Report Format ECE410-Lab2

Cover page: -Title and Course number -Names and Student numbers -Lab date -Submission Date

Note:

-Only one report per group,

-Both hand-written and typed reports are acceptable,

-Please don't use a lab book for the report,

-The lab report is due 2 weeks after your lab session.

1-Introduction and a brief explanation of the "lag controller" and "velocity error constant".

2-Controller Design:

The value of <i>K</i> satisfying $ v(t) < 5$:	
Velocity Error Constant of $K.G(s)$:	
Crossover Frequency of $K.G(s)$:	
PM at the crossover frequency:	
Modified Crossover Frequency	
(Where PM is 45 degrees):	
Attenuation gain of the lag (K_1) :	
Zero of the Lag (<i>z</i>):	
Pole of the Lag (<i>p</i>):	
Lag compensator transfer function: $C_1(s) = K_{1.}(s+z)/(s+p)$	

(Note1: G(s) is the open loop transfer function from v(t) to $\theta(t)$.) (Note2: The complete controller is: $C(s) = K.C_1(s)$)

3- DC Motor Response

3.1- Step Response:

Closed loop step response graph "Position Output *y*(*t*)" (Reference, Real data, and Simulated data)

Closed loop step response graph "Control Signal *v*(*t*)" (Real data and Simulated data)

3.2- Ramp Response:

Closed loop ramp response graph "Position Output y(t)" (Reference, Real data, and Simulated data)

Closed loop ramp response graph "Control Signal *v*(*t*)" (Real data and Simulated data)

4- Summary and Conclusion, Answers to the questions: