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Abstract— We enhance a recently proposed hybrid controller
that asymptotically stabilizes a class of closed orbits (so-called
oscillations) for mechanical control systems with underactu-
ation degree one. The controller in question enforces virtual
holonomic constraint (VHCs) within a parametric family and
instantiates new VHCs at certain events so as to asymptotically
stabilize the target orbit. In this paper we propose a novel
feedback mechanism in the jump map of the hybrid controller
ensuring the asymptotic stabilization of oscillations with guar-
anteed basin of attraction. We demonstrate the new controller
with a four degrees-of-freedom robot mimicking a child on a
swing. For this robot, we are able to stabilize a large range of
oscillations with guaranteed basin of attraction.

I. INTRODUCTION

This paper investigates the orbital stabilization problem
for a class of underactuated mechanical systems with n
degrees-of-freedom (DOFs) and n—1 actuators. The problem
is to asymptotically stabilize a type of closed orbit called
an oscillation which corresponds to a repetitive motion in
which some phase variable oscillates periodically without
performing full rotations. Examples of such repetitive mo-
tions abound in nature and robotics. The motion of a child
pumping a swing to achieve a certain desired amplitude
of oscillation, or a gibbon swinging its arms to move
from branch to branch at constant speed are examples of
asymptotically stable oscillations.

In recent work [11], we proposed a hybrid orbital stabilizer
for oscillations that relies on virtual holonomic constraints
(VHCs). As is well-documented (e.g., [16], [1], [15]), VHCs
are an ideal tool to induce closed orbits in underactuated
mechanical systems. The challenge though is that once a
VHC is enforced, there are no control DOFs left that can be
used to asymptotically stabilize a target orbit. The idea used
in [11] to circumvent this problem was partially inspired by
the papers [10], [3] and Chapter 7 of the book [17], and it
involves embedding the nominal VHC that creates the target
closed orbit in a parametric family of VHCs. When certain
events occur, a hybrid supervisor updates the VHC parameters
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instantiating a new VHC in the family. This process induces
an orbital stabilization mechanism.

Our work in [11] ensures local asymptotic stabilization
of a target oscillation. This paper proposes an enhancement
ensuring asymptotic stabilization with guaranteed basin of
attraction. The main result giving precise theoretical guar-
antees is found in Theorem 4.2. As an application of our
theory, we consider a four DOFs robot mimicking a child
on a swing. For this robot, we are able to stabilize a wide
range of oscillations with a “large” basin of attraction.

There are several other approaches in the literature for
orbital stabilization. In the context of VHCs, we mention the
work in [16], [15] that relies on VHCs to identify a closed
orbit and transverse linearization to stabilize it, as well as the
work in [9] that uses dynamic VHCs for orbital stabilization.
In [4], [5], the authors use VHCs and apply impulsive inputs
to instantaneously change the velocities of the robot when
its configuration crosses a certain threshold. Very important
is also the extensive literature using VHCs to induce stable
walking in bipedal robots (see, e.g., [18], [13], [17], [10], [3],
[2]). In this context, the orbital stabilization mechanism if
provided by the impulsive impacts of the swing foot with the
ground. In a different context, [12] proposes using immersion
and invariance for stabilization of closed orbits. In [14], the
authors provide a constructive procedure building upon the
work of [12]. In [19], the authors use energy shaping for
passivity-based stabilization of closed orbits.

This paper is organized as follows. In Section II we
succinctly review basic notions and terminology pertaining
to VHCs. In Section III we review the hybrid controller
proposed in [11]. Section IV presents the enhancement of
the controller in [11] and the main theoretical result of this
paper, whose proof is found in the Appendix. In Section V,
the proposed controller is applied to stabilize oscillations for
a four DOFs model mimicking a child on a swing. Finally,
Section VI presents future perspectives for this work.

II. PRELIMINARIES

We begin our development by reviewing virtual holonomic
constraints and related concepts. We refer the reader to [7]
for more details. Consider a mechanical system modelled as

D(q)¢ + C(q,4)¢ + VP(q) = Bu, (1)

where ¢ = (q1,...,¢,) € Q is the configuration vector
and u € R™ ! is the vector of control inputs, D = DT
is the mass matrix and P : @ — R is the potential energy.
All quantities are assumed to be smooth. Each configuration
variable g; is either a real number (e.g., a displacement) or a
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real number modulo 27 (e.g., an angle). We assume B has
full column rank n — 1.

