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Abstract

This thesis discusses modeling and control issues for Networked Control Systems
(NCS). NCS is a feedback control system wherein the control loops are closed through
a real-time network. Such systems offer advantages such as lower installation costs,
increased flexibility, and rapid installation. However, communication delay is a gen-
eral problem in NCS, and it could destabilize the closed loop system. In the first half
of this thesis, we model the delay for three popular networks for control applications:
Controller Area Network (CAN), Process Field Bus (Profibus), and fully-switched
Ethernet. In the second half, control strategies are provided for control systems with
constant or random delay. Systems with constant delay can be controlled by modified
Smith predictor; systems with random delay can be controlled by dynamic controller.
The results of the thesis can be used to provide guidance on the choice of network

and controller design in a networked control system environment.
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Chapter 1

Introduction

As the price and performance of digital computers continue to improve and their size,
weight, and power requirements continue to decrease, there has been a steady increase
in the use of computer-based real-time systems in a wide variety of fields. Application
domains such as military, industry, and medicine indicate a wide spectrum of possible
implementations. Current real-time system examples include nuclear power plant
control, industrial manufacturing control, medical monitoring, space navigation and
guidance, and weapon delivery systems. By taking advantage of computer control,
we are able to control more complex system. However, such a complex system will
involve a lot of sensors and actuators. The typical point-to-point wiring scheme will
make installation and maintenance more difficult. Therefore, a new type of wiring
scheme has emerged. It is to connect sensors, actuators, and processors through a
network.

Feedback control systems wherein the control loops are closed through a real-time
network are called networked control systems (NCS) [25, 47]. The defining feature
of an NCS is the information (reference input, plant output, control input, etc.) is
exchanged using a network connecting control system components (sensors, controller,

actuators, etc.). Fig. 1.1 illustrates a typical setup and the information flow of an
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NCS. Such systems offer a number of advantages over their traditional predecessors,

including lower installation and maintenance costs, increased flexibility and rapid

{ Physical Plant }

Actuator rr{ ‘ Sensor 1]

< Control Network >
Other Other
Processes Processes

Figure 1.1: A typical NCS setup and information flows

installation and diagnostics.

Sensor n‘

‘ Actuator 1

The insertion of the communication network in the feedback control loop makes
the analysis and design of an NCS complex. Conventional control theories with many
ideal assumptions, such as non-delayed sensing and actuation, must be re-evaluated
before they can be applied to NCSs. Network-induced delay (sensor-to-controller
delay and controller-to actuator delay) occurs while exchanging data among devices
connected to the shared medium. This delay, either constant or time varying, can
degrade the performance of control systems designed without considering the delay
and can even destabilize the system. In [17], the authors have considered network
delay in the feedback loop. However, they do not provide a mathematical model
for the network delay and do not show how to calculate this delay factor from a
specific network. Furthermore, the controller design is only applicable for system
with constant delay. Similarly, in [36], authors did not provide any guidance on
calculating network delay and the controller is not applicable to open-loop unstable
system. In [26], authors have constructed a simulator to model network delay that

analyze closed loop system performance. However, they did not provide any guidance
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on choosing network and control strategy.

In 1957, O.J.M. Smith [33, 19] presented a control scheme for single-input single-
output (SISO) systems, which has the potential of improving the control of loops
with time delay. This scheme became known as the Smith predictor. However, a
main drawback, linked to internal instability of the prediction, is that it will fail to
stabilize an unstable system. In [20, 21], the authors have developed a predictor that
is similar to Smith predictor that can stabilize unstable system. This controller is
easy to design and can stabilize a system with constant delay. However, it requires
full observation of system’s internal states and the stability analysis is not applicable
to system with random delay.

In 2000, Lin Xiao, Arash Hassibi, and Jonathan How [45] presented an controller
design procedure for system with random delay. They model the random delay as a
Markovian process 25, 45]. The resulting controller can make the closed loop system
with a transition probability matrix mean square stable [6]. Although the controller
design procedure is easy to follow, it is quiet demanding on computation power. In
some cases, it will take more than 48 hours to do the controller design and this
controller design strategy is not suitable for constant delay.

From control perspective, control network designer will focus on two issues: type
of delay and reliability. In the last two paragraphs, we have discussed controller design
strategy for system with constant or random delay. Since each controller design has
advantages on system with different type of delay, it is important to take advantage
on this by choosing an appropriate controller design strategy for different networks.
Also, different networks will have different reliability, such as: error detection and
error correction. Of course, the reliability issues depend on the quality of services
that the system wants to provide. Since all of these issues are network dependent, it

is important to understand the network behavior. Therefore, in this thesis, we will
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analysis the timing behavior of three popular networks in control industry: Controller
Area Network (CAN), Process Field Bus (Profibus), and Ethernet.

For CAN and Profibus, detailed timing analyses have been studied in [12, 38] and
[22, 40], respectively. However, their models are incomplete because they did not
characterize transmission error appropriately. It is important to include transmission
error to the timing model because it is often unavoidable and it will substantially
increase the response time. By including transmission error to our model, we are
able to provide a more realistic estimate of the response time. For Ethernet, we
will introduce our network configuration model with timing analysis, which is much
suitable for control application as compare to the traditional network configuration.

Using the timing analysis, we have characterized delay models for CAN, Profibus,
and Ethernet. The models provide information about delay characteristics, such as
range of delay and randomness of delay. We then use this information to choose our
controller design strategy. There are two type of controllers studied in this thesis.
These controllers, the resetting Smith predictor and a dynamic controller based on
a Markov jump system model, can stabilize system with constant or random delay,
respectively. From our analysis, we find that systems implemented through CAN
and Profibus experience constant delay. Hence, we suggest using the resetting Smith
predictor to contol the system. On the other hand, we find that systems implemented
through Ethernet experience random delay. As a result, we suggest using the dynamic
controller based on a Markov jump system model to control the system. This provides
guidance on how to choose and design controller for networked control systems.

We now give an outline of the thesis. In Chapter 2, we present the protocol de-
scription and timing analysis of Controller Area Network. CAN’s timing analysis have
been studied in [12, 38]. However, they characterize the error function as a function

of current message only. It is unrealistic to consider current message retransmission
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because CAN is a priority based network so that high priority message retransmis-
sion will directly affect the response time for lower priority message. Our model will
consider the above situation. At the end of this chapter, we will discuss this network
from the control perspective.

In Chapter 3, we present the protocol description and timing analysis of Process
Field Bus. Profibus’s timing analysis have been studied in [22, 40]. However, they did
not consider the possibility of transmission error that leads to message retransmission.
Our model includes message retransmission. At the end of this chapter, we discuss
this network from the control perspective.

In Chapter 4, we first present the protocol description of Ethernet. Secondly, we
introduce the traditional network configuration and explain why this configuration is
not suitable for control application. Thirdly, we introduce our network configuration,
fully switched Ethernet network with full-duplex cables, which is suitable for control
application. Finally, we go over the timing analysis for this network configuration
with an example at the end.

In Chapter 5, we discuss controller design for networked control system. In section
5.1, we state the problem and major assumptions for systems with input and output
delay. In section 5.3, we discuss a modified Smith predictor that has been studied in
[20, 21] for systems with constant delay. At the end of that section, we go through
the design procedure by using a magnetically levitated ball as an example. In section
5.5, we discuss controller design strategy that has been studied in [45] for systems
with random delay. At the end of that section, we demonstrate the design procedure
by using the magnetically levitated ball system.

In Chapter 6, we summarize the key features and limitations for CAN, Profibus,
and Ethernet. Also, we summarize our discussion on controller design for system with

constant or random delay. Furthermore, the requirements for using each controller
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will be discussed. Finally, we discuss the direction of future research on this topic.



