
 1

CONTROL SYSTEMS LABORATORY
ECE410F-Fall 2003

LAB0: LABORATORY INTRODUCTION

The purpose of this laboratory is to introduce you to the equipment, so that you are familiar with the
servomotor system, the computer hardware and software, and your TA before attempting Lab 1. There
is no lab report, and nothing to submit, but you must demonstrate to your TA that you know:

• how to wire the servomotor system
• how to compile and run the real-time software; and
• how to load experimental data into MATLAB and plot it.

0.1 Preparation:

If you have not done so, read the Introduction to Simulink, init.m, and Control.mdl, before beginning the
Laboratory.

0.2 Laboratory Procedure:

Note: Please do not attempt to connect the ribbon cable from the bench-top interface board to the
computer. If the ribbon cable is disconnected, please ask your TA to connect it.

1- Study Appendix 1 to learn how to work with WinCon server.

2- Compile and run control.mdl. It is not necessary for the power amplifier to be driving the motor
here, i.e. you may disconnect the output of the power amplifier from the servomotor input,
although the power amplifier must be “on” , so the POT is biased. While the software is running,
try to calibrate your DC-motor set following the procedure given in LAB1.

3- Start the control program using the wincon server and move the shaft of the motor randomly in
order to generate a signal. Stop the program after approximately 5 seconds. (To stop a real time
program in an exact time, you can drag and drop the block ``stop simulation" from “sinks” tool
and apply a unit step to it by a “step” block at the time you wish to stop the simulation. (Note that
by setting the stop time in the “simulation parameters” of simulink, you cannot stop the program,
since it is running in “external” mode.)

4- Save the data collected in your workspace, and then go to workspace and plot the signal which
have you generated. You can also save the collected data as a .mat file for later use such as in
printing plots for your reports.

0.3 Report:
There is no laboratory report for this lab. Although Lab0 is not counted toward your final grade, it is
important to become familiar with the equipment. Otherwise, you will have a difficult time completing
Lab1.

 2

CONTROL SYSTEMS LABORATORY
ECE410F-Fall 2003

LAB1: DC MOTOR CALIBRATION AND IDENTIFICATION

1- DC MOTOR CALIBRATION:

1.1 Introduction:

The output of the DC-Motor system in the lab is the angle θ of its shaft. This angle is measured by a
potentiometer. This potentiometer has a gain Gpot and an offset Opot:

Figure 1.1: Mathematical model of a potentiometer

so that v = Opot + Gpot .θ

The values of Gpot and Opot are related to the voltage of the internal power supply and mechanical
coupling. To have a correct value of θ for control purpose, you have to compensate for the effect of the
potentiometer.

Figure 1.2: Compensation of the potentiometer characteristic by the calibrator block

Here if you choose K3 = 1/Gpot and K0 = -Opot, then you will obtain the value of the physical variable θ
as a variable in your computer.
Since the characteristic of the potentiometer and its offset differs from set to set, you have to determine
K3 and K0 for your own DC-Motor set. Since you are going to compensate a linear potentiometer, a two-
point calibration can be used to find K3 and K0.

−
−

=

−
−

=
⇒

+=
+=

21

21
3

21

2112
0

0232

0131

)(

)(

vv
K

vv
K

KvK

KvK

θθ
θθ
θθ

θ
θ

 (1.1)

Gpot
θ (degree)

Opot

v(voltage)

Potentiometer

K3

K0

θ (degree)

Physical
Parameter

Calibrator

A/D

Gpot
θ (degree)

DC Motor Output

Opot

v(voltage)

Computer
 Variable

 3

1.2 Potentiometer Calibration Procedure:

Note: Please do not attempt to connect the ribbon cable from the bench-top interface board to the
computer. If the ribbon cable is disconnected, please ask your TA to connect it.

1- Supply the potentiometer with a voltage of +12v and -12v. Disconnect the motor wiring, or apply a
zero voltage to the D/A so that the motor does not move. Connect the output of the potentiometer to an
A/D channel (Channel 0 is recommended since it is a default channel).

2- In matlab, open init.m and run it to initiate variables. Then open control.mdl and build it by choosing
build under wincon in the Simulink pull down menu. (See Appendix 1)

3- If there is no error, a Wincon server will be launched automatically and you can choose values or
signals to view from this server. Open the subsystem Calibrator Solver. Go to wincon and select the four
display signals showing K0, K3, Voltage, and Angle. Then Start the program by pushing Start button.
Now you should be able to read a reasonable voltage value of A/D when you move the shaft of the
potentiometer.

