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Abstract—In this note the problem of feedback lineariz- is parallelizable if and only if there exish vector fields

ing dynamics transverse to controlled invariant manifoldsis ¢, ... v, : M — TM such that
considered for multi-input control affine systems. Transvese
controllability indices are introduced which adapt the familiar (Vp € M) T,M = span{vi(p), ..., vm(p)}.
notion of controllability indices to assist solving this paticular
problem. Sufficient conditions for transverse feedback lieariza- A manifold M is contractibleif there exists a poinpg €
tion are presented. M and a smooth functiod : M x [0,1] — M such that
|. INTRODUCTION forallp e M
Many interesting problems in control can be interpreted H(p,1)=p, H(p,0) = po.

as the problem of stabilizing the system state to a set
in the state space. This is for instance the case for t[ﬁl contractible manifolds are parallelizable. All manifs
maneuver regulation (path following) problem. Set stabithat are homeomorphic t&" are contractible. The converse
lization problems have been solved in a variety of waysl? false. Since by definition an-dimensional manifold is
see for instance [1], [2], [3]. When the set in question hatocally diffeomorphic toR"™, it is locally contractible. The
the structure of a smooth manifold, one approach to solvéext property of contractible manifolds is used in the séque
a set stabilization problem is to transform the dynamics
transverse to the manifold into linear controllable forrhisT Theorem I.1 ([9]) Let M be a contractible submanifold of
is referred to as transverse feedback linearization. Vemse R", v1,...,v, : M — TR" a set of smooth vector fields in
feedback linearization was introduced by Banaszuk and™ and A = span{vi,...,v,} a distribution inR™. If A
Hauser in [4], where the authors investigate single-inputas constant dimensiok on M, then there exist smooth
systems and invariant manifolds given by periodic orbitsvector fieldsw, ..., w; : M — R™ such that
When feasible, transverse feedback linearization iscitea
due to its simplicity and because it allows one to use a wealth (Vp € M) A(p) = span{ws, ..., wi}-
of synthesis techniques for linear controllable systems.

In [5], [6], we presented conditions for a system to be
transverse feedback linearizable with respect to an aritr B. Tubular neighborhoods, retractions
controllgd invariant_ manifold. Our cqnditions gengralthe Let M be anm-dimensional submanifold d&”. Give M
results in [4]. In this paper we co.n.3|der multiple input SyStha inner product , ) : M x M — R induced fromR™.
tems and _prese_nt _sufﬁment conditions for global tran®/ersha normal spaceof M atp is defined as
feedback linearization.
T,M*+ = {veR": (v,w) =0 Yw € T,M}.
Il. NOTATION AND MATHEMATICAL PRELIMINARIES

Throughout this paper by manifoldis meant asmooth The normal bundleof M, denoted7 M+, is the disjoint
manifold and by asubmanifoldis meant anembedded union of all normal spaces al/. It is a manifold in its
submanifold For details on the material presented in thi®wn right, and has dimensiozn — m. The projectionr :
section the reader may refer to [7], [8]. We denotediyfz) 1M+ — M defined byr : (p,v) — p is smooth. One has
the flow of a smooth vector field through the point. Given  thatT M+ ~ M xR"~" if and only if there exists a function
a distributionD, let DL be its annihilator whilgD(z)]+ is s : U — R"™™, whereU is a subset oR" containing)/,
the orthogonal complement of the vector spdgr). such that

A. Tangent bundle, contractible manifolds (Vp € M) dim(Im((ds),)) =n —m and M = s~ *(0).

If f: M — N is a diffeomorphism of manifolds, then the functions is called asubmersion.
the tangent bundleg M andT' N are said to bequivalent, If e >0andp € M, letD,(c) = {v e T,M" : |jv]| < &}.
denotedl’'M ~ T'N. An m-dimensional manifold\/ is said ’ r “

- ] If € : M — R is a smooth function, let
to be parallelizableif TM ~ M x R™. One has that\/