A virtual holonomic constraint (VHC) is a curve in the
configuration manifold Q expressed as h(q) = 0, where h :
Q — R ! is smooth and such that the output function
y = h(q) yields vector relative degree (2,...,2) at each
point ¢ € h=1(0). The idea in the VHC framework is to use
the control inputs u to constrain the configuration ¢ of the
system to stay on this curve.

To achieve this goal, the control u needs to be designed
to asymptotically stabilize the zero dynamics manifold asso-
ciated with the output y = h(q), given by

I'={(¢,4) € TQ| h(q) = 0,dhyq = 0}. (2)

We call this zero dynamics manifold the constraint mani-
fold. Under some mild assumptions (see [6, Proposition 12
and Remark 14]), I" can be rendered asymptotically stable
by means of a feedback linearization controller of the form

w=(dhyD™'B)~" [dhyD™" (C4+ V,P) — H -
—K,h(q) — Kqdhyq] .
where H = [H; ... H,_1]" and H; = ¢ Hess(h;)q, and
K,, K4 € R®=1Dx("=1) are matrix gains chosen to stabilize
the n — 1 dimensional linear system 3 + Ky + K,y = 0.
A VHC can also be expressed in parametric form by a
relation of the form ¢ = o(f), where o : © — Q and © is
either R when the VHC is an open curve or! [R]7 for some
T > 0 when the VHC is a closed curve. By defining the
tangent map To : TO — TQ as To (6, 6) == (c(6), 0’ (0)8),
a point (g, q) in the constraint manifold I" can be identified
with a pair (6,0) € TO using the relation (¢, ¢) = To (6, 6).
When the constraint manifold I'" has been rendered asymp-
totically stable by a feedback u, the dynamics of the closed
loop system, restricted to I' are described by a second-order
differential equation of the form

0 =0,(0) + Uy()02, )
where
Btv,P
Uy (0) = — =72
! BXDo'(0) |,—0)
wy(0) — - BED0) + B Co () ®)
2 B1Do'(6) g=0(0)
q=d'(9)

We call this system the constrained dynamics and its
meaning is this. Given any smooth feedback that asymp-
totically stabilizes I, the solutions of the closed-loop system
on I' have the form (q(t),4(t)) = To((6(t),6(t))), where
(6(t),6(t)) is a solution of (4).

One of the advantages of the VHC framework is that, under
suitable conditions, the constrained dynamics are also Euler-
Lagrange, with Lagrangian L(6,0) = (1/2)M (0)6% — V (6),

'[R]7 denotes the set of real numbers modulo 7.

where M and V are the virtual mass and virtual potential
functions defined as

0
M(0) = exp (—2/0 \Ilg(T)d7'>

) (6)
V(o) = f/ Uy (T)M(7)dr,
0
and the virtual energy
E(6,0) = %M(e)a’2 +V(6) )

is an integral of motion of the constrained dynamics (see [7],
[8], [16]). This fact is important because it implies that the
constrained dynamics have an abundance of closed orbits,
each one representing a repetitive motion of the mechanical
system (see, e.g., [8]). It is for this reason that VHCs have
proven useful for finding closed orbits (see, e.g., [16]).

N - N
\\ //
vl \ / ]
L // ~_ i
/

Fig. 1: An oscillation of the constrained dynamics (4).

When the virtual potential V' has a local minimum at
0, the point (6,6) = (6o,0) is a stable equilibrium of
the constrained dynamics, and the constrained dynamics will
contain a continuum of closed orbits around this equilibrium
corresponding to so-called oscillations. See Figure 1 for an
illustration. Oscillations are stable but not asymptotically sta-
ble. The asymptotic stabilization of oscillations induced by
a VHC is the focus of our recent work [11] and of this paper.
As illustrated in Figure 1, an oscillation is characterized by
two parameters, #_ and 6. in O, the two unique points where
the oscillation intersects the 0 axis; 6 (resp., 6,) corresponds
to the point where 6 changes sign from positive to negative
(resp., negative to positive). Since the parameter 6 can be
used to uniquely identify an oscillation, in what follows we
will use the notation O(6f_) to denote an oscillation of (4),
as done in Figure 1. Moreover, 6 also uniquely identifies
f, and we will indicate this dependency using the notation
0. =B(0).