Chapter 2

Controller Area Network

Controller Area Network (CAN) was first developed by Robert Bosch GmbH, Ger-
many in 1986, as a communication system between three ECUs (electronic control
units) in vehicles by Mercedes. They found that an UART' is no longer suitable
in this situation because it is only capable of point-to-point communication. If all
possible combinations of switches, sensors, motors, and other electrical devices in
fully featured vehicles are accumulated, the resulting number of connections and ded-
icated wiring is enormous. Networking provides a more efficient method for today’s
more complex in-vehicle communication. CAN is a serial network, established among
microcontrollers, that is primarily used in embedded systems. It is a two-wire, half
duplex, high-speed network system and is well suited for high speed applications using
short messages. CAN can theoretically link up to 2032 devices on a single network.
However, due to the practical limitation of the hardware (transceivers), it can only
link up to 110 nodes on a single network. It offers high-speed communication rate up
to 1 Mbits/sec that allows real-time control. In addition, the error confinement and

the error detection feature make it more reliable than other networks in noise critical

LUART (Universal Asynchronous Receiver /Transmitter) is the microchip with programming that
controls a computer’s interface to its attached serial devices.
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environment.

In section 2.1, we describe the CAN protocol and its way of handling transmission
errors. Section 2.2 is devoted to calculating the worst case response time under noise
critical environment for an industrial example. Finally, in section 2.3, we summarize

CAN'’s features.

2.1 Protocol Description

This section will discuss some key features in the CAN protocol. It is important
to understand how the CAN protocol works because this will enable us to correctly
formulate its timing behavior that is crucial to control applications. Later in this
section, we will discuss CAN’s error handling and recovery process. It will not only
affect the timing behavior but also affect the decision making on choosing this network

for a particular application.

2.1.1 Detection Method and Identifier

CAN is a multi-master network that can be composed of many controllers who share
different controls and tasks. The master node can actively invoke a slave node to
provide data that the master node requires and it can also send information to other
nodes. CAN is similar to Ethernet in that the CAN node checks if the bus is busy
before sending a message and it uses collision detection method. However, when an
Ethernet network detects a collision, both sending nodes stop transmitting (destruc-
tive collision detection mechanism) and wait a random time before trying to send
again. Ethernet networks are very sensitive to high bus loads due to such collision
handing. On the other hand, when a CAN network detects collision, the high priority

node will continue sending data while the low priority node will stop sending data and
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start listening to the bus (constructive collision detection mechanism). This arbitra-
tion is called CSMA/CR, (Carrier Sense, Multiple Access with Collision Resolution).

Data messages transmitted from any node on a CAN bus do not contain any
addresses of either transmitting node, or of any intended receiving node. Instead,
the message is labeled by an identifier that is unique throughout the network. All
other nodes on the network receive the message and each performs an acceptance
test on the identifier to determine if the message, and thus its content, is relevant to
that particular node. The message will be processed if it is relevant; otherwise it is
ignored.

The unique identifier identifies the type of message and the message priority.
The lower the numerical value of the identifier, the higher the priority. This allows
arbitration if two (or more) nodes compete for access to the bus at the same time.
The higher priority message is guaranteed to gain bus access as if it were the only
message being transmitted. Lower priority messages are automatically re-transmitted
in the next bus cycle, or in a subsequent bus cycle if there are still other higher priority
messages waiting. Each CAN message has an identifier which is 11 bits (CAN Version
2.0A) or 29 bits (CAN Version 2.0B). This identifier is located in the beginning of
each CAN message. A transmitting node always listens on the bus while transmitting.
A node that sends a high in the arbitration field and detects a low would realize that
it has lost arbitration. As a result, it stops transmitting and lets the other node with

a higher priority message continue uninterrupted.

2.1.2 CAN Frames

There are two kind of frames in CAN: data frames and remote frames. Data frames
are used when a node wants to transmit data on the network. Remote frames can be

described as a request for information. A frame with the Remote Transmit Request
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(RTR) bit set means that the transmitting node is asking for information of the
type given by the identifier. A node which has the available information should then
respond by sending the information onto the network. The CAN protocol? supports
two message frame formats that are standard CAN (Version 2.0A) and extended CAN
(Version 2.0B). It is important to know that most 2.0A controllers can transmit and

receive only standard format messages, while 2.0B controllers can handle both type

PROTOCOL DESCRIPTION

TX
Node A
RX

TX
Node B
RX

Busline

Figure 2.1: CAN arbitration

of messages.

CAN standard frame

Message Frame |

Arbitration field ' Control | Data Field 'CRC field ACK'EOF | IFS ' Bus Idle

Bus idle’ | | ACK!
| [11bitidentiie] | | [pLc] Data (0-8bytes)| 15bits] | [ | [ ]
SO@‘ RT&‘ T m Delimiter T Delimiter
IDE Slot

Figure 2.2: CAN standard frame [15]

2The CAN protocol is an international standard defined in the ISO 11898

11
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A message in the CAN standard frame format begins with the start bit called
Start Of Frame (SOF), this is followed by the Arbitration field which consists of the
identifier and the Remote Transmission Request (RTR) bit used to distinguish be-
tween the data frame and the remote frame. The following Control field contains the
Identifier Extension (IDE) bit to distinguish between standard frame and extended
frame, as well as the Data Length Code (DLC) used to indicate the number of fol-
lowing data bytes in the Data field. If the message is used as a remote frame, the
DLC contains the number of requested data byte. The Data field that follows is able
to hold up to 8 data byte. In addition, a reserved bit (r0) is included in the control
field for future extension. The integrity of frame is guaranteed by the following Cyclic
Redundant Check (CRC) sum. The Acknowledge (ACK) field compromises the ACK
slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is
overwritten as a dominant bit by those receivers which have at this time received the
data correctly. Correct messages are acknowledged by the receivers regardless of the
result of the acceptance test. The end of the message is indicated by End Of Frame
(EOF). The Intermission Frame Space (IFS) is the minimum number of bits (7 bits)
separating consecutive messages. If there is no following bus access by any station

the bus remains idle.

CAN extended frame

Message Frame !

| | | | | | | |
Bus idIe: Arbitration field ! Control ! Data Field JCRC fieldl ACK: EOF IFS ! Bus Idle
—_— 4—»—4—»‘4—»‘4—»‘4—»04—»‘47

| [11bitidentifie] | |18bitidentiie] | | [DLc]| Data (0-8bytes)| 15bits]
sor!} srr} 4 IDE RTR! T bo Delimiter} T A Delimiter

rl Slot

Figure 2.3: CAN extended frame [15]
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As stated in the beginning of this chapter, CAN is developed in Germany and
soon become a standard in Europe. However, this standard frame format is not
compatible to the USA standard. As a result, the extended frame format evolved to
provide compatibility with other serial communications protocols used in automotive
applications in the USA. Ver. 2.0B’s Arbitration field contains two identifier bit fields:
the first (base ID) is eleven bits long for compatibility with Ver. 2.0A and the second
field (ID extension) is eighteen bits long, giving a total length of twenty nine bits.

Substitute Remote Request (SRR) bit is included in the Arbitration Field. The
SRR bit is always transmitted as a recessive bit to ensure that, in the case of arbi-
tration between a Standard Data Frame and an Extended Data Frame, the Standard
Data Frame will always have higher priority if both messages have the same base (11
bit) identifier.

