The approach known as leader-following has been
used in maintaining a desired formation while moving, e.g.,
[6], [7]. In [19], stability of asynchronous swarms with a
fixed communication topology is studied, where stability is
used to characterize the cohesiveness of a swarm. In [28]
and [29], Tanner et al. investigate the stable flocking of
mobile agents for fixed topology and dynamic topology,
respectively. Similarly to [11], Lin et al. [17] focus on the
problem of achieving a specified formation among a group
of mobile autonomous agents by distributed control when
the communication topology is dynamic because agents
come into and go out of sensor range. In [12], Justh and
Krishnaprasad study achievable equilibrium formations of
unicycles each moving at unit speed and subject to steering
control and presents stabilizing control laws, wherein each
unicycle senses all others. And in [20], a circular formation
is achieved for a group of unicycles using the strategy of
cyclic pursuit.

Motivated by the fact that no continuous time-invariant
feedback control law can stabilize a nonholonomic system
to a point, in 1991 Samson and Ait-Abderrahim [25] showed
that smooth time-varying feedback can stabilize a unicycle.
Since then, much work (for instance, [21], [24]) has focused
on smooth time-varying feedback control of nonholonomic
systems, and averaging theory has been used to study
stability [21] and also motion planning [10]. On the question
of formations, in [31], [32] a time-varying feedback control
law is proposed for multiple Hilare-type mobile robots and



averaging theory is used to analyze stability.
As a natural extension of our previous work [20], [17],

and motivated by the proposed strategy in [32], [31], in this
paper the feasibility problem is studied of achieving a spec-
ified formation among a group of unicycles by distributed
control. Each unicycle is equipped with an onboard sensor,
by which it can measure relative displacements to certain
neighbors; in particular, we do not assume that the unicycles
possess a common reference frame.

Central to a discussion of formation control is the nature
of the information flow throughout the formation. This
information flow can be modeled by asensor digraph
(directed graph), where a link from nodei to node j
indicates that vehiclei can sense the position of vehicle
j—but only with respect to the local coordinate frame of
vehicle i. In this paper, we assume the sensor digraph
is static—the dynamic case, where ad hoc links can be
established or dropped, is harder. Our analysis relies on
several tools from algebraic graph theory [9], non-negative
matrix theory [5], [14], and averaging theory [1], [13], [21].

Our first main result is that formation stabilization to a
common point is feasible if and only if the sensor digraph
has a globally reachable node (a node to which there is a
directed path from every other node). That is, there exists
at least one unicycle that is viewable, perhaps indirectly
by hopping from one unicycle to another, by all other
unicycles. This is precisely the degree of connectedness
required and is much weaker than strong connectedness of
the sensor digraph (as in cyclic pursuit [20], for example).
Our second main result concerns formation stabilization to
a line. This turns out to be feasible if and only if there are at
most two disjoint closed sets of nodes in the sensor digraph.
In addition, we introduce a special sensor digraph which
guarantees that all vehicles converge to a line segment,
equally spaced. This is an extension to unicycles of a line-
formation scheme of Wagner and Bruckstein [30]. Finally,
we show how formation stabilization to a common point can
be adapted to any geometric pattern under the assumption
that a group of vehicles have a common sense of direction.

The proofs of the main results appear in [18] and hence
are omitted.

II. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we introduce the problems addressed
in this paper and then present three of our main results:
point formation, line formation, and any geometric pattern
formation.

A. Problem Description

Before treating unicycles, it is perhaps illuminating to
give a result for the much simpler case of point masses.
Considern “point-mass robots” whose positions are mod-
eled by complex numbers,z1, . . . , zn, in the plane. Assume
a kinematic model of velocity control:̇zi = ui. Assume
each robot senses the relative positions of a subgroup,
Ni, of the other robots. Letyi denote the vector whose

components are the relative positionszm − zi, asm ranges
overNi. Thusyi, a vector of dimension the cardinality of
Ni, represents the information available toui. We allow
controllers of the formui = Fiyi, or ui = 0 if Ni is empty.
Thus, yi = 0 =⇒ ui = 0 =⇒ żi = 0; that is, roboti
does not move if all robots it senses are collocated with it
(or if it does not sense any other robot). The problem of
convergence to a common point is this:

Problem 1: Find, if possible,F1, . . . , Fn such that

(∀ i ∈ {1, . . . , n})(∀ zi(0))(∃ zss) lim
t→∞

zi(t) = zss.