4- Move the shaft to a specific angle say +60 degrees, then set the value of “Theta1” inside the calibrator
block to the same value you have set physically. Then apply a rising edge at “Set1” by forcing it to zero
and then force it to one. (At this point, you have latched the information for one of the calibration
points.)

5- Move the shaft to another angle say -60 degrees, then set the value of “Theta2” inside the calibrator
block to the same physical value and apply a rising edge signal to “Set2” to latch the information of the
second point for calibration.

6- Now you can observe the appropriate values for K0 and K3 inside the display boxes. To confirm that
these values are correct, you must observe the same physical angle of the shaft in the Angle display box
when you move the rotor. Record the values of K0 and K3 right away to use for your next experiments.
These values must be updated in the workspace. To do, stop the wincon, copy these numbers in the
init.m file, and run init.m to update the workspace. Keep in mind that this recording will not be done
automatically and if you lose this information, you have to calibrate the potentiometer again.

Figure 1.3: Calibrator Solver subsystem

 4

2- DC MOTOR MODEL IDENTIFICATION:

In this experiment, you will identify the parameters of a servomotor system, i.e. compute numerical
values for the two parameters Kp and T that completely characterize the system. These values will be
used for control design.

2.1 Preparation:

The servomotor system is given as follows:

Figure 2.1 Simplified servomotor block diagram.

1- Let the controller C(s) in the figure above be a positive gain: C(s) = K. Write down the closed-loop

transfer function
)(

)(
)(

sR

sY
sG = in terms of K, Kp, and T.

2- Since Kp and T are positive constants, G(s) is a stable second-order system with no zeros. It can in

fact be written in the form 22

2
0

2
)(

nn

n

ss
G

sG
ωδω

ω
++

= for positive constants G0, δ, and ωn.

Determine the relationship between the triples (δ, ωn ,G0) and (K, Kp,T).

3- Suppose that the damping ratio δ for the closed loop servomotor system is less than 1 (for a certain
value of K). Given a step response, we know how to compute ωn and δ from the maximum
overshoot and peak time (refer if necessary to the document on transient response of second order
systems). Combining with the results of (2), you can determine the values of Kp and T from the step
response. Write down the formulas for Kp and T. You can also show the details of the step
response on a plot.

4- Sketch a root locus of G(s) as a function of K>0, for fixed, positive values of Kp, and T. What

happens to the poles of the closed-loop system as K is increased from 0?

5- Read the Laboratory Procedure so that you know what to do before coming to the lab.

C(s)
θ r

Opot

Potentiometer + Calibrator

 Kp

s(Ts+1)

v
Gpot K 3

K0

y (y=θ)

 5

2.2 DC Motor Model Identification Laboratory Procedure:

Note: Please do not attempt to connect the ribbon cable from the bench-top interface board to the
computer. If the ribbon cable is disconnected, please ask your TA to connect it.

1- Modify your control.mdl file such that the controller of the dc motor be a simple gain K.

2- Build and run your control.mdl simulink file to close the control loop. (You should have already
calibrated the potentiometer and your K0 and K3 parameters must be valid in the workspace).

3- Experimentally determine a value of K > 0 (beginning from a small value such as 0.01) for which the
step response has a percent overshoot of approximately 40% and collect the data. Because each of the
servomotors has a different amount of inertia, gain K will differ from each servomotor to another one.
(Don't copy your neighbor's value!)

4- Plot the step response data collected in Step 4 into MATLAB, and determine ωn and δ, by measuring
peak-time and percentage-overshoot from your graph. Then determine the physical values of Kp, and T.
Do a good job here, because your measurements will be used in subsequent labs, and your numbers are
unique to your workstation. Save the collected data from your Simulink model in your workspace.

5- Plot the simulated response of G(s) for the identified values of ωn and δ on the same axes that you
have plotted the experimental data and keep the plot for your report. The two plots should be close to
one another (see the figure below).

0 1 2 3
0

20

40

60

80

100

Time(Seconds)

Sh
af

t P
os

itio
n

(D
eg

re
es

)

Actual and Simulated servomotor step response

Simulated
Actual

Figure 2.2 : Actual and simulated servomotor position step response

2.3 Questions:

1- Why use a value of K that gives overshoot of 40%? Can other values work? What if you use a value
of K so that the closed-loop system is over-damped? What if you use a value that gives 100% overshoot?

2- What are some the reasons for discrepancy between the measured step response and the simulated
one?. For example, there is static friction in the motor, which is not modeled by the second - order
system. Why and how does static friction make the responses differ?