Since the identifier of the standard frame is 11 bit wide, 2048 different message
types are possible. Due to implementation reasons only 2032 of them can be used.
However, the 29 bit identifier of the extended frame supports more than 500 million
different message types. As CAN can only linked up to 110 nodes. there is no
advantage of using extended frame in practice. Extended frame not only provide
no practical advantage over standard frame, but also has numerous disadvantages
as compare to standard frame. In [30], it was shown that the extended frame had
higher bus access time, lower bus throughput and higher cost. In addition, one can
expect that extended format will have higher bit error rate than standard format
because both formats have the same number of CRC bit. Because of these numerous

disadvantages, standard frame is the most common format used in the CAN industry.
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2.1.3 Error Process and Detection

In [42], the authors have estimated the expected number of undetected transmission
errors during lifetime of a vehicle is lower than 107!2. Such an excellent perfor-
mance is the result of a very efficient error detection mechanism being used in CAN.
This mechanism can be divided into message level and bit level. In message level,
CRC safeguards the information in the frame by adding redundant check bits at the
transmission end. At the receiver these bits are re-computed and tested against the
received bits. If they do not agree, there has been a CRC error. Frame check verifies
the structure of the transmitted frame by checking the bit fields against the fixed
format and the frame size. Errors detected by frame checks are designated format
errors. Finally, frames received are acknowledged by all receivers through positive
acknowledgement. If no acknowledgement is received by the transmitter of the mes-
sage an ACK error is indicated. At the bit level, the transmitter monitors the bus
signals and detects errors. Each transmitting station observes signal on the bus and
thus detects differences between the bit sent and the bit received. This permits reli-
able detection of global errors and errors local to the transmitter. The coding of the
individual bits is tested at bit level. Each bit is represented by Non Return to Zero
(NRZ) coding [16], which guarantees maximum coding efficiency. The synchroniza-
tion edges are generated by bit stuffing; that means after five consecutive equal bits,
the transmitter inserts into the bit stream a stuff bit with the complementary value,
which will then be removed by the receivers. The code check is limited to checking
adherence to the stuffing rule. If one or more errors are discovered by at least one
station using the above mechanisms, the current transmission is aborted by sending
an “error flag”. This prevents other stations accepting the message and thus ensures
the consistency of data throughout the network. After transmission of an erroneous

message has been aborted, the sender automatically re-attempts transmission. If one
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or more errors are discovered by at least one station using the above mechanisms, the
current transmission is aborted by sending an error flag. This prevents other stations
from accepting the message and thus ensures the consistency of data throughout the
network. After transmission of an erroneous message has been aborted, the sender
automatically re-attempts transmission. There may again be competition for bus
allocation.

However, in the event of a defective station, it might lead to all messages (including
the correct ones) being aborted. If no self-monitoring measure were taken, the bus
system would be blocked by this. The CAN protocol therefore provides a mechanism
to distinguish sporadic errors from permanent errors and local failures at the station.
This is done by statistical assessment of station error situations, with the aim of
recognizing a station’s own defects and possibly entering an operation mode (normal
mode and bus off mode[15]), where the rest of the CAN network is not negatively
affected. This may go as far as the station switching itself off to prevent messages

from being erroneously recognized as incorrect.

2.2 Timing Analysis

In the past, the approaches to real time on CAN was very passive. People will
throw all the messages at the CAN bus and only worry about the timing behavior
when problems start to show up in testing. This generally works with a low bus
utilization because the chance of a long delay is fairly small. However, if people
want to fully utilize the existing CAN, then they will have to know that the timing
requirements of the application will be met. This motivates researchers [38, 37, 39]
from the University of York in England to formulate the first mathematical model
that describes the timing behavior of CAN and similarly in [12]. The next section

will summarize their results and discuss the incompleteness in their model.
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2.2.1 Literature Review

A periodic frame m is characterized by (C,, T, D, Sm) where T, is the period, Cy,
the transmission time, D,, the deadline and S,, the data size in bytes. A message
m can be delayed by higher priority messages and by a lower priority message that
has already begun transmission. The longest time that a low priority message, lower
than m, can possibly hold the bus is denoted as B,,. The worst-case response time

for a message m under the assumption of no hardware failure is given as follow:

Ry =ty + Chr (2.1)

tm

&
fe—— Ry ——
f«——— D,
e

Figure 2.4: Timing Diagram

The queuing time, t,,, is measured from when the message is queued to the start
of winning arbitration. The transmission time, C,,, is the time taken to actually send
the message on the bus. This transmission time can be found from the maximum
size of the message, and by knowing the maximum number of stuff bits that can be
inserted into the bit stream when transmitting the message. The following equation

gives the transmission time C,,[15]:

4 m

where 47 is the size of the fixed-form bit fields of the CAN standard frame, 8S,, is
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the data size in bits, and 73; is the bit time. The floor function® correspond to bit
stuffing as mentioned in Section 2.1.3 and out of the 47 overhead bit, 34 are subject
to bit-stuffing[37]. Notice how the divisor in the equation is 4 and not 5, even though
CAN uses a stuff width of 5. This is because stuff bits are themselves subject to bit

stuffing. Consider the following unstuffed bit stream:
...000011110000111100001111 ...
If a ’0’ stuff bit is inserted at the start of the stream, then the final stream becomes:
...00001111100000111110000011111 ...

The inserted stuff bits are marked in bold. Therefore, the worst case would be an
extra bit inserts for every four unstuffed bit instead of five unstuffed bits. A periodic
frame m and its worst case response time are shown in Fig. 2.4 where the “flag”
corresponding to the release time of message.

In order to determine the maximum queuing time that message m will experience,
we need to know the longest time that a low priority message can possibly hold
the bus before arbitration starts. This is equal to the maximum transmission time
of the largest message of lower priority, Cl,,,,. In addition, we need to calculate
the maximum time that all messages with higher priority than m to transmit while

message m still in queue. This latter time is given by:

3y F"‘;%W C; (2.3)

Vji€hp(m)

where hp(m) is the set of messages of higher priority than message m, t,, is the longest

3|a] = b where b is the biggest integer smaller than or equal to a
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time that message m is queued before winning arbitration. The ceiling function*
represents the number of rounds that message j € hp(m) transmit during the time

where message m wait for transmission.

3 1,2

Figure 2.5: Queuing Time

Finally, the time take due to transmitting error frames and retransmitting higher
priority messages needs to take into account. E(t) is the “error recovery function”,
which is the maximum expected overhead due to errors and retransmissions on the
bus in an interval ¢, as defined in [37]. Putting these times together we get the

maximum queuing time:

=B, + bm =+ o C;+ E(tm) (2.4)
- B, Z [ + Thi t—‘
)

Vjehp(m

This equation can be solved by recursive relation. An example is given in Fig. 2.5
where a lower number indicates a message with higher priority and the “flag” cor-
respond to the instant where message start pending. However, in [24], the author
characterize the “error recovery function” as a function of number of retransmission
of the current message. They did not consider the effect of retransmission for higher
priority which will largely increase the response time for lower priority message. Also,

in [12], the author completely ignore the possibility of retransmission.

4[a] = b where b is the smallest integer bigger than or equal to a
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2.2.2 Improved Model

In reality, CAN is being used to connect circuits and mechanical parts. These elec-
tromechanical parts may induce electromagnetic field that corrupt signal on the bus.
As a result, an improved model that incorporate retransmission and error frame
transmission will be presented in this section. We will include n,,, the number of re-
transmissions, as another variable that characterizes the periodic frame m. Once an
error detected, an error frame (EF) will be sent to the transmitter as it was described
in Section 2.1.3. The recovery time from detecting an error until the possible start of
next frame, is typically 17 bit times to 23 bit times (in the case of a heavily disturbed
bus up to 29 bit times) if there are no further errors. For our purpose, we will assume
EF has the size of 23 bit times. It is important to know that the error frame will not
be interrupted by any other message. Therefore, the longest time that a low priority
message can possible hold the bus should be equal to the maximum transmission of
the largest message of lower priority with error. The improved model of worst case

response time is defined as follow:
Ry =Crn+ ) tm, (2.5)
i=0

where t,,, is the time between message m’s i retransmission and i — 1" retransmis-

sion.
corrupted successful
D / n?sage\ tra'n/smission
Cn Cn e Cn Cn
}‘7 tmo% tml 4"<7 tmz 4" }‘7 tmnﬁ
| < R -
= m =

Figure 2.6: Improved Model

In order to determine the maximum queuing time that message m will experience,
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we need to know the longest time that a low priority message can possibly hold
the bus before arbitration starts. This is equal to the maximum transmission time
of the largest message of lower priority with error. If the low priority message is
corrupted, then the receiver requires to send an error frame that acknowledge the
sender’s message is corrupted. However, retransmission can be proceed only when no
high priority message is pending. Also, we will introduce another variable O,, that
is the amount of time during which message m occupies the bus that includes error
frame transmission. For example, if message m has retransmitted n,, times before
a successful transmission, then the time that message m has occupied the bus is
Om =N X (Cpy + EF) + Cy,. The last term corresponds to successful transmission.
In addition, we need to calculate the maximum transmission time that all higher
priority messages (with or without error) than m while message m still in queue.