Now define the sensor graphG for this setup: There is a
directed edge from nodei to nodem if and only ifm ∈ Ni.

Before giving our results, we review some notions in
graph theory. For a digraphG = (V, E), if there is a path
in G from one nodevi to another nodevj , thenvj is said
to be reachablefrom vi, written vi → vj . If not, thenvj is
said to be not reachable fromvi, written vi 9 vj . If a node
vi is reachable from every other node in the digraph, then
we say it isglobally reachable. If U is a nonempty subset
of V andu 9 v for all u ∈ U and v ∈ V − U , thenU is
said to beclosed. More information can be found in [4],
[8].

Theorem 1: 1) Problem 1 is solvable if and only ifG
has a globally reachable node.

2) When Problem 1 is solvable, one solution is

Fi =
[

1 · · · 1
]

.
Now we turn to the main topic of unicycles. We can

identify the real plane,R2, and the complex plane,C,
by identifying a column vector,zi, and a complex num-
ber, zi. Now consider a wheeled vehicle with coordinates
(xi, yi, θi) with respect to a global framegΣ (see Fig. 1).

vi

ωi

iΣ

gΣ xi

yi

θi

Fig. 1. Wheeled vehicle.
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Fig. 2. Frenet-Serret frame.

The location of the vehicle in the plane is

zi =

[

xi

yi

]

or zi = xi + jyi.

The vehicle has the nonholonomic constraint of pure rolling
and non-slipping and is described kinematically as







ẋi = vi cos(θi),
ẏi = vi sin(θi),

θ̇i = ωi,
or

{

żi = vie
jθi ,

θ̇i = ωi.
(1)

Following [12], we construct a moving frameiΣ, the
Frenet-Serret frame, that is fixed on the vehicle (see Fig.
2). Let ri be the unit vector tangent to the trajectory at the



current location of the vehicle (ri is the normalized velocity
vector) and letsi be ri rotated byπ/2. Since the vehicle is
moving at speedvi, viri = żi, and so in complex form

ri = ejθi , si = jri.

Thus

ṙi =
d

dt

(

ejθi

)

= jejθi θ̇i = siωi, ṡi = jṙi = −riωi.

The kinematic equations using the Frenet-Serret frame are






żi = viri,
ṙi = ωisi,
ṡi = −ωiri.

(2)

Now considern wheeled vehicles, indexed byi. We refer
to the individual vehicles as nodes and the information flows
as links. Although the vehicles in the group are dynamically
decoupled, meaning the motion of one vehicle does not
directly affect any of the other vehicles, they are coupled
through the sensor information flow. A natural way to model
the interconnection topology is a digraphG = (V, E) with
V = {1, 2 . . . , n} in which the vehicles are the nodes and
the links are directed edges. The directed edge from nodei
to nodem is one of the graph’s edges just in case vehicle
i can sense vehiclem. (Thus, information flows in the
direction opposite to the orientation of the edges.) We refer
to this as asensor digraph.

Let Ni denote the set of labels of those vehicles sensed
by vehiclei. In this paper, we assumeNi is time-invariant,
meaning the information flow topology is static. In the
control law that we study, no vehicle can access the absolute
positions of other vehicles or its own. Specifically, vehicle
i can measure only the relative positions of sensed vehicles
with respect to its own Frenet-Serret frame (see Fig. 3),

{

xim = (zm − zi) · ri,
yim = (zm − zi) · si,

m ∈ Ni, (3)

where dot denotes dot product. This leads to the following
definition.

gΣ
zi

zm
iΣ

mΣ

ximyim

Fig. 3. Local information.

Definition 1: A controller (vi, wi), i = 1, . . . n, is said
to be alocal information controllerif

{

vi = gi(t, xim, yim)|m∈Ni
,

ωi = hi(t, xim, yim)|m∈Ni

i = 1, . . . , n

wheregi, hi are smooth functions of their arguments, and
gi is such that{(∀ m ∈ Ni) zm = zi} ⇒ {vi = 0}.

Notice that in our definition a vehicle does not translate
(but it can rotate) when either it cannot sense any other
vehicle or its neighbors have all converged to its position.

In what follows, we present two main problems inves-
tigated in this paper, together with necessary and suffi-
cient conditions for their solution. In Section II-C we also
introduce a special sensor digraph which guarantees that
all vehicles converge to a line segment, equally spaced.
In Section II-D we show how our solution to Problem 2
can be employed to achieve formation stabilization to any
geometric pattern.

