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1 Introduction

High accuracy positioning stages with multiple degrees-of-freedom, or microsteppers, are ubiquitous
in industrial manufacturing. These devices are used in probing and inspection systems, in the as-
sembly of disk drive heads, and in semiconductor manufacturing. In semiconductor manufacturing,
microsteppers are employed to accurately move silicon wafers in the photolithography process. To
guarantee both speed and precision, microsteppers are usually composed of a lower stage, which
actuates large high-speed movements, and an upper stage, which delivers short high-precision move-
ments using piezoelectric actuators [1]. One such device, shown in Figure 1, delivers motion by
means of mechanical contacts. Friction in mechanical contacts releases microscopic dust particles
that limit the accuracy of the photolithographic process, thus reducing production throughput in
semiconductor manufacturing [2]. For this reason, there is increasing interest in the semiconduc-
tor industry to replace mechanical microsteppers by magnetically levitated devices. Magnetically
levitated microsteppers are an attractive alternative in other applications since their parts are not
subject to mechanical wear and hence do not require extensive maintenance.

Figure 1: Structure of a conventional microstepper used in semiconductor manufacturing. The
primary stage employs servomotors for fast and coarse 2DOF actuation. The secondary stage
employs piezoelectric actuators for fine 3DOF or 6DOF regulation. The silicon wafer is placed on
top of the secondary stage.
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In [3], a six-degree-of-freedom (DOF) device is designed using ten electromagnets placed within the
interior of a cage structure that houses a movable platen. The planar range of motion of this device
is 8×8 mm2, while the air gap range is 4 mm. In [4], [5], [6], the authors develop magnetic levitation
devices utilizing the principle of electromagnetic reluctance to achieve planar magnetic levitation
with a range, in the latest prototype, of 130 × 130 mm2. In [7],[8], a contactless microstepper
employs air-cored permanent magnet linear synchronous motors (PMLSM) to actuate six DOFs.
The planar range of motion of the device in [7] is 50× 50 mm2, while the air gap range is 400 µm.
PMLSMs are ideally suited for building microsteppers. Since each PMLSM produces both normal
and longitudinal forces, several PMLSMs can easily be assembled to control multiple DOFs yielding
a device with a simple mechanical design. Moreover, PMLSMs allow for a large range of operation.
In [9], an idealized 3DOF microstepper is investigated. Similarly to the microstepper developed in
[7], the device in [9] employs PMLSMs as fundamental building blocks. The main difference with
the device in [7] is that the PMLSMs in [9] are iron cored rather than air cored and the device
in [9] uses standard permanent magnets rather than custom-design Halbach magnet arrays. This
configuration is advantageous compared to previous implementations since iron-cored PMLSMs
are commonly available on the market and require less current for levitation than their air-cored
counterparts. The question remains, however, as to whether a physical implementation of an iron-
cored PMLSM-based positioning system can be successfully implemented.
In this article we provide the experimental verification of the theoretical ideas found in [9]. This
verification presents major challenges. First, the validity of the mathematical model of [9] must
be assessed. Since unknown parameters enter the model, the model verification must rely on
parameter identification. Next, a controller must be designed to achieve setpoint and sinusoidal
tracking. Finally, the controller must decouple all DOFs.
Due to the difficulty of the experimental verification, we divide our research into two stages. We
first implement a device that employs one PMLSM to actuate two DOFs (horizontal propulsion
and vertical suspension) with range of operation 100 mm×10mm. Using this device, we assess the
accuracy of the model of the forces found in [9]. A key ingredient is the parameter identification
technique of [10]. We then design a nonlinear controller based on feedback linearization and output
regulation for setpoint and sinusoidal tracking. We show experimentally that this controller yields
superior performance to linearization-based output regulators.
Having tested the feasibility of a simple device, we develop an experimental setup that employs four
PMLSMs to actuate three DOFs with a planar operating range of 100× 100 mm2, an air gap range
of 10 mm, and a positioning accuracy of 10 µm. The experimental results show good performance
for both setpoint and sinusoidal tracking over the entire operating range of the device.