This latter time is given by:

For 1 =0,

otherwise,

Zézo by T Thit Z;;lo Uy, T Thit
Zm) ( { T — T 0, (2.6)

Viehp(

where ¢ is an integer range from 1 to n,,, hp(m) is the set of messages of higher

priority than message m, and ¢,,, is the longest time that message m need to wait on

th

queue from (p — 1) retransmission to p’* retransmission before winning arbitrate.

The term, t,, , has already included the transmission time for (p—1)*" retransmission.
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The difference of two ceiling function correspond to the number of times that message
Jj requires to transmit within the time slot, ¢,,,. Finally, we get the maximum queuing

time:

tmi'f"ri L
B+ EF + 3 ichpm) [ ijt-‘ O, ifi=0
i ] i—1 - )
Com + EF + 3 vichpm) ([Z’"_O tTT;”JrTb”-‘ - [E”zo E}:ﬁ b”-D O; otherwise.

2.7)

b =

This model not only considers the effect of higher priority messages’ retransmissions
on lower priority’s response time; but also allows us to arbitrarily assign different
number of retransmission on different messages and calculate the worst case response
time. This enables us to determine under what circumstances the system will break
down. This represents a new and more realistic model which has not been considered

previously in the CAN literature.

Illustrative Example

This example consists of a set of 3 periodic messages listed in Table 2.1. For simplicity,
we will assume all messages require 1 retransmission before a successful transmission.
It will be further assumed the time that an error frame will occupy the bus is equal
to one unit of time, and there is a corrupted low priority message on the bus before

message 1 release time.

Priority (Id) | Cy, | Period | Deadline | R,
1 2 12 12 9
2 3 24 24 21
3 3 45 45 45

Table 2.1: Message Set
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Figure 2.7: Bus Occupation

A graphical interpretation of Eqn.2.5 and Eqn.2.7 is shown in Fig. 2.7 where “pat-
tern box” and “flag” correspond to error frame occupancy and the message release
time, respectively. For example, message 1 need to wait for the corrupted message
finish transmission before it can start transmitting its content; as a result, ¢;, equals
to the sum of B; and EF. For message 2, it has to wait for message 1’s successful
transmission before it can proceed its first transmission. However, the first transmis-
sion is corrupted and an error frame is received. Since message 1 require to transmit
again, message 2 has to wait for message 1’s successful transmission before it can
proceed its first retransmission. For message 3, it need to wait for all higher prior-
ity messages (m = 1,2) finished their transmission and retransmission before it can
start transmitting its content. As a result, it will take longer time for it to win the
arbitrate as compare to other messages. By using Eqn. 2.5 and Eqn.2.7,; we calculate

the response time as follow:

m | 1| 2| 3
tmo | 4] 9 | 21
tmy 1319 |21
R, | 92145

Table 2.2: Analytical results
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These results are consistent with Fig. 2.7.

2.2.3 Numerical Example

We are going to consider the same example as in [24]. It is an experimental embedded
CAN based application, provided by PSA (Peugeot-Citréen Automobiles Company),
that was implemented in a prototype car. Six devices exchange messages: the engine
controller, the wheel angle sensor, the AGB (Automatic Gear Box), the ABS (Anti-
Blocking System), device y® and the body work gateway. The traffic consists of a
set of 12 periodic messages (e.g. speed and torque from the engine controller) listed
in Table 2.3. The transmission rate of the CAN bus is 250kbps. It will be further
assumed that the deadline of each frame is equal to its period. The Data Length Code
(DLC) denotes the number of bytes of each frame. Eqn. 2.5 and Eqn. 2.7 enable us
to compute the worst case response time for a given number of retransmission as a

result of error transmission.

Priority (m) | Transmitter node | DLC | Period | Max. Retry R,
1 engine controller 8 10ms 2 2.396ms
2 wheel angle sensor 3 14ms 3 4.032ms
3 engine controller 3 20ms 1 4.804ms
4 AGB 2 15ms 1 5.496ms
5 ABS 5 20ms 4 7.964ms
6 ABS 5 40ms 1 8.896ms
7 ABS 4 15ms 1 9.748ms
8 bodywork gateway ) 50ms 6 18.224ms
9 device y 4 20ms 1 19.076ms
10 engine controller 7 100ms 1 20.088ms
11 AGB 5 50ms 7 34.812ms
12 ABS 1 100ms 2 36.056ms

Table 2.3: PSA message set

In [24], they cannot calculate the worst case response time for messages when

5The name of this device cannot be communicated because of confidentiality



2.3. SUMMARY 24

corrupted messages lead to retransmission. However, by using Eqn. 2.5 and Eqn.
2.7, we can calculate the worst case response time for messages when the maximum
number of retries is known. Thus, our model will able to provide a more realistic
timing behavior, as long as we have some idea on how frequent a message will be

corrupted.

2.3 Summary

CAN is a deterministic protocol optimized for short messages. The message priority
is specified in the arbitration field. Higher priority messages always gain access to
the bus during arbitration. Therefore, the transmission delay for higher priority
messages can be guaranteed. In addition, it requires less wiring as compared to point
to point communication systems. Also, with its excellent error recovery and detection
mechanism. CAN protocol has a Hamming distance [16] equal to six. That means it
can detect up to 5 errors and correct up to 2 errors (see Appendix A). On average,
one undetected error will occur in every 1000 years [4]. Hence, it is highly reliable
and its response time is less random. Furthermore, CAN has also been the choice
of manufacturers of medical apparatus, textile machines, special-purpose machinery
and elevator controls [46, 29].

The major disadvantage of CAN compared with the other networks is the slow
data rate (500kbps maximum). Thus the throughput is limited compared with other
control networks. This limitation is not due to technological issues, but rather to its
physical set-up. The CAN protocol requires the different stations to be synchronized
within a bit time; in fact, at any given time all the stations must sense the same
physical level on the bus in order the arbitration mechanism to operate correctly.
The means that in CAN the transmission rate-bus length product is upper-bounded

and his bound depends on the propagation speed of the electrical signals. CAN is
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also not suitable for transmission of messages of large data sizes, although it does

support fragmentation of data that is more than 8 bytes.



Chapter 3

Process Field Bus

In 1987, the German Federal Minister for Research and Technology requested the
collaboration project, 'Field Bus’. It is the digital replacement of the analog 4-20
mA interface which is widely used in industrial process control. Thirteen compa-
nies and five institutes worked together to develop an open field bus system under
the name PROFIBUS (Process Field Bus) based on the ISO/OSI reference model.
The official goal of the project was to quickly propagate PROFIBUS as the field-
bus standard. The bus access is based on a hybrid method where masters use a
token-passing procedure to grant the bus access and a master-slave procedure to
communicate with slave stations. It is well suited for high speed applications using
long messages. PROFIBUS can link up to 124 stations with a maximum of 244 bytes
input and output data for each slave. It offers high-speed communication rate up to
12Mbits/sec that allows real-time control. PROFIBUS encompasses several Industrial
Bus Protocol Specifications, including PROFIBUS-PA, PROFIBUS-FMS, PROFInet
and PROFIBUS-DP. PROFIBUS-PA is a full-function fieldbus that is generally used
for process level instrumentation. It communicates at 31.25Kbps and has a maximum

distance of 1900 meters per segment. PROFIBUS-FMS is a control bus generally used

26
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for communications between DCS (Detector Control Systems) and PLC (Program-
ming Logic Controller) systems, while PROFInet is a protocol being developed to
allow PROFIBUS communications across Ethernet Networks. PROFIBUS-DP[43] is
a device level bus that supports both analog and discrete signals. PROFIBUS-DP
has widespread usage for such items as remote I/O systems, motor control centers,
and variable speed drives. PROFIBUS-DP communicates at speeds from 9.6 Kbps to
12 Mbps over distances from 100 to 1,200 meters. For control purposes, we will only
analyze the timing behavior of PROFIBUS-DP.