III. REVIEW OF HYBRID CONTROLLER FROM [11]

Consider a VHC h(g) = 0 inducing a target oscillation
O(0.) that we wish to asymptotically stabilize. We refer
to h(g) = 0 as the nominal VHC. The idea proposed
in [11] to asymptotically stabilize the orbit is to embed this
nominal VHC in a family {h%(¢) = 0}4ea, parametrized
by a parameter vector a = (d, ¥, \). The hybrid controller
enforces the VHC h%(q) = 0 and keeps a constant during
flow, updating it at certain events so as to asymptotically
stabilize the target oscillation.

In the parameter vector a = (d, ¥, \), the toggle variable
d € {—1,1} keeps track of the direction of movement; the
memory variable ¢ keeps track of the value of # when the
direction of movement changes; finally, the vector A € R»1
shapes the geometry of the VHC. Whenever the system state
crosses a chosen Poincaré section, the vector A\ is updated
according to a feedback law v to be designed.

Following [11], the control design begins with the def-
inition of a smooth function 6* : W C O — O, where
W is a neighborhood of h~1(0), such that for each ¢ €
h=1(0), 0(0*(q)) = q. Intuitively, the function §* maps a
configuration ¢ € W to a curve parameter in © such that
the point o(0*(q)) is a projection of ¢ onto h=1(0). When
the VHC is expressed as a graph of a function of the form
col(qga ... qn) = &(q1), we can simply take 6*(q) = q;.
More generally, Lemma 4.1 in [11] states that the set W
and function 6*(q) are guaranteed to exist for any VHC.

Next, given a family of C? functions {¢® 0 —
R""1},ca, we define the family of VHCs h%(q) = 0 via
h*(q) = h(q) — ¢*(6*(¢)). Each VHC in this family has
associated with it a constraint manifold I'®, a feedback 1%,
and virtual mass, potential and energy function M*, V¢, E¢
using the expressions in (2), (3), (6) and (7) where we replace
o with 0%, with ¢% computed as described in Section V
of [11].

In [11, Defn. 5.2], precise conditions are given identifying
a class F of functions ¢® ensuring that the hybrid constraint
manifold

L'={(¢,¢a)€C| (g4

is hybrid invariant. The set C in (8) is the flow set of the
closed-loop system, reviewed below. One key requirement
in the class F is that for each a of the form a = (d,d,0),
the function ¢® is identically zero, and the VHC h%(g) = 0
reduces to the nominal VHC h(g) = 0.

The hybrid controller defined in [11] is given by

eI}, (8)

(¢:¢,a)€eC a=0
Hose * 4 (¢,4,a) €D at = Gose(q, 4, a) )
U = Ua(%d)y

where the flow and jump sets C,D are given by

C={(¢.d,a) | (¢,9) € TW, d6*(q,4) > 0}U

{(¢,4,a) | (¢,9) € TW, 16"(q) — 9| < 0} (10)
D ={(¢,4,a) | (¢,4) € TW, d6*(q,¢) < 0}N
{(g:4,a) | (g,9) € TW, |0*(q) — V| > &}

and the jump map G, is given by

dt = —d
0t = 6*(q)
Gose : (11)
N satg, (v) d=1
A d=—1,
where
6, (V) A Al <7 (12)
sa =
Br ri A>T

The constants r,§ > 0 are parameters used in the definition
of the class F of function families, and v is the feedback
updating A that we mentioned earlier. This feedback is
presented in Theorem 4.2 below.

We refer the reader to Section VII of [11] for a detailed
description of the controller above. Here, we highlight the
two main control mechanisms in Hs: the continuous feed-
back u® enforcing a VHC h%(g) = 0 in the family, and
the discrete feedback v updating the VHC parameters a at
jumps. Each time a is updated, a new VHC is instantiated.
Roughly, jumps occur when the closed-loop system changes
direction of motion, as perceived by the time derivative of
0*(q). There is also a mechanism (implemented using the
variable § > 0) preventing multiple consecutive jumps in the
presence of measurement noise.