B. Formation Stabilization to a Point

Problem 2: (Formation Stabilization to a Point)Find, if
possible, a local information controller such that for all
(xi(t0), yi(t0), θi(t0)) ∈ R

3, i = 1, . . . n, and all t0 ∈ R,
there existszss ∈ R

2 such that lim
t→∞

zi(t) = zss for all i.

Theorem 2: Problem 2 is solvable if and only if the
sensor digraph has a globally reachable node.

The above result shows that, if and only if a certain
graphical condition holds, all the wheeled vehicles globally
asymptotically converge to a point formation (or we say
they achieve an agreement about a common point) through
simple local actions by proper choice of controller. One pos-
sible time-varying feedback controller to solve this problem
is given by

{

vi(t) = k
∑

m∈Ni

xim(t),

ωi(t) = cos(t),
i = 1, 2, . . . , n, (4)

wherek > 0 is small enough.
An alternative choice of controller is

{

vi(t) =
∑

m∈Ni

xim(t),

ωi(t) = γ cos(γt),
i = 1, 2, . . . , n. (5)

By applying a time scaling,τ = t
γ

, one can use Theorem
2 and conclude that if the sensor digraph has a globally
reachable node, there exists a positive constantγ∗ such that,
for all γ∗ < γ <∞, (5) achieves formation stabilization to
a point.

Notice that the sensor digraph is required to have just one
globally reachable node. So if we treat a beacon placed at
the proper location as one member of the group of vehicles
and it is the globally reachable node that is viewable,
perhaps indirectly by hopping from one vehicle to another,
by all other vehicles, the local actions of each individual
vehicle result in the group gathering at the beacon.

Fig. 4 depicts a simulation result for formation stabiliza-
tion to a point of ten wheeled vehicles using the smooth
time-varying feedback control law (4) with the choice of
k = 1. The initial conditions are randomly produced and
the sensor digraph is given in Fig. 5. For example, node 5
is globally reachable, while node 1 is not.



Fig. 4. Ten wheeled vehicles gather at a common position.
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Fig. 5. The sensor digraph of a group of ten wheeled vehicles.

C. Formation Stabilization to a Line

Problem 3: (Formation Stabilization to a Line)Find, if
possible, a local information controller such that for all
(xi(t0), yi(t0), θi(t0)) ∈ R

3, i = 1, . . . n, and all t0 ∈ R,
all vehicles converge to form a line.

Theorem 3: Problem 3 is solvable if and only if there
are at most two disjoint closed sets of nodes in the sensor
digraph.

Theorem 3 has an interesting special case when the two
disjoint closed sets of nodes in the sensor digraph both
have only one member, say nodes1 andn. Vehicles1 and
n are callededge leaders. The edge leaders here are not
necessarily wheeled vehicles. They can be virtual beacons
or landmarks. But the vehicles respond to these edge leaders
much like they respond to real neighbor vehicles. The pur-
pose of the edge leaders is to introduce the mission: to direct
the vehicle group behavior. We emphasize that the edge
leaders are not central coordinators. They do not broadcast
instructions. They only play the role of individual vehicles,
but cannot sense other vehicles or communicate with them.
As for the remaining vehicles,i, i = 2, . . . , n − 1, we
assume that each agent can sense agentsi−1 andi+1. This
gives the sensor digraph in Fig. 6. It is readily seen that the

1 2 3 nn− 2n− 1

Fig. 6. The sensor digraph for a group of wheeled vehicles with two
edge leaders.

digraph in Fig. 6 has exactly2 disjoint closed sets of nodes.

We now state that in this special case all vehicles converge
to a uniform distribution on the line segment specified by
the two edge leaders.

Theorem 4: Consider a group ofn wheeled vehicles with
two stationary edge leaders labeled1 and n. Then, there
exists a positive constantk∗ such that for all0 < k < k∗,
the following smooth time-varying feedback control law

{

vi(t) = k
∑

j∈Ni

xij(t), Ni = {i− 1, i+ 1},

ωi(t) = cos(t), i = 2, . . . , n− 1
(6)

guarantees that all the vehicles converge to a uniform
distribution on the line segment specified by the two edge
leaders.

Fig. 7 shows a simulation result of four wheeled vehicles
and two stationary edge leaders to form a uniform distribu-
tion on a line using the control law (6) with the choice of
k = 1.