In section 3.1, we describe the PROFIBUS protocol and its way of handling trans-
mission errors. Section 3.2 is devoted to calculating the worst case response time
under noise critical environment with an industrial example. Finally, in section 3.3,

we will discuss the advantages and disadvantages of using PROFIBUS.

3.1 Protocol Description

This section will discuss some key features in PROFIBUS protocol. It is important to
understand how PROFIBUS protocol works because this will enable us to formulate
correctly its timing behavior that is crucial to control application. Later in this
section, we will discuss PROFIBUS’s error handling and recovery process. It will not
only affect the timing behavior but also affect the decision making on choosing this

network for a particular application.

3.1.1 Fundamental elements in PROFIBUS

PROFIBUS contains master and slave stations. Master devices (active stations)
determine the data communication on the bus. A master can send message without

an external request when it holds the bus access rights (the token). Slave devices
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(passive station) are peripherals such as I/O devices, valves, drives and measuring
transducers. They do not have bus access rights and they can only acknowledge

received messages or send messages to the master when are requested.

Logical Token Ring

active stations

1O

BUS

passive stations

Figure 3.1: PROFIBUS medium access method

As mentioned at the beginning of this chapter, PROFIBUS’s protocol is a sim-
plified version of the timed token protocol. A token is passed between masters in
ascending order of addresses. This token passing procedure ensures that the bus ac-
cess right (the token) is assigned to each master within a precisely defined timeframe.
The token message, a special telegram for passing the token from one master to the
next master, must be passed around the logical token ring once to all masters within
a (configurable) maximum token rotation time. In PROFIBUS the token passing
procedure is only used for communication between active stations (masters). In the
case of PROFIBUS mono-master networks (PROFIBUS-DP,2000), the station just
passes the token to itself. The advantage of preserving the same token-passing pro-
cedure is that they allow for an unambiguous scheduling of different classes of traffic
(high-priority and cyclic/acyclic low-priority), preserving all the properties found in

multi-master PROFIBUS networks.
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3.1.2 Message Cycle

An important PROFIBUS concept is the Message Cycle, which comprises the Action
Frame sent by the initiator (always a master) and the associated Acknowledge or
Response Frame sent by the responder. Once the action frame has been transmitted,
the initiator waits for response during a Slot Time (T’sy). If a response is not received
within Ty, initiator will retry up to a number of maximum retry limit. PROFIBUS
is capable of distinguishing between high-priority, cyclic low-priority (execution of the
requests contained in the poll list), and acyclic low-priority messages. PROFIBUS
provides service to poll a list of sensors and actuators, by means of a pre-defined
sequence of requests. The processing of all the Poll List entries is said to be a Poll
cycle. The Poll Cycle duration depends on the length of each message cycle, the
number of message cycles processed at each token arrival and the token rotation time.
Hence, a Poll Cycle may last for several token-holding periods. If the Poll Cycle is
completed within one token holding period, then the next Poll Cycle may only start at
the next receipt of token. Otherwise, the Poll List is processed in segments, without

inserting acyclic low-priority message cycles.

3.1.3 Message Dispatching

The amount of time that a master can hold the bus is determined by target rotation
time (Trg), real rotation time (Tgg), and token holding time (T7g). These variables

can be related by the following equation:

TTH = TTR - TRR (31)

The target rotation time, T g, must be defined in a PROFIBUS network. The value of

this parameter is common to all masters. After receiving the token, the measurement
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of the token rotation time begins. This measurement expires at the next token arrival
and results in the real token rotation time, Trz. When a station receives the token,
the token holding time, Ty, timer is given the value corresponding to the difference,
if positive, between Trgr and Trr. PROFIBUS defines two categories of messages:
high priority and low priority. These two categories of messages use two independent
outgoing queues. If at the arrival, the token is late, that is, the real token rotation
time (Tgrg) is greater than the target rotation time (7rg), the master station may
execute, at most, one high priority message cycle. Otherwise, the master station
may execute high priority message cycles while Try > 0. Trgy is always tested at
the beginning of the message cycle execution. This means that once a message cycle
is started it is always completed, including any required retries, even if Ty expires
during the execution. The low priority message cycles are executed if there are no

high priority messages pending, and while Ty > 0.

Example

Let us consider a mono-master Profibus system with two sensors and an actuator in

the poll list. In addition to the high priority messages, there is a low priority messages

which contain surveillance camera images. The timing description for high and low
-1

messages are in Table 3.1. We will assume Trg, Ty, , and token latency equal to 10

ms, 4 ms, and 1 ms, respectively.

Name | Symbol | Priority | Trans. Time | Period
Sensor 1 hy High 4 ms 20 ms
Sensor 2 ho High 4 ms 20 ms
Actuator hs High 3 ms 40 ms
Camera I Low 5 ms 50 ms

Table 3.1: Timing description

In Fig. 3.2, the black box correspond to token latency (i.e the time that require
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to pass a token) and the gray box correspond to the time which Ty is exceeded due

to the completion of a message cycle.

~ Trpg ——
-~ Thi— T —>
-~ Tin ——~ |
~— Ty

: 4
: TTR TT-;I

« T}l{h‘tl*H Trg—

Trg expired
\ -

{ x x x x -
5 10 15 20 Time (ms)

Figure 3.2: Message Cycle

At 4ms, master receives token with token holding time equals to Trr—Th; = 6ms.
Sensor 1 finished transmission at 8ms. Sensor 2 begin transmission at 8ms. Even
though Tk timer expires at 10ms, sensor 2 must finish transmission before master
can pass the token. At 13ms, master receives token with token holding time equals
to Trgr — Thr = 1ms. Actuator begin transmitting signal and finished at 16ms. Since
T}}} expires, no more messages can be transmitted. At 17ms, master receives token
with token holding time equals to Trr — Tllzjzl = 6ms. Since Try > 0 and no high
priority message pending, camera signal begin transmission.

As demonstrated in the above example, Trg is a variable that depends on the
number of messages being sent in the present token cycle. Since Ty depends on

Trr, this values will be changing at all time.



3.1. PROTOCOL DESCRIPTION 32

3.1.4 PROFIBUS Frame

Data transfer services require standardized frame formats. Together with the most
efficient encoding, highly reliable transmission must be ensured. For this purpose
the frames are given redundant information which inevitably increases the protocol

overhead, thus reducing the net transmission rate of the protocol.

SD2| LE | LEr | SD2| DA | SA | FC | Data Unit | FCS ED

[+—— L=4t0 249 —*]
Figure 3.3: Format with variable information field length

A frame always starts with a Start Delimiter (SD) containing code of the frame
format. After the SD there are Destination Address (DA) and Source Address (SA)
which identify address of receiver and transmitter, respectively. They are followed by
the Frame Control (FC), by which the receiver recognizes the frame type (acknowledge
frame or response frame). FC contains the frame priority and control information
that, for instance, avoids frame loss of the frame. Finally, there is a Frame Check
Sequence (FCS) that serves for data security has a 1 byte length, followed by the
End Delimiter (ED) which has 1 byte length. The called station acknowledges frame
reception by transmitting a frame or a one-character acknowledgment. Fig.3.3 [1]
shows an example of maximum frame length that consists of 255 bytes, thus allowing
246 information bytes. However, in the case when masters are passing token to each
other, the message frame will not carry any data information. As a result, the token
frame will have a length of 3 character.

