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Abstract—The problem of determining invariance kernels  at least one solution of! throughzy remains inK for all
for planar single-input nonlinear systems is considered. IfK ¢ > (. Accordingly, theviability kernelof K for systemX. is

is a closed set, its invariance kernel is the largest subset & the maximal subset ok with the property of being viable
with the property of being positively invariant for arbitrary for 3

measurable input signals. It is shown that the boundary of the L . .
invariance kernel is a concatenation of solutions of two so-called ~ The theory of viability and invariance kernels was devel-

extremal vector fields. Moreover, only the solutions through oped by J.P. Aubin and co-workers in the general setting
a finite number of special points are of interest. This result of differential inclusions. The reader is referred to Aubin
makes it possible to devise an algorithm which determines the 1,54 [1] for an overview of the subject, and to the work
invariance kernel of a simply connected set in a finite number . . . .
of steps, of Frankows'ka and Qumcampqx .['2] and Salnt—Elerre [3]
for an algorithm to compute viability kernels. Rieger [4]
I. INTRODUCTION gave convergence estimates for this algorithm. To relate ou
problem statement to Aubin’s general theory, we remark that
to system (1) one can associate the differential inclusion

YXr: € F(z) :=co{fi(x), f2(x)} a.e. 2)

where co{ f1(z), f(z)} denotes the convex hull of;(x)
ﬁnd fa(x). By Filippov's Selection Lemma (see [5]), trajecto-
ries of X7 in (2) are solutions o corresponding to suitable
selections\(¢) € U. Vice versa, it is obvious that solutions
of ¥ with A\(t) € U are trajectories oE;. Therefore, there
is a one-to-one correspondence between solutior’s ahd
those of ;. Owing to this correspondence, determining
the invariance kernel of< for ¥ or for ¥; is the same,
and all results concerning invariance kernels of diffeegnt
fhclusions apply directly t@ in (1).

Recently, invariance kernels were used in [6] to define and
guantify a notion of stability margin for wind turbines. In
control theory, viability kernels often appear in the forin o
maximal controlled invariant sets, while invariance kdsne
. . . . ; are associated with notions of robustness. Recently, Beouc
invarance kerqel K™ of K for system2: is the maximal and Turriff [7] gave an explicit characterization of the
posmve_ly myanant subset of" _ .. viability kernel for a class of control affine systems whn

T_he invariance ke_rnel .Of a closegl set 1S clos_e_d, for if & the sublevel set of a smooth function. They showed that
set is positively invariant its closure is positively inzart as under certain conditions the viability kernel is a sublese
well. The notion of positive invariance (or strong invaiga of a hitting time function.
of K defined above requiresl solutions ofY originating in Letting 4= C U be the class of measurable functions

tKE) remailr Ik fqr al pogltll\)/Ie tl]crne.zlr!fcf()ntralllstz( IS S?{'d R — {0,1} and taking\(t) € U*, ¥ becomes a switched
0 beweakly invariant or viable, for 2. it for all o € I, system. In this context, the invariance kerrd€lr of K is
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In this paper we consider the planar system
L= A1) f1r(z) + 1= A@®)]f2(2), 1)

where fi, f» : R? — R? are twoC* planar vector fields
and \(t) is a signal in the clas& of measurable functions
R — [0, 1]. We make a number of generic assumptions whic
are listed in Section Ill. Viewing\(¢) as a control signab; is

a control-affine system. Vice versa, any control-affineeyst
& = f(z) + g(z)u with scalar compact-valued controlse
[min, Umax] C R can be expressed in the form (1) by letting
fi(@) = f(z) + 9(2)umin, fo(z) = f(2) + g(x)Umax, and
expressingu(t) = A(t)umin + (1 — A(t))Umax-

The objective of this paper is the characterization of th
invariance kernel of a closed s&t, defined next.