D(e) = | {p} x Dy(e()).
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Theorem I1.2 (Tubular neighborhood theorem) 7 is a whereu,v = col(vy,v2) € R™, a : N' — R™ is smooth,
closed submanifold @&" then there exists a smooth functionand b = [b; bo] : N' — R™*™ is smooth and nonsingular
€: M — Rso and a diffeomorphism: D(¢) — R™ onto an on .\, such that

open neighborhood af/ in R™ such thatt|axo : (p,0) — (i) The restriction of= to I'* is

D Elps : T* — Z(T)
The mapt is called atubular mapand its imaget(D(¢)) z = (z,0).

is called atubular neighborhoodf M in R™, see Figure 1. (i) |n new coordinates(l) reads as:
It is an open set iR”. When M is compact there exists = FO(,6) + g (5, E)0n + 622, )
z = Z, g9 (Z,5)01 g (z,5)v2

a constant > 0 such thatD(e) is a tubular neighborhood. i )
A tubular neighborhood of a contractible submanifold is a § = A{ + By,
contractible manifold. wherev; € R, (pg < m), B is full rank and the pair
A retractionof a manifold N onto a submanifold/ of N (A, B) is controllable.
is a smooth function : N — M such thatr|,, = identity Fori—0,1,..., define the distributions
on M. The tubular neighborhood theorem implies that any ,
closed submanifold/ of R” admits a retraction of a tubular G; =span{adjgy : 0 < j <i,1 <k <mj}.
neighborhood ofi/, ¢(D(e)), onto M. Such a retraction is proplem 1 involves decomposing the dynamics of (1) near
defined by this commutative diagram the controlled invariant manifold™* into a tangential com-
. ponent (thez subsystem) and a transversal component (the
D(€) ——— t(D/(e)) CR” ¢ subsystem) which is linear and controllable. This process
\ - also involves transforming the set of control inputs int@ tw
T Lo Tt subsetsw; represents a group of controls that can be used
M to steer the system'’s state I, v, represents controls that

only affect the dynamics on the manifold. Our main result

; At 1
where is the natural projection of' M/~ onto M. is a sufficient condition to solve Problem 1.

Given a submanifold/ of R”, a tubular neighborhoat/
of M with associated retraction: A" — M, and an open Theorem IIl.1 Suppose thal* is contractible. Then Prob-
subsetV C M, we say that an open subsEtC N is a |em 1 is solvable if
tubular neighborhood of” adapted from\ if U = r=1(V). @) (Vi € {0,...,n —n* —2}), G, is involutive in a
neighborhood of ™.

[1l. PROBLEM FORMULATION AND MAIN RESULT () (Vi € {0,...,n —n* — 1)), Gi, is non-singular in a

Consider the control system neighborhood of™.
m () (Vi € {0,....,n —n* —1}), dim(T,I™* + G;(p)) is
: tant onl™.
&= flo) + ) uigi(e) = fl@) +g(a)u, (1) cons ;
(@) ; ( (@) (@) (d) (vpeI™) dim(T,I"™* + Gr—n-—1(p)) = n.
where thef, g1, ..., g» are smooth vector fields iR”. We It turns out that conditions (b)-(d) are also necessary (see
assume throughout this paper tHat, . .., g, } are linearly Lemma V.1), while condition (a) is not. The theorem above

independent. Suppose we are given a p&ir u*), wherel'*  is proved in Section VI. The proof relies on the notion of
is an*-dimensional closed and connected submanifol@df transverse controllability indices and the subsequentacha
which is controlled invariant (assume that-n* > m), and terization of the directions transverse T9I'* presented in
u* : T* — R™ is afriend of T*, i.e., a smooth feedback the next section.