Unlike CAN, Profibus uses an asynchronous transmission technique, which means
that the clock frequencies of transmitter and receiver are not synchronized. The

transmission is character-oriented. Therefore, each time the receiver recognizes a
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start bit, it must resynchronize its sampling with the sender. Each frame contains a
number of characters. In each character, it consists of 1 start bit, 1 stop bit, 1 parity
bit and 8 bit of data. Even parity means that the data bits contain an even number
of ’ones’. In this case the parity bit is set to zero. In the case that the number of

ones is odd, the parity bit is set to one.

3.1.5 Error Detection and Handling

In order to ensure error-free transmission, PROFIBUS provides security with Ham-
ming distance (Hd=4) [8]. In the case of Hd=4, a one-bit error in a character can be
detected and corrected, a three-bit error can be detected but not corrected. This is
achieved through compliance with the international standard IEC 870-5-1 [7], through
special telegram start and end delimiters, slip-free synchronization, a parity bit and a
check byte. If an uncorrected error is detected, then PROFIBUS will react according
to the availability of services in the data security layer. For example, PROFIBUS-DP
data security layer has a service called SRD, Send and Request Data with Reply, that
allows a user to transfer data to a single remote station and simultaneously request
data from another remote station. If an error occurred, the data transfer will be

repeated.

3.2 Timing Analysis

The PROFIBUS-DP profile is aimed at time-critical communications distributed in-
put/output devices. As a result, there is no application layer being developed in
this profile, while others include this application layer, that enhance speed and effi-
ciency in the network. The mono-master structure, a single master device cyclically

polling many distributed slaves, is often preferred due to its higher baud rate (up
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to 12Mbps) [43]. Hence, we will only analyze the timing behavior of mono-master
PROFIBUS-DP network. In the next section, we will summarize the results in the

literature [40, 41, 22]. After that, we will proposed an improved timing analysis for

PROFIBUS-DP.

3.2.1 Literature Review

As the popularity of PROFIBUS in control industry increased, more people realized
the significance of understanding the timing behavior of PROFIBUS. Early results
on response time analysis was published in various papers [40, 41]. Their analysis
are intended for multi-master systems and if applied to the mono-master system, it
would lead to very pessimistic results because the authors consider always the worst-
case token rotation time. Moreover, none of these works consider the evaluation of
response time guarantees for the cyclic poll PROFIBUS messages. In the most recent
publication [22], the authors carried out an analysis of timing behavior for mono-
master PROFIBUS-DP network. In this section, we will go over some definitions and
timing analysis in [22].
Definition 1. (Overrun Window)

We define an overrun window as the time window during which Try is exceeded

due to the completion of a message cycle.

Definition 2. (Late Token)
A token is defined as being late if, at its arrival, the real token rotation Tgrg is

greater than the target token rotation time Trg.

A late token arrival implies that at most one high-priority message can be processed
by the related master station. It should be noted that an overrun in a given token

arrival, does not usually imply a late token on the next arrival.
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Let us denote A(l) as the token arrival instant for the [** token visit. At the time
instant A(l), Tk, timer is assigned with the value Tz — Ty . Therefore, there will
be a late token arrival only if T;z}ll > Trr. Note that the real token rotation time is
measured between token arrivals.

G o S,
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1 T 3 le+l§
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D overrun window D high/low priority I token latency

Figure 3.4: Message Cycle and Token Reception

As depicted in Fig. 3.4, it is clear that the token is neither late in the {** token
visit nor in the (I + 1) visit, after the one where an overrun has occurred. However,

in some particular conditions the token can be late.

Theorem 1. (Theorem 1 [22])
In a mono-master Profibus system, if in the " token visit an overrun occurs, then
there will be a late token arrival if and only if the overrun window is greater than the

-1
value of Ty, -

In [18], the author introduced the concept of critical instant as being the time
instant at which a request for a given task has the longest response time, that is, the

longest time interval till the end of the response for that request.

Definition 3. (PROFIBUS Critical Instant)
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Considering that requests for all high-priority, cyclic and acyclic low-priority mes-
sage streams are simultaneously placed on the respective outgoing queues. We define a
PROFIBUS critical instant as the time instant at which a request for a given message

stream has the longest response time.

In a PROFIBUS network, we must consider that, due to FCFS (First Come First
Serve) behavior of the outgoing queues, a given message request can be delayed by
requests from all the other message streams. Therefore, a critical instant will occur
when, for a given priority every message stream simultaneously issue a message re-
quest. Moreover, due to non pre-emptive context of messages processing, high-priority

request may suffer some additional delay before starting being processed.
Definition 4. (Initial Blocking)
We define the initial blocking as the delay that the first request made at the critical

instant may suffer until starting to be processed.

Definition 5. (Critical Load)
We define the critical load for a given priority class, as the time interval between
a critical instant and the time instant when the last request (made at the critical

instant) for that priority class has been completely processed.

As far as the evaluation of the worst-case response time is concerned, two factors
must be taken into account: the initial blocking and the high-priority messages stream

made at the critical instant results from the simultaneous occurrence of:

e The longest initial blocking, that is, the first high-priority request suffers the

longest possible delay before being processed;

e the longest high-priority critical load, that is, it takes the maximum number of
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token visits to process all high-priority requests.

According to Theorem 2 and 3 in [22], the simultaneous occurrence of both con-
ditions leads to the worst-case response time for the last message request to be pro-
cessed. Since all the possible requests are issued at the critical instant and due to
the non pre-emptive context of Profibus, a master may need several token visits to
process all high-priority messages, before processing any low-priority request. Thus,

there will be a well defined pattern when processing all those requests as depicted in

Fig. 3.5.
Critical
Instant
Y
n
N y
Y

High—pripority processing

pattern

D low priority messages D high priority messagesl token latency

Figure 3.5: The 1 — n processing pattern

This processing pattern is characterized by a late token arrival, where just one
high-priority message is processed, followed by an early token arrival, where n high-

priority messages are processed.

Theorem 2. (Theorem 4 [22])
The occurrence of a Profibus critical instant induces a 1 — n processing pattern for

high-priority messages.

If only one high-priority message is processed in the (I — 1) token visit, then
the token holding timer is assigned with Try = Trgp — Chmay — 7 in the I token

visit where C'hpq, is the transmission time for the largest high priority message and
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Trr—Chmaz—T

Chmaz J messages processed during

T is the token passing time. There are {
this period and one more message will be processed in overrun. Therefore, n =
{WJ +1 = {%J high-priority messages will be processed when only
one high-priority messages is processed in the last token visit and | | is the floor
function!.

The worst-case response time for high-priority messages can be computed taking

into account the following four components:

1. the initial blocking (B = Clyp + 7) where Cly,,, and 7 are correspond to the

longest low priority transmission time and token passing time, respectively;

hy

”

Clmaz T Chl

|«— Initial Blocking—»]

Figure 3.6: Initial Blocking

2. the amount of time require to process n messages with overrun is equal to
Tryg 4+ Chyper + 7 = Trg and the amount of time requires to process 1 message
is Chypaz + 7. Therefore, the amount of time require to process n 4+ 1 messages
is equal to Trg + Chyyee + 7 and the number of “1-n” processing rounds require

to process ny high priority messages is equal to Ln”—flj,

3. a component ¥, which is related to the finishing of the “1 — n” processing
pattern[22]. At the end of the last complete cycle of n messages, there are three

possible cases:

(a) there are no more pending requests, and thus the computation of the re-

sponse time ends before releasing the token in the previous token cycles;

lla] = b where b is the biggest integer smaller than or equal to a
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(b) there is just one pending request, and thus the time needed to process the

pending requests is exactly Chpqz;

(c) there are more than one pending request, and thus one more token cycle

is needed to process the pending requests.