2.4 Report:

Please refer to the Lab1 report format template for your write-up.

 6

CONTROL SYSTEMS LABORATORY
ECE410F-Fall 2003

LAB2: DC MOTOR CONTROLLER DESIGN

3. LAG COMPENSATOR DESIGN FOR DC MOTOR:

In this experiment, you will design a dynamic compensator for the servomotor system, using classical
frequency-domain techniques. The controller design is to be based upon the model you obtained in
previous session.

Figure 3.1 Simplified servomotor block diagram

3.1 Preparation:

The preparation involves designing the controller C(s) so that the closed-loop system satisfies certain
specifications, and then implementing it in discrete-time. Begin with your transfer function G(s) from v
in volts to θ in degrees. The main constraint concerns the plant input; so as not to saturate the A/D
board, v must satisfy

 volts.5)(≤tv (3.1)

1. Begin with C(s) = k, a pure gain. By simulation, find the largest k so that spec (3.1) is satisfied

when r(t) is a step of 45 deg. For this k, record the gain crossover frequency and the phase
margin.

2. Add to the controller a phase lag compensator, so it's now C(s) = kC1(s), where C1(s) achieves

the specs:
(a) phase margin about 45 deg.,
(b) velocity error constant the same as that of kG(s),

3. Let r(t) be a unit step of 45 deg. Simulate the closed-loop system, plotting y(t) and v(t). Verify

that (3.1) is satisfied.

4. Compute a discrete-time approximation Cd(z) to C(s). Assume the controller sampling rate is
1000 Hz.

5. Generate a Simulink model to implement your controller.

C(s)
r Kp

s(Ts+1)

v y (y=θ)

 7

3.2 Controller Design Laboratory Procedure:

Note: Please do not attempt to connect the ribbon cable from the bench-top interface board to the
computer. If the ribbon cable is disconnected, please ask your TA to connect it.

1. Compile and run your version of Simulink model. Use the same step input r(t) as in preparation.
Save the actual and simulated angle θ(t) and the reference r(t) to a data file. Save the control
signal v(t) in both actual and simulated system. Verify that they satisfy (3.1).

2. Show the results to your TA.

3. Apply a triangle wave form with the frequency 0.25 Hz and the amplitude 45 degrees (45±) to

the closed loop system. To generate this wave form, you can use the block “Repeating Sequence”
under “Sources” and enter [0 2 4] for time values and [-45 45 -45] for output values. Now you
can observe the ramp response. Compare the ramp response of the closed loop system in two
cases C(s) = k and C(s) = kC1(s).

3.3 Questions:

1- Compare the step response of the system with a “gain” controller and with a “ lag compensator” .

2- Compare the ramp response of the system with a “gain” controller and with a “ lag compensator” .

3.4 Report:

Please refer to the Lab2 report format template for your write-up.

 8

Appendix 1: WINCON

Wincon is a COM (Component Object Model) server which allows Simulink to operate as a real-time
controller. It connects the Simulink environment to the kernel level of the Windows operating system
and thence to the Data Acquisition hardware using Real-Time Workshop.
In the Simulink library, you can locate the “Wincon” Tool box, and if you browse through it, you can
locate the QUANSER Tool box. Browse through the “Quanser Consulting MultiQ-PCI series” blocks
(This is the type of the Data Acquisition board installed on your PC). You can drag and drop “Analog
input” and “Analog output” blocks into your model to read from the A/D and to write to the D/A
channels.
For example, a simple model such as:

Figure A1.1 A sample control loop model in simulink which uses wincon to control a servomotor

can control your plant.
Note that Simulink has two modes of operations “Normal” and “External” . If your model contains a
physical I/O, you have to select the “External” mode to operate real-time experiments. To compile and
run a model, one should select “Build” under “wincon” in the Simulink pull down menu. The model will
then be compiled, and if there is no error, the compiler will then automatically download the compiled
model to the real-time kernel. During the first download the wincon server will be automatically
launched.
You can control your program through the wincon server. In particular, you can start/stop the controller,
monitor variables, and plot signals. Note that when Simulink is in its “External” mode, some monitoring
blocks such as “Display” and “Scope” and even “To Workspace” do not work properly; however, you
can display and/or plot signals by selecting them from the wincon server list of variables. To collect and
save data, you have to add one “Scope” block to where you wish to collect the data, and then use “save”
under the “ file” option of your “Scope”. You can save information as an m-file, mat-file, or save to
workspace. Here is the face plate of the wincon server.

Figure A1.2: WinCon server