Definition 1.1: Let K C R? be a closed setK is
positively invariant (or strongly invariant) fory if for all
A(t) € U and allzg € K, the solution ofX with initial
condition z(0) = xo remains inK for all ¢ > 0. The



special points. The concatenation of such integral curvake extremal arc coincides with gi arc (resp.,f; arc) in a
must obey precise rules in order to form a feasible boundaneighborhood ofz, then it is said to be aon-equilibrium
of K*. The second main contribution of this paper is arextremal arc through z.
algorithm which exploits the finiteness of special pointd an Definition 2.4: We define thecollinearity set £ as
the concatenation rules to determine the invariance kénnel
a finite number of steps. In this paper we assume, among £={z e R®: detlfi(2) fo(a)] = 0}.
other things, thatK is a simply connected set, but ourand the setL™ = {z € £ : (fi(x), f2(x)) > 0}, L~ =
algorithm can be adapted to the situation whnis not {x € £: (f;(x), f2(x)) < 0}.
simply connected. Due to space limitationa, a number of On £, f; and f, are collinear. OnL~, f, and f, are
proofs have been omitted in this paper. antiparallel. Points irC that are neither iC* nor in £~ are
Throughout this paper we use the following notation. liequilibria of f; or f,. The setl is closed and in this paper
S C R?, 5¢ denotes the complement 6f 5¢ = R?\S. The  we will assume (see Section IlI) that it is a one dimensional
notation(-, -) is used to denote the Euclidean inner producembedded submanifold. The extremal vector fiefds fr
Finally, int S denotes the interior of the sét are discontinuous oif. The existence and uniqueness of
extremal solutions is discussed in Section V.
Definition 2.5: A point p in £~ is called at~ point if
We now present the basic notions used in the charathe trajectories off; and f, throughp remain on one side

Il. PRELIMINARY DEFINITIONS

terization of invariance kernels. LeR* = {z € R? : of £~ (i.e., (f1, f2) has constant sign along the trajectories)
det[f1(x) fa(x)] > 0}, R~ = {z € R? : det[fi(z) f2(z)] < for some interval of time containing= 0.
0}. Rt and’R~ are open sets. IR™, f, points to the left- If 0K is differentiable in a neighborhood of &4 point,
hand side off;, while in R~ f, points to the right-hand side then at least one of the vector fields, f> must be tangent
of fi. to 0K at thet? point.

Definition 2.1: The extremal vector fields fr(z) and Definition 2.6: The attainable set.A(z,t) of ¥ from xg
fr(x) are defined as at timet is A(xzo,t) = {x(¢) : z(-) is a solution ofZ with

N N x(0) = xo for some\(-) € U}.
fr(z) = fiz) zeR . frlz) = fa(x) zeR By Theorem 1 in Section 2.8 of [14], the set-valued map
folx) zeR™ filr) z€R™.  (xo,t) — A(xo,t) is upper semicontinuous. Moreover,

. . ! A(zg,t) is compact and non-empty [15].
The solution$ at time ¢ of the extremal vector fieldgr, Remark 2.7:By definition of f, and fx, for eachz €
and fr are calledextremal solutions and are denoted 2\, and all) € (0, 1), the vector\ fi () - (1 — A) fa(x)
by ¢r(t,20) and ¢r(t,zo), respectively. The images of points to the left-hand side of;(z) and to the right-hand
extremal solutions on the plane are callextremal arcs. ija of fr(x). Moreover, when\ is 0 or 1, the vector
!n particular, theL-arc (resp. R-arc) through zq is the M (@) + (1 — A fo() is tangent to eithefs(x) or fr(x).
image of the mag — ¢L(t,z9) (resp.,t = or(t,20)) for  therefore, all solutions oF in R2\L are either tangent to
¢ ranging over some interval over which the map is defineq; .;oss R-arcs rightward and L-arcs leftward. In particula
Extremal fields have been independently studied in relatioR_g .o (resp., L-arcs) iR2\ £ are either tangent to or cross
to attainable sets by Baitman [11], Butenina [12], anq 5. (resp., R-arcs) leftward (resp., rightward). Ad{yat
Davyd_o_v_ [13]. i _ can be shown that the above statement is true not just for

Definition 2.2: A connected subset a§X along which .o iNR2\ £, but in the entireR? except at equilibria off;

both f, and f, point inside of K or are tangent @K IS g 1, Extremal arcs cannot self-intersect at points other than
said to be aninvariant arc of 8K. Each endpoint of an equilibria of £, and fo.

invariant arc ofoK is called at? point.
We give an orientation to extremal arcs and invariant arcs Ill. STANDING ASSUMPTIONS

of 0K as follows. We givedK a positive orientation so  Throughout this paper we assume tHatis simply con-

that a point moving alon@K finds the interior ofK to its  nected and its boundary is@' Jordan curve. Additionally,

left-hand side. The orientation of extremal arcs is inducegle make these assumptions:

by the time parametrization of the corresponding extremal (i) The setl is a one dimensional embedded submanifold,

solutions, so that the orientation indicates the directibn i.e., it is the union of a countable number of disjoint

increasing time. The notion of orientation of arcs allows us regular curves.

to say, for instance, that arc A crosses arc B leftward. i) There is a finite number of~ points in K, and there
Definition 2.3: Suppose thatt is an equilibrium of f; is at most a finite number of points Gk at which

(resp., f2). An extremal arc throught is said to be an either f; or f, are tangent t@K.

eqlillllbr|um gxtremgl arc through z if on a nelghporhood (iii) The equilibria of f; and f, in K are hyperbolic (imply-

of z it coincides with anf; arc (resp.,f2 arc). If, instead, ing that all equilibria are isolated) and the linearization

. _ _ at each equilibrium has distinct eigenvalues. Moreover,
By a solution of an extremal vector field we mean an absolutely

continuous functionz(t) : (a,b) — R? which satisfies the differential none Of. the equilibria off; .'S an equilibrium off,.
equation associated to the extremal vector field for almost alla, b). (iv) No equilibria of f; and f5 lie on 0K.



(v) The slow manifolds of nodes (stable or unstable)pf V. EXTREMAL ARCS AND BOUNDARY OF THE
and f, are not tangent tc. INVARIANCE KERNEL
(vi) No t? points lie onL.
(vii) There is a finite number of points o™ N K where d
f1 and f, are tangent taC™.

The significance of extremal arcs, as pertains to the
etermination of invariance kernels, is that they form the
. i boundary of attainable sets Bf as shown in the next lemma.
(viii) '_I'here is at most a finite number of closed extremal arc§hus’ extremal arcs delimit bundles of arcs %fthrough

in K. points in R? resulting from arbitrary choices of(t) € U.
Assumptions (i)-(vii) areC'*-generic. Assumptions (iii)-(vi() This feature of extremal arcs, together with the so-called
could be relaxed, but are made to avoid the need for specigdrrier property presented in Proposition 5.2 below, wél b

cases and to simplify the presentation. used in Proposition 5.3 to establish a relationship between
extremal arcs and boundaries of invariance kernels. Before
IV. PROPERTIES OF EXTREMAL SOLUTIONS stating the lemma, we recall that is said to be small-time

locally controllable (STLC) fromz if, for all T > 0, z
The extremal vector fieldg;, and fr are discontinuous |ies in the interior ofA(z(, [0, 7).

on L. Issues of existence and uniqueness of solutions of | emma 5.1:Let 2, € R? be such that is not STLC
vector fields of this kind have been extensively investidatefrom 1,. Suppose that, for som& > 0, a solutionz(t)
by Filippov [14]. Solutions off;, and fr exist everywhere of 53 with initial condition z, has the property that(t) €
on the plane. The next two lemmas discuss issues of NOpA(x,, t) for all ¢ € [0, T]. Then,z(t) is a concatenation of
uniqueness and continuity of the solution mapsand¢r.  extremal solutions.
Lemma 4.1:Extremal solutions of exist through each  The boundary of invariance kernels enjoys the so-called
xo € R2. Locally near each point, € R?, there is only parrier property.
one L-arc and one R-arc through, except in the following  proposition 5.2 (Barrier property [16]):Let K* be the
cases: invariance kernel ofK for (1), and assume it is not empty.
(|) If xo € £~ andzg is not at~ point’ then throughco Then, for anyrg in OK* there eXiStS)\(t) € U such that the
there are either two L-arcs which converge to and twsolution to (1) with initial conditionz(0) = zo remains in
R-arcs which diverge fromx, or two L-arcs which OK* forall ¢ >0, or until it reache)K.

diverge from and two R-arcs that convergeatg. In The proof is completely analogous to the proof of Theo-
a neighborhood of:,, the two L-arcs (resp., R-arcs) rem 4.18 in [17], and is therefore omitted.

coincide with an arc off; in R* (resp., inR~) and Lemma 5.1 and Proposition 5.2 yield the following.

and an arc off, in R~ (resp., inR™T). Proposition 5.3:If K* is non-empty, then each connected

(i) If zo is an equilibrium of f; or f, then there is one component ofdK™ is a concatenation including extremal
non-equilibrium extremal arc through, and several, arcs and invariant arcs ¢fK.
possibly infinite, equilibrium extremal arcs through. We conclude this section with a result clarifying which

Lemma 4.2:Suppose thatr, ¢ £~ and z, is not an equilibria of f; and f, are feasible oD K™.
equilibrium of f; or f,. Suppose that the unique soluton Lemma 5.4:The only equilibria of f; and f; that may
x(t) of fL (resp.,fr) throughz is defined onf0,7] c R belong to9K* are nodes (stable or unstable) and saddle
and such that, for all € [0, 7], z(t) ¢ £~ andz(t) is notan Points, and the only points il N L™ aret™ points.
equilibrium of f; or f,. Then, there exists a neighborhood
U of z( such that the mapy,(t,z¢) (resp.,or(t, zp)) is
continuous or0,7] x U.

Finally, we characterize equilibrium extremal arcs in a Proposition 5.3 indicates that the boundary of the invari-
neighborhood of a node (stable or unstable). Before statirgice kernek(* is formed by concatenations of extremal arcs
the next result, we recall that if the linearization of a lan and invariant segments 6fK. The result below identifies all
vector field at a node has two distinct eigenvalues, then tHeasible concatenations @i *. Before stating the proposi-
fast manifold of the node is the invariant manifold of thetion, we introduce some notation. We will use the shorthands
vector field associated with the eigenvalue which has thdH, HT, TT to signify “head-to-head,” “head-to-tail,” and
largest absolute value, while the slow manifold is assediat “tail-to-tail,” respectively. The notation Af%—B will be used
with the eigenvalue with smallest absolute value. to indicate an HH concatenation at poptetween arcs A

Lemma 4.3:Suppose that an L-arc (resp., R-arc)s an and B, where the symbols A, B belong to the fidt, R, 0K
equilibrium extremal arc through a node and that, in } (0K stands for invariant arc a¥K). Similarly, A B,

a neighborhood ofz, v does not coincide with the fast A<+~ B will be used to indicate HT and TT concatenations,
manifold of z. Then, there exists a ball centred att and respectively. To state that a concatenation occurs at desadd
a circle segmentS C 9B with a unique intersection point or node (stable or unstable) gf or f» (recall that foci

p = S N~ such that all L-arcs (resp., R-arcs) through are ruled out by Lemma 5.4) we will sgt= o, while to
remain in3 in positive or negative time and are equilibriumstate that the concatenation occurs anywhere on & set
extremal arcs. will set p = S. If p is omitted then the location of the

VI. CONCATENATION OF EXTREMAL ARCS AND
INVARIANT ARCS OF 0K



o
concatenation is unspecified. To illustrate;$£+0K denotes
an HT concatenation of an L-arc with an invariant ar©éf

R? is continuous. By continuity, there exists a neighborhood
V c U of ¢ such that the following two properties hold:

at at? point, anddK -3 L denotes an HT concatenation (@ or([0,T],V)NoBC S,
of an invariant arc obK and an L-arc occurring anywhere (b) ¢, (7,,V) C B.

on oK.