2 PMLSM Operation

A permanent magnet linear synchronous motor (PMLSM) is composed of two parts, a stator and
a mover; see Figure 2. The stator hosts a three-phase winding generating a magnetic field that
travels along the linear axis. Depending on the stator core filling, a PMSLM is either air cored
or iron cored. The mover is constructed of a series of permanent magnets of alternating polarity
mounted on an iron backing.
In typical configurations, the axis normal to the linear motion is constrained at a fixed air gap by
means of bearings, and the PMLSM is used to propel the mover along the linear axis. However,
PMLSMs can generate both a longitudinal force along the linear axis and a normal force. These
forces can be used for simultaneous propulsion and levitation. The longitudinal force is generated
by the interaction between the magnetic charge of the permanent magnets and the traveling stator
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field. For an iron-cored PMLSM, the normal force has two components:

(i) An attractive force between the permanent magnets of the mover and the iron core of the
stator.

(ii) An attractive/repulsive force generated by the interaction between the permanent magnet
fields and the field of the stator coils.

The permanent magnets in the mover can be designed so that component (i) of the normal force is
slightly stronger than the gravity force when the mover is inside a predetermined operating range.
The stator currents are regulated to generate a small repulsive normal force to achieve levitation.
Thus, in iron-cored PMLSMs, small-amplitude stator currents are sufficient for levitation. In
contrast, due to the absence of ferromagnetic material in the core of the motor, an air-cored
PMLSM produces only component (ii) of the normal force. Thus, to achieve levitation, air-cored
PMLSMs require larger stator currents than their iron-cored counterparts.
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Figure 2: Structure of a flat, single-sided iron-cored PMLSM. A PMLSM is composed of two parts,
a stator and a mover. The stator has slots hosting a three-phase winding. The mover, placed
below the stator, hosts a series of permanent magnets of alternating polarity. The variables x and
y denote the horizontal displacement of the mover relative to the stator and the air gap length,
respectively.

3 Iron-Cored PMLSM Model

We next present a mathematical model of the longitudinal and normal forces, denoted Fx and Fy,
generated by an iron-cored PMLSM. This model was developed in [9] based on [11],[12].
Referring to Figure 2, let x denote the horizontal displacement of the mover relative to the stator,
and let y denote the air gap length. Define id and iq as the direct and quadrature current inputs
to the PMLSM. These inputs are related to the magnitudes Ia, Ib, and Ic of the phasors of the
three-phase currents according to
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The longitudinal and normal forces on the mover are given by

Fx = −K1(y)iq, (1)

Fy = −
[

K2(y) + K3(y)id + K4(y)(i2d + i2q)
]

, (2)

where
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The constant σm, denoting the magnetic surface charge density of the permanent magnets (see
[11],[12] for a definition of magnetic surface charge density), is unknown and is not easily deter-
mined experimentally. The remaining constants in the above expressions characterize geometric
and electromagnetic properties of a PMLSM. The description and numerical values of all constants
are given in Table 1. The function Bpmy1(y), which represents the magnetic field produced by the
permanent magnets, is approximated using a 12th-order polynomial.

4 2DOF Testbed

To verify the mathematical model of the longitudinal and normal forces in (1) and (2), we use
a 2DOF positioning stage. This stage, designed and built by Quanser Consulting, employs one
PMLSM to control the horizontal displacement x and the air gap length y; see Figure 3. The
horizontal and vertical ranges of motion are 100 mm and 10 mm, respectively. The individual
components of the system are described below.
The stator of the PMLSM, which is fixed in place to a heavy aluminum frame, is longitudinally
laminated and transversally slotted to accommodate a single-layer three-phase winding. The mover,
which is attached to a movable platform, is composed of four type-N35 permanent magnets attached
to a ferromagnetic backing.
The mover of the PMLSM is mounted on a movable platform that constrains the motion to lie in a
vertical plane. As shown in Figure 4, the platform slides on two horizontal linear guides, which are
in turn supported by a base that slides vertically on four linear guides; see Figure 5. Using linear
guides in this experiment has several benefits. First, the guides allow us to focus on the two DOFs
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Figure 3: 2DOF magnetic levitation positioning stage. The stage employs one PMLSM to control
the horizontal displacement x and the air gap length y. The stator of the motor is fixed in place to a
heavy aluminum frame. The mover is a attached to a movable platen, which hosts four permanent
magnets. The horizontal range of motion is approximately 100 mm, while the vertical displacement
is approximately 10 mm.