Fig. 7. Formation stabilization to a line of four wheeled vehicles and two
edge leaders.

D. Formation Stabilization to Any Geometric Pattern

In this section, we turn our attention to the problem of
formation stabilization to any geometric pattern. Following
[27], we letΠ be a predicate describing a geometric pattern,
such as a point, a regular polygon, a line segment, etc.
Such a predicate specifies a formation up to translation and
rotation. Byformation stabilization of a group ofn vehicles
to Π, we mean that the vehicles (globally exponentially)
converge to a distribution satisfyingΠ.

We suppose that a group of wheeled vehicles have a
common sense of direction, represented by the angleψ in
Fig. 8 . For instance, each vehicle carries a navigation device
such as a compass. Alternatively, all vehicles initially agree
on their orientation and use it as the common direction.
The common direction may not coincide with the positive
x-axis of the global frame. Letφi = θi − ψ (see Fig. 8).
We assume that vehiclei can measure its ownφi.

It is worth noting that, for all(R, b) ∈ SE(2), the vectors
ĉi = Rci + b describe the same geometric formation as the
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Fig. 8. A group of wheeled vehicles have a common sense of direction.

one specified byci. So given a desired geometric formation
pictured byci, i = 1, . . . , n, our objective is to stabilize
the position statezi of each vehicle tôci = Rci + b, i =
1, . . . , n for someR andb. To achieve a desired geometric
formation characterized byc = [cT1 · · · cTn ]T , we can
simply translate the formation vectorc into a control offset
d = L(2)c so that the forward control velocity is 0 when
the group of vehicles has achieved a formation. We denote
the offset for each vehicle by

di =

[

dxi

dyi

]

or di = dxi
+ jdyi

.

As an example, consider the simple sensor digraph shown
in Fig. 9(a) and a triangle formation described byci, i =
1, 2, 3. The corresponding control offsetsdi, i = 1, 2, 3 are
shown in Fig. 9(b).

(a) Sensor digraph (b) Illustration forci anddi

1

1

2

2

3
3

c1

c2

c3

d1

d2 d3

Fig. 9. An example of a simple triangle formation.

Next, we show that the time-varying control law for each
unicycle i ∈ {1, . . . , n}










vi(t) = k

{

[

1 0
]

R(−φi(t))di +
∑

m∈Ni

xim(t)

}

,

ωi(t) = cos(t),
(7)

whereR is a rotation matrix defined by

R(φ) =

[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

,

achieves formation stabilization toΠ.
Theorem 5: LetΠ be a desired geometric formation

described byc. Suppose a group ofn wheeled vehicles have

a common sense of direction and formation stabilization to
a point is feasible. Then there exists a positive constantk∗

such that for all0 < k < k∗, the smooth time-varying
feedback control law (7) withd = L(2)c guarantees global
exponential formation stabilization toΠ.

As an example, a simulation result for a circle formation
of ten wheeled vehicles with the sensor digraph in Fig. 5
is shown in Fig. 10. The circle formation is described by
ci = 75e(j

2(i−1)π

10 ), i = 1, . . . , 10. The initial conditions are

x(0) = [10, 10, 10, 0, 0, 0, 0,−10,−10,−10]
T
,

y(0) = [−5, 0, 5, 10, 3,−3,−10,−5, 0, 5]
T
,

θ(0) =
[

π
6 ,

π
6 ,

π
6 ,

π
6 ,

π
6 ,

π
6 ,

π
6 ,

π
6 ,

π
6 ,

π
6

]T
,

and the control law (7) is used with the parametersk = 1,
d1 = 61.74− j107.72, d2 = 78.26− j25.43, d3 = 91.63+
j66.57, d4 = 35 + j25.43, d5 = j82.29, d6 = −48.37 +
j66.57, d7 = −78.26 + j25.43, d8 = −78.26 − j25.43,
d9 = −35 − j25.43, d10 = −j82.29.

Fig. 10. Ten wheeled vehicles form a circle formation.

III. C ONCLUSIONS

In this paper, the feasibility problem of achieving a
specified geometric formation of a group of unicycles was
investigated. Necessary and sufficient graphical conditions
for the existence of local information controller to assurethe
asymptotic convergence of the closed system were derived.
Further research issues include developing more general
results for the dynamic sensor graph case, where ad hoc
links can be established and dropped.
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