H E 4 .
which makesl™ invariant: IV. TRANSVERSE CONTROLLABILITY INDICES

T, . . In this section we adapt Brunovsky’s definition of con-
<f+Zuigi> I - TI trollability indices [10] to the framework investigated in
=t re this paper. Let\/ be a tubular neighborhood df* with
Denote f* = (f + >, ulgi)|r-- We want to solve the associated retraction: V' — T'*. Let V be a contractible
following problem. open subset of * and letU be a tubular neighborhood of

V adapted fromN. Note thatU is a contractible manifold

Problem 1: Find, if possible, a coordinate transformation - : -
(see Section 1I-B). IfT"™* is contractible then we replace

E=(rs):x— (2, the pair (V,U) by (I'*, N). Since V is a contractible
N S EWN) = M CT* xR manifold, it is also parallelizable and there exist vecteld$
vl,...,uh. = V. — TV such that(Vp € V) T,V =

where V is a tubular neighborhood of*, and a feedback span{v/(p), ..., v, .(p)}. For eachp € V let
transformation . .

| po(p) := dim(T,V + Go(p)) — n

v—u=a(z)+ b (x)v1 + ba(x)va, pi(p) == dim(T,V + G;(p)) — dim(T,V + Gi—1(p)),
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Fig. 1. lllustration of the tubular neighborhood theorem.

i =1,2,..., so thatdim(T,V + G;(p)) = n* + po(p) + This plus the fact thatGy, C Gy and Go(p) N T,V =
...+ pi(p). When thep;’s are constant ovel/ the list (Gg(p)+T,V+)N(Gg(p) +T,V+)L =0, implies that
{p1,---, pn—n=—1} is coordinate and feedback invariant and - ~
we have the next result. (¥p € V) Golp) = Go(p) N T,V @ Go(p).
. By Theorem 1.1 there exispy vector fieldsw, ..., w,,

Lemma IV.1 Assume that, for all € {0,...,n —n" =1},  gych that oV, Gy = span{uws, . .. Jw,, }. Write

(Vp € V) dim(T,V + G;(p)) = constant mo

(Vp € U) dim(G;(p)) = constant wj =Y gk j=1,...p0 )
Thenpy > p1 > -+ > pn_n-_1 and there exists a smooth ) h=1
feedback transformation off, v — u = h + Kwv, such that where eachc, : V. — R is a C>~(V) function. By
forall pe V and (Vi € {0,...,n —n* — 1}) the following construction(vVj € {1,...,p0}) w; ¢ T,,V. Let
holds - - -
[r o Gp l=[on — gm ]Co

T,V +Gi(p) =T,V & @span{adjf'gk :1<k<p;}|. whereCy is anm x po full rank matrix of real-valued
functions obtained from (3). Using a similar procedure, find
an additionalm — po vector fieldsg,,+1,. .., Jm such that
for all p € V span{gi, ..., dm}(p) = Go(p).
We now have the desired decompositionion

=0

Proof: By standing assumptiod,* (and hencé/) is
locally controlled invariant. Use th&iend «* to define a
preliminary feedback transformatioan= v* ++'. Hereafter,  (vp € V) T,V + Go(p) = T,V @ span{gi, ..., Gp, } (P)-
without loss of generality, lef|r- = f* andu = . Let
I(p) = Im ([ g1 -+ gm ]) (p) be the image of the input
vector fields prior to any feedback transformations. We will (VP €V) Gpot1(p)s - -, gm(p) € TV

use this matrix function in the final steps of the construttio _ .
On V, deﬁne the dlstrlbuyoréo(p) _ [GO(p) mTpV]L N SII’ICe, OI’]V, f(p) S TpV, we ha.Vé adjgk(p) € TpV +

In the new basis fot7,

Go(p). First we show thaty, is a smooth, regular distribu- Gj-1(p). po +1 < k < m, j = 0,1,..., and so
tion. OnV, Go(p) N T,V is constant dimensional since ~ PLy-+Pn—n*~1 < fo- Geometrically, ori” the vector fields
. . . adjfgk(p), po +1 < k < m, cannot be used to generate
dim(T,V 1 Go(p)) = dim(T, V) + dim(Go(p)) directions in7,,V + G (p) which are not contained i,V +
— dim(T,V + Go(p)). Gj_1(p). To simplify notation, relabel these new vector
Since Gy and 7,V are regular distributions and their inter-1€1dS g1,..., g asgu,..., gm and proceed to perform the

section is constant dimensional, it follows th@§(p) N T,V induction step. This part of the proof is regrettably onuitte
is smooth along withGo(p) N T, V]l Thus Go(p) is the due to space restrictions, however the induction step paxe
»V1T.