we want to control by preventing the platform from pitching, rolling, and translating in an undesired
direction. Furthermore, linear guides make it easy to include vertical and horizontal stoppers for
adjusting the operating range of the platform and fixing either the horizontal or vertical motion
of the system. Finally, linear guides facilitate incorporation of sensors. We employ two linear
optical encoders with a resolution of 10 µm to measure the horizontal and vertical position of the
platform. The velocities of the platform are estimated using high-gain observers. Since the linear
guides introduce friction in the system, we plan to eliminate them in future generations of the
experiment by employing multiple linear motors to control six DOFs.

Figure 4: Closeup of horizontal linear guides. The linear guides secure the mover to the platform
and allow for horizontal motion. The optical encoder measures the horizontal displacement of the
mover with an accuracy of 10 µm.

The three-phase ac current required to actuate the stator coils is provided by three linear current
amplifier modules (LCAMs) supplied by Quanser Consulting. Current commands are sent to the
LCAMs through an interface from a PC. Each LCAM can supply 7 A continuous and 9 A peak.
The power delivery is factory tuned to account for the inductance of the stator coils in the system.
The positioning stage is connected to a standard PC running Windows XP using a Quanser Con-
sulting Q8 board. The Q8 board, which provides all the necessary analog and digital I/O, is
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Table 1: Specifications for the 2DOF positioning hardware. Many of the measurement values
conform to industry standards. The mass Mh displaced horizontally and the mass Mv displaced
vertically are different since the platform is constructed from separate components that move in-
dependently across each range of motion.

Parameter Symbol units value

Stator slot width b0 mm 12.7
Stator slot pitch t1 mm 19.05
Turns per phase W – 900
Coil pitch ωc mm 57.15
Stator pole pairs p – 3
Number of stator slots z1 – 18
Permanent magnet height hm mm 5.0
Permanent magnet length LA mm 50
Number of permanent magnets pm – 4
Magnetic surface charge density of permanent
magnets

σm A/m –

Pole pitch τ mm 57.15
Permanent magnet width τp mm 28.58
Permanent magnet coercivity Hc A/m 875400
Perm. magnet relative recoil permeability µrec – 1.1
Free space permeability µ0 N/A2 4π · 10−7

Horizontal Mover Mass Mh Kg 1.594
Vertical Mover Mass Mv Kg 4.350

operated at a sampling frequency of 5 KHz. Control of the magnetic levitation hardware through
the interface is implemented using the Quanser Consulting WINCON real-time environment. The
software is fully integrated into MATLAB and allows construction of controllers using Simulink
diagrams.
The model of the 2DOF testbed is presented next. Let g denote the gravitational acceleration
constant, let Mh denote the mass of the platform plus all linear guides, and let Mv denote the mass
of the platform plus the pair of vertical guides. Thus, Mh and Mv are the masses of the compo-
nents that move horizontally and vertically, respectively. Denoting (x1, x2, x3, x4) = (y, ẏ, x, ẋ) and
(u1, u2) = (id, iq) and using the expression for the longitudinal and normal forces in (1), (2), we
obtain the 2DOF model
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, (3)

y =

[

x1

x3

]

. (4)

It is clear from (3), (4) that the longitudinal and normal dynamics are coupled. In practice, it
is desirable that the longitudinal and normal motions be decoupled. Decoupling is achieved by
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Figure 5: Closeup of vertical linear guides. The linear guides secure the platform and allow for
vertical motion. Vertical stoppers are used to prevent the mover from hitting the stator as well as
to constrain the vertical motion of the platen during model verification.

control design, as shown below.
In preparation for model validation, let

L1(x1) =
K1(x1)