Hence, the worst-case response time for PROFIBUS high priority messages is:

Rh=B+{ 1th J X(TTR+Chma$+T)+\Ifh

n+1
where:
.
- it =[] (241
L (nh - Lnn—ﬁJ (n+ 1)) Chpmaz + 7, otherwise.
and
Trr — Chmas — T Trr—T
- 1=
" { Chimaz J * { Chmaz

B TTR + Chmaac +7 TTR + Chmaz +T | \Ijh

Ny

Ry,

v

Figure 3.7: Worst case response time

The first case in ¥}, corresponds to no more message require to be processed; as a
result, we don’t need to pass a token in the last “1-n” processing round. The second

case corresponds to one more message require to be processed. In the last case, there

are (ny — [n"—flJ (n+1)) messages left. In the first token visit, there is only one

message processed. Therefore, the rest of the messages require to be processed in the

next token visit.
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Numerical Example

We are going to consider the same example as in [22]. It is a mono-master PROFIBUS
network in an industrial environment, where a decentralized computer controlled
system integrates video message streams, computer-generated audio messages and
control-related message streams. The supported application controls an assembly
production line where parts must be assembled and checked. The control-related
message streams, which interconnect sensors and actuators to controllers, are mapped
on the high-priority message streams and each message will contain 20 bytes of in-
formation. Table 3.2 summarizes the characterization of the high-priority message
streams considered in this example, where set x represents a set of message streams

with the same periodicity.

Set 1 Set 2 Set3 Set4 Total
Messages per set, 3 5 7 5 20
Th; 20ms 25ms 5H0ms 60ms

Table 3.2: Summary of high-priority message streams

We assume the deadline for each message is equal to its period, Th;, and we will
calculate the worst case response time for sending 20 messages. From this worst
case response time analysis, we can conclude if messages will or will not meet their
deadline. In order to meet realistic requirements, a value for the Slot Time (Tsz) and
for the target token rotation time (77g) has been fixed to 100us and 8ms, respectively.
Moreover, a 1.5Mbps data transfer rate is considered in this example. Therefore, the
bit period is equal to 0.667us and the computation for the token-passing latency,
yields: 7 = 3 X (Trp + Ts1,) = 366us, where Trp is the token frame length and 3 is

the maximum number of retries predefined for the case of the token frame. There are

3x11
1.5x108 —

3 bytes of information in each token frame and Trp is equal to 22us. In

addition, the computation of message length for high priority message is as follows:
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Chmaz = (9 + 20) X % = 213us, where 9 corresponds to the header and each

character contains 11bits.

Concerning message streams to support the video message, we assume the max-
imum data size for the image is 246 bytes with a period of 50ms. Hence, Cl,,: =
(9+4256) x %ﬂgs = 1.87ms and the maximum blocking is: B = Clz +7 = 2.236ms.
Thus, the number of high-priority message processed in a 1 — n processing pattern is:
n+1= {%J + 1 = 36. Since the master can process 36 messages per token visit,

the master does not require a full round to process all messages, 20. Therefore, the

worst-case response time for high priority message streams is

Np
n

Rh=B+{ 1J (TTR+Chma$+T)+‘I’h

2 20
= 2.236ms + L%J x 8.579ms + [(20 — {%J 36) x 213us + 366us

= 6.855ms

Although their analysis was quiet complete, they did not consider the case when
message retransmissions occur. The effect of data retransmission on worst case re-

sponse time will be discussed in the next section.

3.2.2 Timing Analysis with Message Retransmission

In the previous section, we have presented timing analysis for mono-master PROFIBUS
system. However, that analysis ignored the possibility of having retransmissions. In
reality, one will expect error transmission will occur from time to time. As a result,
timing analysis without considering error transmission is too optimistic. Therefore,
we will include message retransmission in our proposed model. We introduce a vari-

able, n,,, as the maximum number of retransmission for a given message.
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Figure 3.8: Message Retransmission

As we stated in section 3.1.2, a message will be retransmitted if the transmit-
ter does not receive an acknowledgment message from the receiver within Ty after
the message is completely dispatched. Furthermore, the master will not release the
token unless the current message (include retransmission) is being transmitted suc-
cessfully. Therefore, the amount of time between message m’s 1% transmission and
nf,’} retransmission is equal to 1y, (Chmar + Tsr) + Chpas.  Although we have in-
cluded the possibility of message retransmission, it does not affect the effect of 1 —
n processing pattern. Hence, message retransmission will only affect the number of
messages that can be process during this token visit when only one high-priority mes-
sage is processed in the previous token visit. If only one high-priority message being

processed in the (I — 1) token visit, then the token holding timer is assigned with

Truy =Trr — (N (Chiag + Tsp) + Chias) — 7. Also, in the case when Try 2 0, one

TTR_(nm(Chmam‘f'TSL)‘f'Chmaz)_TJ +1 —

more message will be processed. Therefore, n = { o (Ol 5 1)+ O

{nm ( ChmagrRT;Z) m Chme high priority messages will be processed when only one high-

priority messages is processed in the last token visit. Hence, the worst-case response
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time for PROFIBUS high priority messages with n,, retries is:

Ry =B+ Lf:llJ X (Trr + (N + 1)Chypae + 1y Tsp + 7) + Wy,
where:
.
-7, if np = [nn——tlJ (n + 1)
\IIh =9 (nm + 1)Chma:c + anSLa if np = [nn—flJ (7?, + 1) +1
L (”h - Lnn—flJ (n+ 1)) ((nm + 1)Chppag +nmTsy) + 7, otherwise.

and

n = TTR - T
B (nm + 1)Chmam + anSL

(3.3)

The three cases in ¥, has been described in section 3.2.1. If we assume no retrans-
mission is required then n,, = 0 and Eqn. 3.3 will be identical to Eqn. 3.2. Hence
it is consistent with the equation derived in [22]. In terms of schedulability, a set of
messages maybe schedulable under error free transmission but becomes unschedulable
when retransmission is needed. Therefore, message retransmission should always be

considered in schedulability test for real-time systems.

Numerical Example

We are going to consider the same example as in [22]. It is a mono-master PROFIBUS
network in an industrial environment, where a decentralized computer controlled
system integrates video message streams, computer-generated audio messages and
control-related message streams. The supported application controls an assembly
production line where parts must be assembled and checked. The control-related

message streams, which interconnect sensors and actuators to controllers, are mapped
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on the high-priority message streams and each message will contain 20 bytes of in-
formation. Table 3.3, summarizes the characterization of the high-priority message
streams considered in this example, where set x represents a set of message streams

with the same periodicity.

Set 1 Set 2 Set3 Set4
np=20 3 5 7 5
Th; 20ms 25ms 50ms 60ms

Table 3.3: Summary of high-priority message streams

In order to meet realistic requirements, a value for the Slot Time (7sz) and for
the target token rotation time (7rg) has been fixed to 100us and 8ms, respectively.
Moreover, a 1.5Mbps data transfer rate is considered in this example. Therefore, the
bit period is equal to 0.667us and the computation for the token-passing latency,
yields: 7 = 3 X (Trp + Tsz) = 366us, where Trp is the token frame length and 3
is the maximum number of retries predefined for the case of the token frame. In

addition, the computation of message length for high priority message is as follow:

Chmaz = (9 + 20) X 1.1511\%23 = 213us, where 9 is correspond to header and each
character contains 11bits.

Concerning message streams to support the video message, we assume the maxi-
mum data size for the image is 246 bytes with period of 50ms. Hence, Cl,,,, = 1.87ms
and the maximum blocking is: B = Cl,q; + 7 = 2.236ms. The worst case response
time for high priority message with the setting described above are giving in Fig. 3.9.

From the results in Fig. 3.9, we can conclude that each message can retransmit
once in order to guarantee all high priority messages meet their deadline. Further-

more, this example has shown message retransmissions will substantially increase the

worst case response time for high-priority messages.
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Worst Case Response Time for 20 messages
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Figure 3.9: Worst case response time and number of message per token visit
3.3 Summary

PROFIBUS is deterministic and provides excellent throughput and efficiency at high
network loads [14, 44]. The bus access is based on a hybrid method, where masters
use a token-passing procedure to grant the bus access and a master-slave procedure
to communicate with slaves. PROFIBUS can handle large amounts of data (up to
244byte) at high speed (up to 12Mbps) and connect up to 124 stations. Further-
more, it is the most widely accepted international networking standard. The major
disadvantage of PROFIBUS compare with CAN is its error detection mechanism. It
provides security with Hamming distance equals to four (Hd=4) while CAN provides

Hd=6.
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In this chapter, we have analyzed the timing behavior of mono-master PROFIBUS-
DP network. In [40, 41, 22|, the authors have developed a timing model for such
systems. Since this network is common for industrial application, electromagnetic
field in this environment is typically strong. Signal on the bus may be corrupted by
electromagnetic interference that cause message retransmission. Therefore, although
retransmissions is commonly ignored, we place great importance on including message
retransmissions in the model. In our example, we have shown that retransmissions
could substantially increase the worst case response time, and our model does provide

more realistic results as compared to the model in [40, 41, 22].