intersection of two smooth, regular distributions. In aiati, 1 & Similar manner as above.

we now show thatG, has constant dimensiop, and . L€t I(p) = Im([ g1 --- gm ]) (p) be the image of the
therefore that it is a smooth distribution. For alE V/, input vector fields generated during the above process so

o ) ] that so that for allp € V, II(p) = TI(p). In conclusion,
dim(Go(p)) = n — dim(Go(p) N T, V') + dim(Go(p)) the feedback transformatiom, — u = h + Kv = u* +

— dim([Go(p) N T,V]" + Go(p)) (HTH)_1 11" IIv, defined onV/, has the required properties.

= dim(Go(p)) — dim(Go (p) 4 TpV) 1To unify the notation, it is understood throughout tigat (p) = 0 for
= po. k <O0.



Finally let K = K or andh = h o r to obtain a feedback fields in (4) results in the next array efindependent vector

transformation defined of. m fields on\:
The next result follows from the proof of Lemma IV.1. 1 DlyeesDiigy GlyeevsGpoi woe § onns
~ kpy—1 kpo—1
O, 1 ady" g1, ad" gpys
i i ~ ~ k k
Corollary IV.2 Assume thai™ is contractible and 2 Dy oo ees D, 3 ady g1, ady g,y
s kpg—1—1 kpo—1—1
(Vp e T*)(Vi € {0,...,n—n* —1}) D, s 0T g1, ad T g
dim(T, T + Gi(p)) = constant S
(Vp € N)(Vi € {0,...,n —n" —1}) Po— 1) Vg it Dy ady’gr, adgga; -
. ad? " g1, ad? " go;
dim(G;(p)) = constant ] I . A
(Vp € I*) dim(T,I™" + G (p) = Po Ofyma415 -5 Ongy3 adg®gus ... 5 adg g1
P 1mi4Lyp n—n*—1\P)) = N. p0+1 Uﬁk171+1’7...7vn*;.
Then there exists a smooth feedback transformation: H . . Y TR? field (hS')h
u = a + Kv defined onV such that for allp € I'*, R" is ere v, .. o Vg PN are vector fields w lc
isomorphic to restricted toI™, pointwise form a partial basis faf,I™.
The vector field&;ﬁkrlﬂ, co,Ups I — TT™ are vector

T,T* @ Span{adgcgk(p) :0<j<n-—n*—1,1<k<p;}. fields defined solely od™, pointwise completing the basis
(4) of T,I'*. The remaining vector fields of the array point-wise
span all directions transverseIpI'*. By the construction in
the proof of Lemma IV.1(Vi € {1,...,m})(Vj € {k;, ki +
In the sequel we will need to identify directions in thel:---})(Vk € {i,....,m}) adigr € T,I'" + Gj_1(p).
intersectionT,,V N G;(p). To this end it is useful to define V. NECESSARY CONDITIONS

the integers We present a set of necessary conditions to solve Prob-

po(p) :== dim(7,V N Go(p)) lem 1.

1i(p) = di_m(TpV NGi(p)) — dim(T,V N Gi-1(p)) Lemma V.1 Suppose that Problem 1 is solvable. Then, for

A ! any x € I'*, there exists a contractible neighborho®d of
fi(p) = Zﬂj- x in T* such that, lettingJ be the tubular neighborhood of
=0 V adapted fromV/,

When thep;’s and z;’'s are constant ovel’ we have the (&) Forallp € V, dim(7,V + Gi(p)) = constant( < i <

following result whose proof is omitted for brevity. n—n*—2(.e.,po,...,pn_n-—2 = COnstant)

(b) For aII* p € V, dim(T,I'™* + Gp—n-—1(p)) = n (i.e.,
Sy T pi=n—n*)

(c) The controllability indices of A, B) in (2) coincide with
the transverse controllability indices dfL).