Mh
, Li(x1) =

Ki(x1)

Mv
, i = 2, 3, 4,

and rewrite Li(x1), i = 1, . . . , 4, as

L1(x1) = C1
λ̃(x1)

Kc(x1) sinh(
π

τ
(hm + x1))

, (5)

L2(x1) = C2λ̃(x1)Bpmy1(x1)
2, (6)
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τ
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, (7)
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c (x1)

, (8)

where C1, . . . , C4 are given by
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√

2Wkw1pmLAσmµ0 sinh(π
τ
hm) sin(

πτp

2τ
)

Mhπp
, C2 =
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,

C3 = −3
√
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18LApmW 2k2
w1µ0

Mvτp2
.

As noted above, the parameter σm in the expressions for C1, . . . , C4 is unknown. Also, due to
variations in the manufacturing of components, only approximate values of the parameters Mv, Mh,
and W in the expressions for C1, . . . , C4 are available. In the next section we estimate C1, . . . , C4

using a parameter estimation technique.
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5 Model Verification Procedure

The model in (3) does not include friction, cogging forces, or end effects. Our goal is thus to verify
to what extent these unmodeled effects can be neglected within a reasonable range of operation. A
key ingredient in our verification is the noise-perturbed full-state information (NPFSI) estimator
of [10], which can be used to estimate parameters (such as C1, . . . , C4) that enter linearly in a
state equation. See the sidebar “NPFSI estimator” for more details. The NPFSI estimator is
used in three different ways, namely, to verify the horizontal dynamics when the vertical motion
is constrained; to estimate C2, C3, and C4 and verify the vertical dynamics when the horizontal
motion is constrained; and to simultaneously estimate C1, . . . , C4 and verify horizontal and vertical
dynamics.
We briefly discuss the implementation of the NPFSI estimator. Suppose it is desired to estimate
C1, . . . , C4 in (3). Two PID regulators are used to determine the inputs u1 and u2 to make the
horizontal and vertical dynamics approximately track reference signals consisting of a sum of si-
nusoids at various frequencies. The frequency content of the reference signal must be sufficiently
rich for the estimator to converge. The signals x1(t), x3(t), u1(t), u2(t) generated by the closed-loop
system are recorded. Using high-gain observers, the signals x2(t) = ẋ1(t) and x4(t) = ẋ3(t) are
estimated. The input and estimated state signals are then used by the NPFSI estimator to estimate
C1, . . . , C4.

Sidebar: “NPFSI Estimator”

The NPFSI estimator of [10] provides a technique for estimating an unknown vector of
parameters θ in a nonlinear system of the form

ẋ = A(x, u)θ + b(x, u) + ω(t),

where ω(t) is a bounded disturbance. The estimator relies on a noisy measurement

y = x + ν(t),

where ν(t) is the measurement disturbance. The confidence level in the state measure-
ment is characterized by a positive scalar ε that can be thought of as a bound on the
L2 norm of ν(t). The estimator is given by

˙̂
θ = ε−1Σ−1A(y, u)T (y − x̂),

where

˙̂x = A(y, u)θ̂ + b(y, u) + ε−1(y − x̂),

Σ̇ = (1 − γ−2)AT (y, u)A(y, u).

Here, γ is a positive scalar that can be tuned by the user to guarantee estimator conver-
gence. Under suitable assumptions, it is proven in [10] that θ̂(t) converges to θ as long
as a persistency of excitation condition is satisfied and γ is chosen sufficiently large.
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5.1 Verification of Horizontal Dynamics

By constraining the air gap to be a constant value x̄1 and setting u2 = 0, the model (3) reduces to

[

ẋ3

ẋ4

]

=

[

x4

−L1(x̄1)u1

]

. (9)

Applying a constant control input ū1 and initializing the system with horizontal speed x4(0) = 0,
the horizontal displacement x3(t) of the mover is given by

x3(t) = −1

2
L1(x̄1)u1t

2 + x3(0). (10)