The two properties above imply that all L-arcs through peint

Proposition 6.1:On 0K™, the only feasible concatena-j, v/ jntersectS and, by Lemma 4.3, they are equilibrium

tions involving extremal arcs and invariant arcsadt” are:
- a
(HH) L %R, L4+ R, 0K <4+ R,
o
(HT) L4550k, 0Kk 351, L >—L, R——R.

(TT) oK 2K, R, L+"5 R, wherez is either at~ point or
any point in(£~)e.

VII. M AIN RESULT

In this section we present the main theoretical result af thi

extremal arcs, i.e., their head isatNext, we investigate the
available concatenations at the tailof . There are three
cases.

Case 1:q € (L7)°\OK is not an equilibrium.Since, by
the contradiction assumption; does not containt~ and
t? points, we also have that € (£7)°\0K. Moreover,
we can assume thdt is small enough thal’ C int K.
By Proposition 6.1, at there must be a TT concatenation

paper characterizing the boundary of the invariance kemgetweem and an R-ara). Extends in negative time from

This result relies on Proposition 6.1 and other properti

proved earlier.
Theorem 7.1:Each connected component af* is ei-
ther a closed extremal arc, a closed invariant ar@&f, or

& and denote byy’ the extended arc.

Iy ¢ £, then
f1(¢) and fy(q) are linearly independent. Therefore, in a
neighborhood of;, without loss of generality/, the arcy/
is transversal to all L-arcs. If, on the other hanpds LT,

. s : L
it is the concatenation of extremal arcs and invariant arctgen by assumption (vii) in Section IIly’ is transversal to

of OK* according to the rules listed in Proposition 6.

An extremal arc which is not closed can only be part o

OK* if one of its endpoints is & point, at~ point, or an
equilibrium (saddle or node) of; or f5. v is a permissible
equilibrium extremal arc through a node o™ only if at
least one of the following holds:
(i) ~ coincides with the fast manifold af locally around
xZ.

1 L-arcs in a punctured neighborhood of without loss of

generality inV'\{g}. In both cases, in any neighborhood of
g contained inV there existsy € ' NV with the property
that ¢’ ¢ K*, and therefore such that the L-af¢ through

q' is not contained inK™*. Sinceq’ € V, 4/ has its head
at z. Sincey C (L7)°\0K, an open sety’ can be chosen
such thaty’ C (£7)°\0K as well. The set obtained from

K* by replacing the concatenation—"— 7 with 7/ <*— 1/

(i) ~ is the non-equilibrium extremal arc of another equiiS contained ink’, is positively invariant, and contains™,

librium (saddle or node of; or f5), or an extremal arc
through at—, t? point.

~ is simultaneously an equilibrium extremal arc for
and for another equilibriung £ Z. In this case, either
~ is of type (i), or locally aroundj, v coincides with
the stable/unstable manifold gf if ¢ is a saddle, or
the fast manifold ofy if 3 is a node.

Proof: Suppose, by way of contradiction, that*

(iii)

contradicting the assumption that* is the invariance kernel
of K.
Case 2:q € K. Since, by the contradiction assumption,

q is not at? point, it follows thatq is not the endpoint of
an invariant arc oDK. If the vectorsf;(q), f2(g) point to
the interior of K, then the invariant arc of X' containing

q is transversal to L-arcs in a neighborhood @fwithout
loss of generality if/. If, on the other handf; (q) or f2(q)

contains an extremal arg which is not closed and whose &€ tangent té'K, then by assumption (ii) in Section Il the
endpoints violate the conditions of the theorem. In light ofVariant arc ofd & containingg is transversal to L-arcs in
this contradiction assumption and Proposition 6.1, thehe& Punctured neighborhood of without loss of generality in
of v must be a node, andy must be an equilibrium extremal V'\{¢}. In both cases, in any neighborhood ptontained
arc which does not belong to any of the types (i)-(iii) in thd" V' there exists;’ € K such that the L-are/’ throughg’
theorem statement. Suppose, without loss of generaliay, tHS contained ink” but is not contained i<*, and has head