The closed-loop system formed by system (1) and hybrid
controller Hos. in (9), (11) has state (g, ¢, a). Following [11],
we lift the orbit O(# ) to this augmented state space by
defining a lifted orbit O,,(6 ) as

Ou(0) ={(q,d4,a) € C|(6%(q),6%(¢,4)) € O(6.), (13)
po (@) = 0},
where
_ W—-06,\) d=1
Ma(a)—{(ﬁa’)\) d— —

The condition py (a) = 0 means that A = 0, i.e., that the
VHC h*(q) = 0 reduces to the nominal VHC h(q) = 0, and
that the memory variable ¥ is either 6 or 8,, depending on
the direction of movement encoded in the toggle variable
d. The projection of O,,(6 ) onto the set T'Q via the map
(g,¢,a) — (g, q) is precisely the target orbit O(6_) expressed
in (¢, q) coordinates, i.e., the orbit Ta(O(f.))).

A Poincaré analysis was used in [11] to show that stability
of this lifted orbit O, (f.) is equivalent to stability of the
origin of the scalar discrete-time LTI system

2(k+1) = 2(k) + 6 /(91(0)M(0)) v, (14)
where b%- € R*("—1) jg a constant vector given by
_0 a Mgy ya Mg
a)\‘)\:o (V (0+) v ( 7) (15)

Fye®g) - V‘“(’\)(&)),

where a_(\) = (—=1,60,)), and a.(A\) = (1,B(0.), A).
The main result in [11, Theorem 6.1], states that if 6% # 0,
and if v? (z) is a feedback asymptotically stabilizing the



origin of (14), setting v = v% (6*(q) — 6.) in the jump
map Gog in (11) ensures that the lifted orbit O, (6 ) will
be asymptotically stable for the resulting closed-loop system
formed by (1) and (9). The superscript § in b’ and v? is
used to indicate their dependency on the chosen oscillation.

IV. MAIN RESULT

The main result in [11] is purely local. We now propose
an enhancement ensuring a guaranteed basin of attraction for
a target oscillation O(f_). We replace the parameter 6 used
in the design of the controller in [11], with a new feedback

n(0) given by
n(0) =0 4+ esign(d —0) H'eem - 1H , (16)

where € > 0 is a new design parameter. We will show
that, by choosing e small enough and setting the feedback
v appropriately, we can not only stabilize the lifted orbit
(’)l,ﬂ(é ), but also provide a guaranteed basin of attraction.

The idea we use here is simple: if the plant state is
too far from the desired orbit O, (A ) (outside the basin of
attraction obtained with the original controller), then instead
of stabilizing Oy;(f.), we change the feedback v to stabilize
an intermediate orbit between the current plant state and
O.:(0)). If the chosen orbit is close enough to the plant
state and is closer to the desired orbit than the current plant
state, then the plant state will eventually become closer to
the desired orbit. We can adjust the orbit being stabilized
every time the system state reaches the jump set to make it
progressively closer to the desired orbit until the plant state
enters the basin of attraction of the original controller.

The feedback 7(#) in (16) implements this idea by break-
ing the set © into segments of length e. If [ — 6| < 2,
then n(0) = 6. 1f 0 € [6 + ke, 6 + ke + ¢€), with k an
integer greater than 1, we have () = 6 + (k — 1)e. This
is illustrated in Figure 2.

o 3d o 0~ + 3¢

Fig. 2: Nlustration of the map 7.

Before stating the main result, we need the following
definition:

Definition 4.1 (Controllability interval D): Let D to be an
open interval of © such that for each 8 € D, the following
properties hold:

(i) the orbit @(6.) of (4) is an oscillation;

(i) |0. —B(6.)| > ¢;

(iii) the vector b%- € R*("=1) in (15) is nonzero.

Theorem 4.2: Consider the underactuated mechanical sys-
tem (1) and a regular VHC h(q) = 0. Fix parameters §, > 0,
pick a family of functions {¢®},ca in class F as in [11,
Defn. 5.2], and define the hybrid controller Hg. in (9), (11).
Suppose the controllability interval D in Definition 4.1 is
non-empty, and let v”7 : © — R"! be a feedback that is
C! with respect to (#,7) and that, for each 1 € D, stabilizes
the origin of the scalar discrete-time LTI system

z(k+1) = 2(k) +b"/(¥1(n)M(n))v".

Then, for each target oscillation O(f ), with § € D and
for each compact interval I C D containing 6 , there exists
€* > 0 such that, for each € € (0, ¢*), using the feedback
n(#) defined in (16) and setting v = " (D) (h*(q) —
1(0*(¢))) in the jump map Gog in (11), the resulting closed-
loop system enjoys the following properties:

a7

(a) the hybrid constraint manifold I in (8) is forward invari-
ant;

(b) the lifted orbit O, (6 ) is asymptotically stable and there
are no Zeno solutions in a neighborhood of Ou(0.);

(c) the basin of attraction of O,,(6 ) includes the set Oy (I).