This fact is used as follows. For each value x̄i
1 in a predefined set {x̄1

1, . . . , x̄
k
1}, the air gap is

constrained by hardware to be at x̄i
1. The mover is started at x3(0) = −50 mm with zero speed. A

step input u1 = −0.5·1(t), where 1(t) denotes the unit step function, is imparted to the system, and
the resulting horizontal position data are collected. A parabola is fit to the data and an estimate
of L1(x̄

i
1) is obtained by means of (10). For verification, L1(x̄

i
1) is also approximated by applying

the NPFSI estimator to (9).
Experimental results show that the horizontal motion is indeed parabolic, suggesting the correctness
of (9). Furthermore, the average error between the estimates of L1(x̄

i
1) produced by the NPFSI

estimator and those arising from curve-fitting parabolas is 3.8%, while the maximum error is 10%.
This result reflects the accuracy of the model of the horizontal dynamics and gives confidence in
the effectiveness of the NPFSI estimation technique, which is the key verification tool used below.

5.2 Verification of the Vertical Dynamics

By constraining the mover at x3 = 0 mm and setting u1 = 0, the model (3) reduces to

[

ẋ1

ẋ2

]

=

[

x2

g − L2(x1) − L3(x1)u2 − L4(x1)u
2
2

]

. (11)

According to the model (11), the current ū2 needed to maintain the air gap at a desired equilibrium
x̄1 satisfies

g − L2(x̄1) − L3(x̄1)u2 − L4(x̄1)u
2
2 = 0.

This equation has two roots, one positive and one negative. Since only the negative root is com-
patible with the physical setup, we set

ū2 =
−L3(x̄1) −

√

L2
3(x̄1) − 4L4(x̄1)(L2(x̄1) − g)

2L4(x̄1)
. (12)

By applying the NPFSI estimator to (11), we obtain estimates of C2, C3, and C4. These estimates
are used to determine expressions for the equilibrium currents by replacing (5)–(12). These expres-
sions are evaluated for constant air gaps ranging between 10 and 25 mm with 1 mm increments.
The results are compared to experimentally measured equilibrium currents for the same set of air
gaps.
The results, shown in Figure 6, indicate that, for air gaps between 15 and 25 mm, the equilibrium
currents predicted by the model (11) differ from the experimental values by less than 5%. On
the other hand, theoretical and experimental currents diverge for air gaps below 15 mm. The
discrepancy for smaller air gaps is the result of physical uncertainties that are not taken into
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account within the model. Specifically, experimental evidence in [13] suggests that the cogging
force accounts for the bulk of the uncertainty. The cogging force of a linear synchronous motor is
the normal force produced by the interaction between the teeth of the stator and the edges of the
permanent magnets of the mover. This force is a periodic function of the horizontal position of the
mover over the slot pitch of the stator [14].
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Figure 6: Comparing measured equilibrium currents ū2 and theoretical predictions. The model
of the horizontal dynamics (11), derived from (3), closely predicts the measured current over a
wide air gap range, and is less accurate for air gaps smaller than 15 mm. The latter discrepancy
between measured equilibrium currents and model predictions is due to the cogging force, which is
not accounted for in the model.

5.3 Verification of Complete Model Dynamics

With the horizontal and vertical dynamics of the magnetic levitation model verified separately,
we use the NPFSI estimator to simultaneously estimate C1, . . . , C4. We substitute the estimated
values

C1 = 14.20, C2 = 796.99, C3 = 31.04, C4 = 0.07

into (5)–(8) and simulate the model (3), (4). Both the model and experiment are controlled by
PID regulators with the same reference signals used to estimate C1, . . . , C4. Comparison of the
simulated output with the measured output in Figure 7 reflects the accuracy of the model (3).