Lemma IV.3 Assume that the conditions of Lemma IV.1
hold. Then, for each € {0,...,n — n* — 1}, there exist
n; vector fieldso, : U — TR™ such that, after the feedback

transformation in Lemma V.1, for aj) € U Proof: ChooseV small enough that it is covered by
a coordinate chartV, ¢) of I'*. Since conditions (a)-(c) are

Gilp) = coordinate and feedback independent, it is sufficient tavsho
i , that they hold in(z,¢) coordinates. Lel/ := Z(U) ¢ M
span {é1,...,05,} @ | @) spanf{adigy : 1 <k < p;} andV := Z(V) = V x 0 (the latter equality follows from
j=0 property (i) in Problem 1). Sinck is a tubular neighborhood
where (Vp € V) span{tn,..., 05, }(p) C T,V. adapted from\ we haveV c U Cc V x R,
In (¢,&) coordinates we have that for apye V/
Under the assumptions of Corollary 1V.2, we are now Tow (@V)) +Ci(@(p). 0)
ready to defingransverse controllability indices; ko Im ({ I oK e D ©6)
T e Op—n*xnx B AB ... A'B
k; := number of integers in the listpo, ..., ppn—n-—1} The matrixB is full rank from which it immediately follows
which are > i. that T¢(p)(¢(f/)) + Go(¢(p),0) has constant rank which
combined with (6) proves (a). By controllability of the pair
It is easily checked thak, > --- > k,, and) . k; = (A, B), onealso has thdtb(p)(¢(V))+Gn,n*,1(¢(p),O) =

n — n*. Moreover there is a bijection between the listR™. From (6) it is also clear that

{po;- .. pn—n=—1} and the list{kq, ..., k,, }. Using Corol- o i i1
lary 1IV.2 and IV.3, and following Wonham’s construction in pi =rank([B -+ A'B]) —rank([B --- A" B])
[11], it is not difficult to see that a reordering of the vectorand property (c) holds. [ ]



V1. PROOF OF THE MAIN RESULT transformationv — u = h + Kv defined in N\ defined
The following result is used in the proof of Theorem I11.1.therein. We proceed to construct the vector valued function
« satisfying the conditions of Theorem VI.1. Consider the

Theorem VI.1 Problem 1 is solvable if and only if there independent vector fields of (5).

exist po smooth functionsus, ..., a,, : U — R, whereU is Choose any poinp, € I'* as the origin for generating
a neighborhood of* in R™, such that S-coordinates by flowing along the vector fields in (5). Note
Q) I*c{zelU:aix)=0, i=1,...,p0} that all of these vector fields are well definedAh except
(2) The system ’ T for vs,, _,+1,...,v,+ Which are defined everywhere dit
. and we use these vector fields to generate the mapging
b= @)+ uigia) (F2)HW) = W I
i=1 @ FO .80 = (s?,...,sg*,ﬁk )
"= a(z) vne 1
Y — (1)80)“71 O .- OCI)zg* (po)
has uniform vector relative degref,,...,k,,} over Rk -1 !
r=. Use the remaining vector fields in (5) to define a sequence
of mappingsF : (F/")"Y(U) — U c N, j €

The proof is conceptually identical to the proof of an{1 pods i € {kjur k; — 1) associated with each
ey 00} JARTONN

analogous result in [12]. L ; .
i . layer of bracketing in the array (5). Each mﬁﬁf consists
Proof: (=) Suppose tha_t Problem 1 is solvabl_e_. Byof the composition of flows of vector fields which at each
Lemma V.1, part (c), the paifA, B) has controllability