The proof is in the Appendix.

Remark 4.3: The guaranteed basin of attraction in The-
orem 4.2 includes all initial conditions in which the plant
state is initialized on the constraint manifold I' anywhere on
To(O(I)), and where the controller state a is initialized with
A = 0 (i.e., the controller first instantiates the nominal VHC),
and with d, A set consistently with the initial direction of
movement. Note that the set To(O(I)) is an annular subset
of the nominal constraint manifold. An example of such a set
can be seen in Figure 4 for the child on the swing example
presented in Section V. A

Remark 4.4: One possible choice for the feedback
v" in the construction above is simply v7(z) =
—%(b”f& This choice of feedback places the
eigenvalue of system (17) at zero making the origin exponen-
tially stable, satisfying the conditions on Theorem 4.2. More
generally, if L7 € R"~! is a vector such that b"L" # 0 for
all n € D, then we may set v"(z) = 7%1/72. And
further, instead of placing the eigenvalue at 0 one may place
it anywhere within the interval (—1,1). A

V. APPLICATION: CHILD ON A SWING

We now use this proposed controller to stabilize

an oscillation for the 4 degrees-of-freedom robot
in Figure 3 modelling a <child on a swing.
A MATLAB  script computing the differential
equations modelling this robot can be found on

https://github.com/manfredimaggiore/CDC25.
For simplicity, our model assumes that the links are rigid
massless rods with point-masses at their ends, but the results
with distributed masses would be entirely analogous.

The nominal VHC used for this example is given by

=3
h(q) = q3 ;
qq — 1.2

(18)



Fig. 3: Child on a swing, modelled as a 4 degrees-of-freedom
robot.

and corresponds to the child swinging with their legs fully
extended forward and perpendicular to the swing rod, while
the torso leans behind the swing rod. One can easily see that
the output y = h(q) yields vector relative degree (2,2,2)
everywhere?.

This VHC can be expressed as a graph of a function
of ¢q1, and therefore a natural parametrization is o () =
[0 7/2 0 1.27]T. As such, the map 6* readily be chosen

as 0*(q) = q1.

Constrained dynamics

Fig. 4: Constrained dynamics of the nominal VHC. The orbit
highlighted in red is the orbit we want to stabilize. The black
segment on the 6 axis corresponds to the set I and the shaded
annular region is an illustration of the guaranteed basin of
attraction.

The phase portrait of the constrained dynamics is shown
in Figure 4. It is easily verified that the constrained dynamics
are Euler-Lagrange. This is intuitively obvious because when
h(q) = 0, the swing reduces to a pendulum.

We use the class F family of functions introduced in [11]
of the form

¢(1>191)‘) (Q) = ¢(9 — ’19, A) (19)
LN (9) = X — 17N (9), (20)
’Indeed, since dhq = BT for this example, the decoupling matrix

dhg¢D~1(q)B is given by BT D~1(q)B, and since D~! is positive
definite and B has full rank 3, the decoupling matrix is invertible.

where we take 6 = /20, = 2 and

0 if 6] > 6

MNO— 0201025t o <s D

P(0, ) = {

Following Remark 4.4, we take L" = [0 2 1] T (inde-
pendent of 7)) and for each 7 in the interval |7+ 1.2, 27 — ]
we compute b7L". The result is shown in Figure 5, where
we can see that for each 7 in this interval we have b7 L" # 0.
Furthermore, we can see from the phase portrait of the

m+1.28 21-§
n

Fig. 5: The function b7L" for different values of 7 in the
interval [m + 1.26, 27 — ¢].

constrained dynamics that for all n € [r + 1.26, 27 — §]
we have that the associated orbit O(n) is an oscillation
satisfying |§. — 6,| > 0. As such, this interval is contained
in the controllability interval D from Definition 4.1 and we
can take the set I in Theorem 4.2 to be the entire interval
[ + 1.26,2m — 25]. We choose 6§ = 27 and design the
feedback 7 in (16) to stabilize the orbit O(f.).