6 Nonlinear Controller Design and Implementation

It is desirable to design a controller that, besides achieving stabilization or tracking, decouples the
longitudinal and normal dynamics. To this end, we use feedback linearization. Define the feedback
transformation

u1 = − v1

L1(x1)
, (13)

u2 =
L3(x1) +

√

R(x1, v1, v2)

2L4(x1)
, (14)
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Figure 7: Comparison of the model output over time and the measured output. The parameters
C1, . . . , C4 in (5)–(8) are determined using the NPFSI estimator. Both the model and the experi-
ment are controlled by PID regulators with the same reference signals used to estimate C1, . . . , C4.

where

R(x1, v1, v2) = L3(x1)
2 + 4L4(x1) (−v2 − L4(x1)U(x1, v1) − L2(x1) + g) , (15)

U(x1, v1) =

(

v1

L1(x1)

)2

. (16)

Replacing (13), (14), (15), and (16) into (3) yields
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[

v1

v2

]

, (17)

y =
[

x1 x3

]T
. (18)

Before proceeding further with the design of v1 and v2, we note that the feedback transforma-
tion (13) and (14) requires that (x, v) belong to the set

A = {(x, v) : R(x1, v1, v2) ≥ 0, L1(x1) 6= 0, L4(x1) 6= 0}.

Thus, after choosing v1 and v2, we need to estimate the range of operation of the device, or the
largest set of feasible initial conditions x(0) guaranteeing that (x(t), v(t)) ∈ A for all t ≥ 0. This
estimation is performed by Procedure 2 in [9] for a specific choice of v1 and v2. Rather than
adapting Procedure 2 of [9] to the choice of v below, we verify experimentally that the feedback
linearization controller can operate over the range of interest.
We choose v1 and v2 to make x1 and x3 track a step or a sinusoid of frequency ω0 or a combination
of these. This control specification can be posed as a linear output regulation problem [15], [16],
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[17], where the exosystem is
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ẇ4

ẇ5
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











, (19)

rv = w1 + w5,

rh = w3 + w6,
(20)

and the output to be regulated is e = (e1, e2) = (x1 − rv, x3 − rh). The internal model has the form

ξ̇v = φξv + Ne1, y2 = Γξv, (21)

ξ̇h = φξh + Ne2, y1 = Γξh, (22)

where

φ =





0 1 0
0 0 1
0 −ω2

0 0



 , N =





0
0
1



 , Γ = [1 0 0].

The subsystems (21) and (22) are internal models for the vertical and horizontal dynamics, respec-
tively. Since the tracking errors e1 and e2 are available for feedback and ė1, ė2 can be estimated
using high-gain observers, we complete the output regulator design by letting

v1 = Kh

[

e2 ė2 Γξh

]T
, (23)

v2 = Kv

[

e1 ė1 Γξv

]T
, (24)

where Kh and Kv are chosen to stabilize the augmented system


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


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ẋ1

ẋ2

ẋ3

ẋ4
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







=

















x2

v2 + Γξv

x4,

v1 + Γξh

φξv + Nx1

φξh + Nx3

















. (25)

The final controller is thus given by (13), (14), (21), (22), (23), and (24). The controller block
diagram is depicted in Figure 8.

7 Experimental Results

The nonlinear controller is implemented using WINCON. The ability of the controller to track step
and sinusoidal signals is evaluated and compared with linear controllers.

7.1 Setpoint Tracking Performance of the Nonlinear Controller

The gains Kh and Kv in (23) and (24) are chosen by applying pole placement to (25). The
poles corresponding to the horizontal dynamics, chosen by trial and error tuning, are placed at
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Figure 8: Block diagram of nonlinear controller. The tracking errors are fed to two internal models.
Following the internal model principle, a state feedback controller stabilizes the cascade of plant
and internal models when rv ≡ rh ≡ 0. The resulting control input (v1, v2) is then used to generate
(u1, u2) = (iq, id) by means of a feedback transformation. Finally, the pair (iq, id) is converted to
three-phase currents, which are fed to the LCAMs to control the maglev apparatus.

[−9,−10,−11,−12,−13], while the poles corresponding to the vertical dynamics are placed at
[−11,−12,−13,−14,−15]. This choice gives

Kh =
[

−1182 −55 −154440 −45128 −11924
]

,

Kv =
[

−1662 −65 −360360 −103350 −20332
]

.