- . . i I* inG; i - =
indicesks, ..., k,,. Thus, without loss of generality, we can point onl* are inG;(p), notin Gi—1(p) (1€t ky 1 = 0 and

assume that the paf, B) is in Brunovsky normal form -1=0)
ki oki _ (ki kj
A = diag{A',..., A7}, B = diag{B',..., B}, F7 257 = (S(i,l))’ RR S(z‘,j-ﬁ-m))
with A? € R¥*F: and B € R*¥*! given by = q)v;?;’ﬁl o---0 ‘bﬁ:j o ‘bag;fgl 0---0 @ag;fgj (p),
0 R S(i,g+1) 5(i,9) 5,1
0 10 0 0 (1< <po) (kjyr <i<hj—1).
00 1 0 N
A= | . .. |, B =|:]. The notation F;” can be understood as follows: The
0 0 0 1 O superscripk;, (1 < j < pg), indicates the row of (5) used in
0 0 0 0 1 the mapping. The index in k; reflects the number of input
_ _ _ vector fields, i.eg1 (), . .., g;(x) appearing at each order of
We definex;’s in (z, ) coordinates. Letv = (o1, ..., ) 1 bracketing in the row. The subscrift(k;1 <4 < k; — 1),
M —R™, (2,£) — C&, where gives the order of Lie bracketing. Specificall/? consists

C =diag{C",...,C}, C*"=[10 ... 0] (lengthk;). of the vector fields in7; that are not inG;_1, i.e. j input
vector fields and a subset of the tangential vector figlgs,

This choice ofaq, ..., a,, satisfies conditions (1) and (2). of them to be exact.
(<) The existence of smooth functions ..., ay, : U — Forj e {1,...,po}, let Fki = F,f.jﬂ o---oF}_, . Further
R yielding a uniform vector relative degrefgii,....km}  compose these mappings to gener@iteoordinates via the

(with 3=, k; = n—n*) over* implies, by [13, Proposition compositeF : F~1 () — A0 ¢ A defined as
11.5.1], that there exists a coordinate transformafior- ) N 0
(r,s) : N = E(N) C Z* x R*™", whereN C U is a Fi=Fo0o0.--0F" o F"(pg). (8)

tubular neighborhood o£*, yielding the normal form (2), The g-coordinates are given by = col(S°,...,Sk)

where Z* := {z : s(x) = 0}7 is th*e zero dynar?ics manifold \\ 1ore gk — Col(Slkcj:_l’ L S,f{ ). As candidate output

O'f the’S)t/JStlem o a cont i 1:1 invari hasa(x)'legwam.j’ functions(as, . . .,ap(f), choose the timeq-coordinate) as-

fé“gsvﬁ thz:)jngsgg 25 (\:/Senlrc\)/vz h:\Y:rtIP?S; 2;%3:/: th]é(\)tg sociated with the highest order Lie bracket of each input
) vector field. Namely, for € {1,...,p0} let a; be the time

Z*. Sincel™* andZ* are two connected, closed submanifold
of the same dimension ardd® c Z*, it follows thatT™* =
Z*,

We are now ready to prove the main result of this paper.

Sspent flowing alongad’;iflgi. With this choice fora, we
must show that the conditions of Theorem VI.1 are satisfied.
The image ofl™* in S-coordinates is given by

k}j ]Cj

N F(F*):{S:S(m):"':S(Z,'):O’
Proof of Theorem Ill.1Conditions (a) - (c) allow us to apply 1< 5 < po, kjur <i<ky—1).
Lemma IV.1 and Lemma IV.3. Apply the smooth feedback
The chosen outputs are included in the above set of times
2While in [13, Proposition 11.5.1] the extra condition thattain vector and therefore they are identica”y zero On. This shows

fields be complete is assumed, here this condition is noteteégcause " - . .
the normal form (2) is required to be valid in a neighborhobd®, rather thatI'™ C {a(x) = 0}. Sinceq; represents the time flow

than the entireR™. along vector fieldzd’}?‘_lgi, we immediately have that for all



pel™, Ladkrlgiai # 0. In order to showthaLadﬁgjai =0

foralli e {1,...,p0}, £ < ki—1,7 € {1,...,m} we appeal
to S-coordinates.
Fix a set of timesSyi_,, Sk-1,... S° to uniquely

determine the point = F}" | o FFi-t o ... 0 FO(py) €
NP0, Use this point as the origin for the partial mappingS
Fkeoo...0 F,f;_g(:c). The vector fields of this mapping are
linearly independent in\ so its image is a submanifold.
Furthermore, the vector fields span an involutive distidiut