~ is an L-arc. Since in any neighborhood ®#fy does not
coincide with the fast manifold of, by Lemma 4.3 there
exists a ballB centred atz and a circle segment C 0B
with a unique intersection point = S N~ such that all L-
arcs through points i¥ remain in5 in positive time, and are
all equilibrium extremal arcs. Since € 0K*\0K, the ball
B can be taken small enough that 0K*\0K as well. Let
P € v be a point in the interior o8 and denote by the tall
of v. Then, there exisTy > T7 > 0 such thatp;,(T1,q) = p
and¢y, (T, q) = p. By the contradiction assumption,does

at z. As before, replacing the concatenatign——s 7 with

+' +!— 5K we obtain a positively invariant set contained in
K which is containsK™, a contradiction.

Case 3¢ € (L7)°NJK is a node andy is an equilibrium
extremal arc througly which, nearg, does not coincide with
the fast manifold ofl. By Lemma 4.3, there exists a bl
centred aty and a circle segment’ C 9B’ with a unique
intersection poinp’ = 8’ N+ such that all L-arcs through’
remain inB’ in negative time and are equilibrium extremal
arcs throughy. We can assume th& c V (for, if that isn't

not containt~ points and so by Lemma 5.4 it follows thatthe case, we can mak#& smaller). Thus, all L-arcs through
~vN L~ = @. Consequently, by Lemma 4.2 there exists &’ have tail aty and head at. In particular, one can choose

neighborhood’ of ¢ such that the mapy, : [0, 7] x U —

a point onS’ outside of £* through which there is an L-



Initial extremal integration . . . .
condition arc direction Labell all pomts |dent|f|9d in Part 1 (stgps 1:1-1.4) as
T is L rev. special pointsLabel assignificantall special points, all
7 point, tangent R fwd. the integration endpoints, and all points of intersection
tail of inv. arc tgggfm do nothing between extremal arcs generated in Part 2 or between
7L is do nothing extremal and invariant arcs of. Thus, special points
19 point, tangent are significant, but not vice versa.
head of inv. arc tgﬁgfm = f:'ée_' 3.1. Partition each extremal arc resulting from an integra-
L fwd. tion performed in Part 2 and invariant arcs @K
t~ point L rev. into subarcs whose heads and tails are the significant
S f;’é’e points. The subarcs inherit the orientation of the
non-eq wa. parent arc. In the rest of the algorithm below, these
node rev. subarcs will be simply referred to as extremal arcs.
stable or (unstable) [~ eq., Tast | rev. Ef‘fw"’gg 3.2. Prune one L-arg and one R-arg) if v and# have
non-eq wa the same endpoints, and if neithe_r endpoint is spe_cial.
rev. 3.3. Prune any L-arc (resp. R-arc) with head at a ppint
saddle erﬂ;nsi}gﬁ’j'e rev. which is not special if there is no L-arc (resp., R-arc)
eq.,unstable| _ fwd. with tail at p. o
manifold fwd. 3.4. Prune any extremal arc whose head or tail is at a
TABLE | point where no other arc is connected.
RULES OF INTEGRATION THROUGH SPECIAL POINTS 3.5. Repeat steps 3.3-3.4 until there is not more arc to
prune.

3.6. Prune extremal arcs that spiral around limit sets in
positive or negative time.

3.7. Eliminate from the list of significant points all points
with no arcs attached, and points connecting only two
arcs of the same type (L or R).

arc v' with tail at ¢ and head af such thaty’ ¢ K* but
~' € K. By replacingy with 4/ we enlargeK* and get a
contradiction. ]

VIII. | NVARIANCE KERNEL ALGORITHM 4. Graph construction . _
N . ) o Construct a graply = (V, £), with V the set of vertices
In the exposition of this algorithm, it is assumed that any  of G and £ the set of edges of as follows.

closed extremal arcs are known. Moreover, it is assumed \sertices of G. Let 7 denote the set of significant points
that K is not positively invariant, for in this case trivially in K that remain after the pruning in Part 3.

K* = K. The following algorithm determines the invariance
kernel of a simply connected and compact Bein a finite
number of steps. The algorithm has a rigorous justification
based on Proposition 6.1 and Theorem 7.1. The justification
is omitted due to space limitations.