The resulting nonlinear controller is used to make the system stabilize five consecutive setpoints
over the ranges [−50 mm, 50 mm] horizontal and [15 mm, 25 mm] vertical. Figure 9 shows the
response of the vertical system states x1(t) and x2(t) to the step commands, and the absolute
vertical positioning error. In all cases, the vertical tracking error settles below 0.1 mm in less than
1.3 s. Figure 10 displays the experimental results involving the horizontal system states x3(t) and
x4(t). For the first four steps the horizontal tracking error settles below 0.1 mm in less than 1.2
s, whereas the fifth step requires 2.38 s. In additional experiments, not shown here, the controller
drives the tracking error to within encoder resolution 10 µm in about 10 s.
By tuning the controller gains, it is possible to emphasize certain performance specifications. For
instance, to reduce the overshoot in the vertical dynamics at the expense of increasing the settling
time, after trial and error tuning we place the poles corresponding to the vertical dynamics at
[−57.9,−9.9 + 11.3 i,−9.9 − 11.3 i,−1.6 + 1.4 i,−1.6 − 1.4 i], obtaining

Kv =
[

−1592 −81 −55736 −11573 −15825
]

.

Figure 11 shows that the step response now exhibits much smaller vertical overshoot at the expense
of a longer time needed for the tracking error to settle below 0.1 mm (still below 3 s). This tradeoff
between overshoot and settling time, which is an intrinsic characteristic of the problem, arises from
the fact that we are displacing a rigid body using forces of fixed maximum magnitude. Depending
on the final industrial application, either the overshoot or settling time may be a more important
factor. The results show that controller adjustments can accommodate either requirements.
We next compare the performance of the nonlinear controller with a linearization-based controller
in tracking two setpoints. Specifically, we use the linear output regulator in (21)–(24) without
using the feedback transformation (13) and (14). To make a fair comparison, the model in (3) is
linearized about equilibria corresponding to the desired setpoints. For each linear model, the gains
Kh, Kv are chosen so that the poles of the closed-loop system coincide with the poles induced by the
nonlinear controller in the feedback-linearized plant. The first step command, shown in Figure 12,
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has small amplitude, starting from the initial condition (0.026 m, 0, 0, 0) and having final value
(0.024 m, 0, 0.005 m, 0). The second step command is larger, starting at the same initial condition
as before but terminating at (0.018 m, 0, 0.020 m, 0).
The results show that while both the linear and nonlinear controller can handle a small step com-
mand, the linear response demonstrates a much larger transient and longer settling time. When
subjected to the larger step command, the linear controller destabilizes the plant, while the non-
linear controller continues to exhibit excellent performance. Note that around 5.5 s, the instability
exhibited by the linear controller causes a safety mechanism within the real-time code to shut down
the system, at which time the oscillations halt; see Figure 12.
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Figure 9: Vertical motion in response to setpoint commands using the nonlinear feedback lineariza-
tion controller. The vertical positioning error is also included. Setpoint tracking is achieved with
the required accuracy of 0.1 mm. While the transient is fast, the large overshoot of 114% at t = 5
s is undesirable.
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Figure 10: Horizontal motion in response to setpoint commands using the nonlinear feedback
linearization controller. The horizontal positioning error is also included. Setpoint tracking is
achieved with the required accuracy of 0.1 mm. The maximum overshoot is 43%.
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Figure 11: Vertical step response when the nonlinear controller gains are adjusted. The overshoot
of 40% at t = 5 s is much smaller than that in Figure 9. However, the settling time increases by
200%.

7.2 Sinusoidal Tracking Performance of Nonlinear Controller

For the tracking experiments, we choose rh(t) and rv(t) to be sinusoidal signals with amplitudes 30
mm and 5 mm, respectively, and the same frequency ω0 = 1.5π rad/s. The vertical reference rv(t)
also includes an offset of 20 mm. The same controller gains used for setpoint tracking are employed
for sinusoidal tracking. Figure 13 summarizes the tracking results obtained using the nonlinear
feedback linearization controller. The average horizontal tracking error is about 0.11 mm, with
occasional peaks that reach 0.4 mm. The average vertical tracking error is 0.24 mm, with peaks
that reach 0.8 mm. The major factor limiting the tracking performance is the misalignment of the
linear guides.