Theorem 4.2 states that there exists € > 0 small enough in
the construction of the feedback 7 such that the set Oy, (1) is
contained in the basin of attraction of the target orbit. Here
we take € = 7/20. To verify that this gives us the desired
basin of attraction, we run a sequence of simulations with
initial conditions of the form ¢(0) = o(m + (J), ¢(0) =
0,A=0,d=—1,9 = 1w, where we vary ¢ from 1.2 to 19.

The results are shown in Figure 6. We see that the value
of 6*(q) at consecutive intersections converges to the desired
value 6, and simultaneously, the VHC parameter \ also
converges to zero. These two facts combined imply that
the solution converges to the desired orbit on the nominal
constraint manifold.

VI. CONCLUSION

We have presented an improvement of the hybrid orbit
stabilizer developed in [11], allowing one to asymptotically
stabilize a closed orbit with a guaranteed basin of attraction.
A possible topic of future research is the extension of the
theory of [11] and this paper to handle mechanical systems
with impulsive impacts. A primary area of application of
such an extension would be the motion control of bipedal
robots.
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Fig. 6: Simulation results for different initial conditions. On
the top, the value of 6*(q) at consecutive intersections of the
solution with the Poincaré Section P,.. On the bottom, the
magnitude of the VHC parameter A\ at these intersections.

APPENDIX
PROOF OF THEOREM 4.2

Properties (a) and (b) of Theorem 4.2 are a direct con-
sequence of Theorem 6.1 of [11]. The only property of
Theorem 4.2 that still needs to be proved is property (c)
regarding the guaranteed basin of attraction. )

In [11], a reduced order system with state = :== (0,0, a)
with ¢ = (d,9,\) was derived to model the dynamics of
the closed loop system restricted to the hybrid constraint
manifold T. For this system, a Poincaré section was defined
as

Posc == {(0,6,a) | d=1,0 = 0}. (22)

For the given target orbit O, (), it was shown that the
intersection of the orbit with this Poincaré section is given
by the point 7 := (6,0, (1,6,,0)).

The associated Poincaré return map goc was shown to
have the form

92 (07 U)
gosc(x) = 0
(1,61(6,v), A\1(6,v))

It was argued in [11] that, since the map g,s. depends only
on the state # and the input v, stability of the equilibrium

(23)

Z for the Poincaré system gc+ = gose(Z) is equivalent to
stability of the equilibrium 6 for the # component of g,
given by

0t = 0,(0,v). 24)

Similarly, one can argue that the basin of attraction of Z
for g, can be entirely characterized by the # component
of the system in the following sense: if a set D; is in the
basin of attraction of 8 for system (24), then the basin of
attraction of Z for gos includes the set

D, = {(6,0,(1,9,))) | 6 € Dy }. (25)

It was shown in [11] that the linearization of (24) at the
equilibrium 6 = 7 is given by (17) where z = 6 — 7. In the
statement of Theorem 4.2, v was chosen to be the feedback
v =" (0 —n()). By assumption, the feedback v" (6 — 1)
is chosen to be such that, for each n € I, the origin of (17)
with control v = v"(f — 1) is exponentially stable.

Letting 3(60, 1) := 62(0,v"(8 —n)), the above means that,
for each n € I, the equilibrium 6 = 7 is exponentially stable
for the discrete time system

0t =X(6,n). (26)
Equivalently, this means that for each n € I we have
0%
(69) <1 (27)
(mm)

The following Lemma will be useful what follows:
Lemma 1.1: Consider a parameterized scalar discrete-time
system in the form

0t =3%(0,n) (28)

where 77 is a constant parameter in a compact interval I.
Assume that the function ¥ is continuously differentiable
and that for each n € I we have ¥(n,7) =7 and

(%)
90 (m.m)

meaning that 7 is an exponentially stable equilibrium of (28).
Then there exists €* > 0 such that for each ¢ € (0,€¢*) and
each n € I the interval (n— 2¢,n+ 2¢) is positively invariant
and contained in the basin of attraction of 7 for system (28).