1. Initialization

4.1. For every pointp € P which is special, create a
vertex vy,
4.2. For everyp € P which is not special, create two
vertices, denoted’ andv/.
Edges of G. Create directed edges between vertices
associated with extremal arcs and invariant arcé f

Determine: as follows:
P
1.1 t% points in K, 4.3. If p is the tail of an L-arc or an invariant arc 6fK
1.2. ¢~ points in K, . with head at, create a directed edge from, or v’
1.3. nodes and saddles ¢f or f, in K, to v.. or vl
. q q-"
1.4. closed extremal arcs i 4.4. If p is the tail of an R-arc with head at create a
2. Integration directed edge fromy,, or v}, to v, or v
Using the integration rules in Table |, generate extremal 4 5. For every(vL, v%) pair, create a directed edge from
arcs from all points computed in Part 1. The stopping oB to vl Py
p p

criteria for the integration are:

2.1. The solution hitsC~ at a point which is not &~
point.

2.2. The solution hit9 K at a point which does not lie
on an invariant arc od K.

2.3. The solution hits an invariant arc @ coming from
int K.

2.4. The solution is detected to reach (in finite or infinite
time) an equilibrium of f; or f, or to spiral (in
positive or negative time) around a limit set.

3. Pruning

5. Cycle Analysis

5.1. Find all simple cycles (i.e., closed paths that do not
visit any vertex more than once) in the gragh

5.2. Discard any cycles containing two vertice$, v}
that are not consecutive (when travelling in the di-
rection of the edges of the graph).

5.3. For each remaining cycle i@, check whether the
region in the plane delimited by the path associated
to the cycle is positively or negatively invariant. If it
is negatively invariant, discard the cycle.
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equilibrium at(0, 0), a stable node. The stable focus is not
considered to be a special point.
The outcome of the integration part of the algorithm is

|— inv. arcOK displayed in Figure 1(a). Solid dots in the figure indicafe al

significant points arising from endpoints of integratiordan
intersections of various arcs. The outcome of the prunimg pa
of the algorithm is displayed in Figure 1(b), where the arcs
~1,...,7v19 have been pruned in five executions of steps 3.3,
3.4 of the algorithm. As a result of this pruning, in step 3.7 a
number of significant points with no arcs attached or points
connecting only two arcs of the same type are eliminated.
In part 4 of the algorithm we construct the invariance graph
G. It has 33 nodes and 49 edges. It is not displayed due to
space limitations. There is only one closed extremal ar€ in
namely the dashed curve containing point 11 in Figure 1(b).
The resulting invariance kerndk* is the shaded area in

(1]
(2]

(3]
(4]
(5]
(6]

Fig. 1. Outcome of parts 2 (integration) and part 3 (pruning)the
invariance kernel algorithm.

[71
[8]
5.4. K* is the union of all regions enclosed by closed
paths associated to graph cycles and by closed exg

tremal trajectories inkK.

Remark 8.1:The simple cycles off can be efficiently
found using Tarjan’s algorithm in [18], which has polynoinia
complexityO((V-E)(C+1)), whereV, E, C are the number a1
of vertices, edges, and simple cyclesdnThe test in step
5.3 can be done simply by picking any non-special pgint [12]
in the closed path and discarding the cyclefifp) points

[10]

outside the region delimited by the path. [13]
IX. EXAMPLE 1l

Consider the planar system = A(t)fi(z) + [1 — e
A(t)] f2(x), where [16]
fi(z) = L% +:;Cl2x2 - 1} . fo(z) = {— xl—;‘ij%x2j| N
Let K be the box{(x1,z2) : |z1| < 2,|z2] < 2} with (18]

rounded corners displayed in Figure 1. The corners are
rounded to meet the standing assumptions in Section |,
but the invariance kernel algorithm can be applied with no
modification even wherk’ hasC° boundary.

The vector field f; has two equilibria, a stable focus
at (—1,0) and a saddle at1,0), while f, has only one

Figure 1(a).
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