. . - . A
Gl —2, SO the image of this map is the integral SmeameICﬁs satisfied. Applying the preliminary feedback above and

nff)llowing the procedure of Theorem Ill.1 we obtain the
mapping F(s). Taking the inversef'~!(z) we obtain the
functiona(x) = (zoe*3+23(0) 2,). Systen(9) with output
y = a(z) satisfies Theorem VI.1 and we can now employ
an input-output linearization approach to stabilizidg. A

Gk, —2() of Gy, —a.

The dimension of the fixed times used to obtain the poi
z is exactly equal ton — dim(Gy,—2). This shows that in
S-coordinates

F(Gr,—2(x)) = {S: Syi_, =const, S*~ = const,

.., 8% = const}
and thereforel's F (G, —2(x)) = col(0, Idim(Gkﬂ)). From
this it immediately follows that<dai,adfcgj> is zero for
1e{l,....,p0}, {<k;—1,5€{l,...,m}.

We are left to show that thgy x m decoupling matrix
is full rank for any p € I'*. This part of the proof is
omitted. We conclude that the vector functien(z)
col(ai(x),...,ap(z)) yields a vector relative degree of

{k1,...,k,,} thus satisfying conditior2) of Theorem VI.1.
[

A

Remark VI.1 Observe that the above proof elucidates the

conservativeness of the conditions of Theorem IIl.1. Theop
rem Ill.1 holds if the integen — n* in conditions (a) - (d)
is replaced withk; . 2]

Example VI.1 Consider the system -

0 1 0
Tg4 — T2X3 0 0 4]
T = T — I3 +1 0 Jur+ | 0 | us. (9)
IT5 — T2X3 T2 0
0 0 1 5]
and the pair

(T u*) = ({z:21 =22 =24 = x5 = 0},0). (6]

Here T'* is a subspace and hence contractible. Simple
calculations revealpy = 2, p1 = p2 = 1 everywhere on 7]
I'* yielding transverse controllability indices; = 3 and
ke = 1. Since the constraints definirlg* satisfy property (8]
(1) of Theorem VI.1 it makes sense to see if any paifyg)
of constraints also satisfy propert®)( There is only one
choice fory’ which yields a well defined relative degree[lo]
near™*, namelyy’ = col(z1, z5) with vector relative degree
{1,1} # {k1, ko} and so property %) fails to hold and it is [11]
not clear whether input-output linearization can be used t?lzl
stabilizeT™*. On the other hand, the sufficient conditions o
Theorem 111.1 provide an affirmative answer.

The retraction used to generate the feedback transfol®!
mation of Lemma IV.1 has an especially simple form:

col(z1, xa, T3, 24, x5) — col(0,0,x3,0,0). The result of the
feedback transformation is

0 1
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The distributionsGy, and G; are involutive nearI'™*
atisfying condition (a) of Theorem Ill.1. Conditions (m)da
(c) are easily checked by writing down the expressions for
the vector fields withl,I'*

5. Finally we have that
€ I'*) dim(7,I'* + G2(p)) = 5 and condition (d)

VII. CONCLUSIONS

This paper presents preliminary results headed toward
a characterization of transverse feedback linearizatmm f
multi-input systems. The main contributions are a formal
problem formulation, the introduction of transverse cohtr
lability indices, a methodology for conveniently arrargin-
put vector fields (Lemma IV.1), non-checkable necessary and
sufficient conditions (Theorem VI.1) and sufficient chedkab
conditions (Theorem l111.1) for the solvability of Problem 1
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