Proof: Consider the coordinate transformation z = 6 —
7. In this coordinate system, system (28) is given by

<1, (29)

2t =g(z,n) =S(z+nn) —n. (30)

Consider the Lyapunov function V (z) = 22. For system (30)
we have that

AV = g(z,n)* - 2* 31

From the Mean Value Theorem we know that, for each z € I,
there exists Z between 0 and z such that

9(z,n) —g(0,n) _ 9y

z—0 9z (32)

(2,m)



Since ¢(0,n) = X(n,n) —n = 0 we have that

0
glzm =25 (33)
Zlzm
and therefore
2
AV = (:‘;g - 1) 22 (34)
Zlizm

for some Z between 0 and z. Since z? is always positive, we
will focus on the coefficient

(35)

Consider the set a~1(R7), i,e. the set of all values of Z,7
such that a(Z,n) < 0. From the definition of ¢ in (30) we

have that
dg

0z

)

=50 (36)

(z,m) (2+n,m)
Since X is assumed to be continuously differentiable, then
« is continuous and the set o~ !(R™) is open. Furthermore,
assumption (29) implies that «(0,7) < 0 and therefore the
set @ }(R™) contains the slice 0 x I. Since the set I is
assumed to be compact, we can use the Tube Lemma to
assert that there exists €* > 0 such that

(=2¢%,2¢*) x I C o ' (R7) (37)

Since Z in (34) is between O and z then z € (—2€*,2¢*)
implies that Z € (—2¢*,2¢*). Therefore expression (37)
means that, for any n € I and z € (—2¢*,2¢*) we have
AV < 0 and for any € € (0,¢*) the interval (—2e,2¢) is
forward invariant and contained in the basin of attraction
of the origin for system (30). In #-coordinates this means
that the interval (n — 2¢,7 + 2¢) is positively invariant and
contained in the basin of attraction of n for system (28). W

The proof of Theorem 4.2 is split into three parts. First,
we show that for a sufficiently small ¢* the set

I={(0,0,(1,9,))) €Posc |0 € 1,10 -9 >3} (38)

is contained in the domain of the Poincaré map. Then, we
show that the set I is forward invariant and contained in the
basin of attraction of @ for system (39). Finally, we show
that these two facts combined imply that the set Oy (1) is
contained in the basin of attraction of O, (f.).

To show that the set I in (38) is in the domain of the
Poincaré map g,sc we start by noting that when v = 0 the
plant state stays on the nominal constraint manifold. Since
the interval I is a subset of D, properties (i) and (ii) from
Definition 4.1, imply that, when v = 0, all orbits starting
from the set I are oscillations with |6 — 6 | > 6. As such,
when v = 0 then the entire set I is in the domain of the
Poincaré map go.. Furthermore, since I is in the interior of
D, continuity of solutions implies that for v close enough to
0, the entire set I is in the domain of Sosc-

We note that, for any 6 € I, we have that [§. —n(6 )| <
2¢. Furthermore, from the definition of v" in Theorem 4.2 we
have that v”(0) = 0. Since v" is assumed to be continuous

with respect to (6,7) we have that for any p > 0 we can
find € > 0 such that |v"(0 —n(6))| < p. This means that by
choosing e small enough we can guarantee that the entire set
I is in the domain of Sosc-

Next, we want to show that the set [ is forward invariant
and contained in the basin of attraction of § for system (39).
Recall that the § component of the Poincaré map g,s. when
the control input is chosen to be v = v"(?) (6 —7(0)) is given
by

0" =%(0,1(0)). (39)

We have seen that system (26) satisfies all the conditions
of Lemma 1.1. Let ¢* by given by Lemma 1.1 and let the
parameter € used in the definition of 7(#) in (16) be such
that € € (0, €*).

We start by noting that, for @ in the interval I, = (0 —
2¢,0 +2¢), we have (0) = 6 . Since 1(6) is constant in this
region, Lemma 1.1 tells us that the interval I is positively
invariant and contained within the basin of attraction of §
for system (39).

Now assume that the interval I, = (0 — ke, 0 + ke)N T
is positively invariant and contained within the basin of
attraction of # for system (39). We will show that this
implies that the interval I, 1 = (0 —(k+1)e, 0 +(k+1)e)NI
is also positively invariant and contained within the basin of
attraction of @ for system (39).

To do that, we_write the intefval I as Ik_-s-l Ul UI_+1,
where I," ; = (0 — (k+1)e,0 —ke]NTand I, , = [0 +
ke, 0 +(k+1)e)NI. The interval I, is already assumed to be
positively invariant and contained in the basin of attraction
of §_ for system (39), so we only need to show that solutions
starting on I, ; and ", ;do not leave the interval Jj,11 and
eventually enter the interval Iy.