8 A 3DOF Microstepper

Having assessed the accuracy of the mathematical model of the forces developed by one PMLSM
and the effectiveness of a nonlinear control strategy to control two DOFs, it remains to be seen
whether the approach can be extended to more than two DOFs. The device shown in Figure 14,
built by Quanser Consulting, controls three DOFs by means of four PMLSMs combined into two
pairs by wiring in parallel the three phases of each pair. The system therefore has four control
inputs, namely, direct and quadrature currents for the two pairs of linear motors. The four movers
are fixed on a honeycomb aluminum platform that sits on three pairs of orthogonally mounted
linear guides. If, instead of being wired in pairs, the PMLSMs were individually controlled, then
the microstepper would produce 6DOF motion. In the setup of Figure 14, however, the linear
guides constrain the motion to be purely translational. As in the 2DOF setup, this setup allows
for easy incorporation of sensors.
The mathematical model of the 3DOF device is a straightforward extension of (3) and is therefore
omitted. Extensions of model verification procedures developed in previous sections are used to
assess the validity of the mathematical model of the device. The horizontal and vertical operating
regions of the device are [−50 mm, 50 mm] × [−50 mm, 50 mm] and [20 mm, 30 mm], respectively.
The controller we use to operate this microstepper is similar to the one in (13), (14), (21), (22),
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Figure 12: Experimental comparison of two step responses of linear and nonlinear controllers. Both
controllers successfully handle a step response of small amplitude, although the linear controller
yields poor transient performance. On the other hand, the linear controller destabilizes the plant
for a larger step commmand.

(23), and (24) developed for the 2DOF microstepper, but enhanced with an antiwindup mechanism.
To demonstrate the controller, we present experimental results for setpoint and sinusoidal tracking.
Figure 15 shows the output response of the 3DOF microstepper to five setpoint commands. Fig-
ure 16 shows the corresponding tracking errors. In all cases, the position error settles below 0.1
mm in less than 3 s and to the encoder resolution of 10 µm in less than 5 s. Figures 17 and 18
show the output response and tracking error when the microstepper is subjected to a sinusoidal
reference command. The average x-axis and z-axis tracking errors are about 0.12 mm and 0.13
mm, respectively. The average y-axis tracking error is 59 µm. These results indicate that the 3DOF
microstepper is more precise than the 2DOF microstepper because of better alignment of the linear
guides. Recall that the control design produces current references for the linear current amplifiers.
The tracking errors in Figure 16 are likely due to transients in the current dynamics.

Conclusions and Future Work

We demonstrated the feasibility of using iron-cored PMLSMs to develop microsteppers with mul-
tiple DOFs. To do this, we investigated the accuracy of the mathematical model (1), (2) of the
forces generated by one PMLSM as well as the performance of a nonlinear feedback linearization
controller. We demonstrated that several PMLSMs together can control three DOFs. In both
experimental setups, linear guides are used to constrain the motion to be purely translational.
Linear guides entail friction, which is undesirable in the photolithography process. Future research
involves eliminating linear guides and controlling six DOFs (translations and rotations of the plat-
form). To control six DOFs without linear guides, more sophisticated sensors are required, and the
four PMLSMs in the setup of Figure 14 must be individually controlled.
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Figure 13: Output response to sinusoidal reference inputs using the nonlinear feedback linearization
controller. The references rv(t) and rh(t) are chosen so that the platform moves along an ellipsoidal
contour across the complete range of operation.

Figure 14: 3DOF magnetic levitation hardware implementation. The heavy aluminum frame sup-
ports four PMLSM stators. A honeycomb aluminum platform, placed on top of three pairs of
orthogonally mounted linear guides, supports the four movers.
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Figure 18: Tracking error of the 3DOF microstepper in response to sinusoidal references. The
tracking performance is significantly better than that of the 2DOF microstepper, due to better
alignment of the linear guides.
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