We will focus on the case of 6 € [ ,j 1 since the argument
for the remaining case is symmetric. If [ 2‘ 1= (), then I U
I 11 = I which is positively invariant and contained in the
basin of attraction by assumption. If [ ,j 7 (), then for all
0 e I,;:l we have n(6) = 6 +(k—1)e. Since n(0) is constant
in this region then system (39) coincides with system (28)
withn =6 + (k—1)e, and Lemma 1.1 tells us that, for any
€ € (0, €*) the interval (n— 2€, 1+ 2€) is positively invariant
and contained in the basin of attraction of n = 0+ (k —1)e
for system (28).

If Ilj—&-l is in the interior of I, we choose ¢ = €. If I;'_s_l
contains points in the boundary of I we choose € to be
the larges value in (0,€*) such that that (n — 2€,n + 2€)
is contained in I. In either case, positive invariance of the
interval (n— 2€, n+2€) combined with positive invariance of
I}, implies that the interval I, U [ 2‘ 1 s positively invariant.

The fact that the interval (i — 2€, 1+ 2€) is in the basin of
attraction of 7 = 6 + (k—1)e for system (28) means that, for
any solution of system (28) with initial condition in I, ,,
there exists a time /K > 0 such that after K updates the state
will enter the interval (n—e,n+e€). Since (n—¢,n+e€) C I
and I, is assumed to be in the basin of attraction of 8 for
system (39), this means that ;" , is also in the basin of
attraction of 6 for system (39).

+



Using a symmetric argument for /,_, we obtain that the
interval Iy, is positively invariant and contained in the
basin of attraction of § for system (39). By induction we
have that the interval I is positively invariant and contained
in the basin of attraction of # for system (39). A visual
representation of the intervals of interest can be seen in
Figure 7.

\\e \)e
X X
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ke ; LS\
- %/ — Q/ %/
1 1 1 1 1 -
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Fig. 7: Tllustration of the relevant intervals used in part 1 of the
proof of Theorem 4.2.

We have shown that there exists ¢* > 0 such that, if we
choose the parameter ¢ in the construction of 7(#) satisfying
€ € (0, €*), then the set I is in the basin of attraction of f_ for
the Poincaré system (39). We will now show that € € (0, ¢*)
also implies that the set Oy,(I) is contained in the basin of
attraction of O,m(é ) for the full closed-loop system using the
proposed controller H,c. By part (b) of the theorem, the orbit
(’)un(é,) is asymptotically stable so it suffices to show that
each solution initialized in O (I) enters any neighborhood
of Oy(# ) in finite time.

We start by noting that any solutions starting on O, (1)
will remain on the constraint manifold I" of the nominal VHC
until they reach the Poincaré Section P in (22). Since all
orbits in the set O(I) are oscillations that intersect the set
{(6,0) : 6 = 0} in the region where € I, we have that
solutions starting on D must intersect P, for the first time
at a point where 0*(q) € I.

To see why this is the case, consider any initial condition
in Oy (I). The solution from this initial condition starts on
the flow set and on the constraint manifold of the nominal
VHC, and it will flow until it reaches the jump set. Recall that
all initial conditions in O, (1) have (0*(q),0*(q,q)) € O(I)
and correspond to oscillations with amplitude greater than §.
In the case where the initial condition has 9*((], g)>0,d=1
and ¥ = 6., the associated solution will reach the jump set
at a point where ¢ € I and 0*(¢,¢) = 0. In the case, where
the initial condition has 6*(¢,¢) < 0,d = —1 and ¥ = 0 ,
the first jump of the associated solution will update ¥} and d
but will keep A = 0, meaning that the solution will remain
in the nominal constraint manifold until it jumps again, this
time at a point where 6 € I and 49'*(q7 q) =0.

In either case, we note that, since the interval I is
contained in the basin of attraction of 6 for system (39),

then for any initial condition in Oy () and any ¢ > 0
there exists an integer J > 0 such that after J jumps, the
intersection of the solution starting with the Poincaré Section
Pose Will happen at a point where |#*(¢) — .| < (. Since
¢ > 0 is arbitrary, the solution is guaranteed to enter any

neighborhood of Oy (#.) in finite time. As discussed earlier,
part (b) of the theorem ensures that the solution in question

is contained in the basin of attraction of the orbit O (0,).
|
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