Chapter 4

Ethernet

Ethernet is a well-known innovation that emerged from Xerox Corporation’s Palo
Alto Research Center (PARC) in the 70’s, in the early days of computing, . Ether-
net transmits a signal between two or more receivers over a shared medium. As a
baseband network, Ethernet provides a single channel for communications over the
physical medium. Each device has equal access to the medium, and each can use the
full available bandwidth; therefore, only one device can transmit at a time. If more
than one device transmit signals at the same time, then collision will occur and will
be handled by the transport mechanism, Transport Control Protocol (TCP). As the
popularity® of Ethernet increase, people start to consider applying it to the factory
floor. The main advantages are its fast speed, low cost, and people can control a
production line from their office. However, this protocol was designed with the needs
of Office/Enterprise users in mind. Issues of paramount concern in control networks,
such as real-time performance and redundancy were not part of the original designers’
concerns. Before applying Ethernet to industrial automation. we have to study its

timing behavior.

'In [10], the author estimates 95% of the network traffic carried today over wide-area IP networks
are using TCP.

47
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In section 4.1, we describe key components in Ethernet. In section 4.2, we present
a traditional configuration of Ethernet and demonstrate its disadvantages in control
applications. As a result, we present our network configuration that is much more
suitable for control applications. In our control network, we have used a LAN switch
and full-duplex Ethernet that are described in section 4.3. In section 4.4, we calculate
the response time for a set of messages to be successful transmit based on some
probabilistic parameters. Finally, in section 4.5, we summarize the key operations in

Ethernet control network and its advantages and disadvantages in control application.

4.1 Protocol Description

This section will present the frame structure for Ethernet. Furthermore, we will
discuss the connection and collision detection for Ethernet. It is important to un-
derstand the basic concept of Ethernet because this will enable us to explain why
the traditional configuration, as described in section 4.2, is not suitable for control

application.

4.1.1 Frame Structure

An Ethernet frame varies in size from 64 bytes to 1529 bytes. It is made up of the

nine fields as shown in Fig. 4.1.

52 bits | 8 bits 48 bits 48 bits | 16 bits 46-1500 bytes 32 bits|

Destination | Source | Length/ Data or network

Preamble | SFD Address Address | Type management information

FCS

Figure 4.1: An Ethernet frame (IEEE 802.3 standard[34])
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Preamble

The preamble contains a group of 64 bits that are used to help the hardware synchro-
nize itself with the data on the network. If a few bits of the preamble are lost during

transmission, no harm occurs to the message itself.

Start Frame Delimiter (SFD)

SEFD marks the end of the preamble and the start of the information-bearing parts of

the frame.

Destination address

The destination address contains the physical address of the device that is to receive
the frame. The first two bits of this field have special meaning. If the first bit is
0, then the address represents a hardware address of a single device on the network.
However, if the first bit is 1, then the address is what is known as a multicast address
and the frame is addressed to a group of devices. The second bit indicates where
physical device addresses have been set. If the value is 0, then addresses have been
set by the hardware manufacturer. When addresses are set by those maintaining the

network, the value is 1.

Source address

The source address field contain the hardware address of the device sending the frame.

Length field

The contents of the length field depends on the type of frame. If the frame is carrying

data, then the length field indicates how many bytes of meaningful data are present.
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However, if the frame is carrying management information, then the length field

indicates the type of management information present in the frame.

Data field

The data field carries a minimum of 46 bytes and a maximum of 1500 bytes. If there

are less than 46 bytes of data the field will be padded to the minimum length.

Frame Check Sequence (FCS)

The last field ( also known as a cyclical redundancy check (CRC) field) contains 32
bits used for error checking. The bits in this field are set by the transmitting device
based on the pattern of bits in the data field. The receiving device then regenerates
the FCS. If what the receiving device obtains does not match what is in the frame,
then some bits were changed during transmission and some type of transmission error
has occurred. Unlike CAN and Profibus, Ethernet does not provide the option for
error correction. Therefore, if there is any bit error in a frame, then the entire frame

will be discarded and request for retransmission will be sent to sender.

4.1.2 Connection Method

TCP is a connection-oriented protocol in which a user and the network set up a
logical connection before transfer of data occurs. A connection is described by four
factors: source-address, destination-address, source-port, and destination-port. In
order to manage a connection, the involved instances need to distinguish the packets
and determine which one belongs to which connection, according to the packet’s
sequence number. Every packet has a 32-bit sequence number that is inserted by
the sending host. Sequence number are not unique as 32-bit values can have only 4

billion different states. The sending hosts also increments the sequence numbers by
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extra bit(s), depending on the system. Since packets do not stay in channel forever,
their sequence number can be used again when they reach the targets. The most
interesting point is how those connections have to be established, and that’s where
the three-way handshake appears. Fig. 4.2 illustrates the major operations between

two TCP entities establishing a connection.

1 SYNSEQ 100

2 ACK101; SYN 177

TCP A TCP B

3 ACK178

\i

Figure 4.2: TCP operation

Invoking an event, active open, requires TCP A to prepare a segment with the
SYN bit set to 1. The segment is sent to TCP B and is depicted in the figure as
1 and coded as SYN SEQ 100. In this example, sequence (SEQ) 100 is used as the
initial send sequence (IS) number. The ISS number is to be used for subsequent
numbering of user data. Upon receiving the SYN segment number, TCP B returns
an acknowledgment with sequence number of 101. It also sends its ISS number 177.
This event is labelled as 2. Upon receipt of this segment, TCP A acknowledges with
a segment containing the acknowledgment number 178, depicted as event 3 in the
figure. This acknowledgment indicate that the connection has been established. In
section 4.1.3, we will discussed the situation when more than one device want to

transmit simultaneously.

4.1.3 Detection Method

As stated in the beginning, Ethernet is a baseband network that provides a sin-
gle channel for communications over the physical medium. Therefore, collisions

may occur when more than one device transmit signals at the same time. This
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problem is resolved by CSMA/CD (Carrier Sense Multiple Access/ Collision Detec-
tion). CSMA/CD means that, before transmitting, each device or station first senses
whether there is network traffic. If the network is clear, transmission proceeds im-
mediately; otherwise, the device waits a specified period of time before transmitting.
If more than one devices run through the same routine and transmit simultaneously,
a collision occurs, and a predetermined “backoft” algorithm governs the rules for re-
transmission. If a message frame detects a collision for the first time, then the frame
will wait for a time duration of Tyecrors before retransmission. When second collision
occur for the same frame, the backoff time will be increased to twice the previous
backoff time. This process will continue until the maximum number of retries is
reached. For example, if Tyoerorf = 5ms, then the waiting time for retransmission,
after 4" collision, is 2*~' x 5ms. As a consequence of collision’s random behavior,

the processing time for a message is highly indeterministic.

4.2 Network Configuration

In this section, we will present a traditional network connection and explain the
reason why this is not suitable for control application. After that, we will present our

network configuration that will reduce response time and improve reliability.

4.2.1 Traditional Configuration

A possible assumption is that the “control network”, including the controller, sensors,
and actuators, can be attached to the “standard network”, such as network printers,
personal computers, and internet, while controlled system behavior is not disturbed

by non-control network traffic. The suggested configuration is as shown in Fig. 4.3.
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Outside
World
Personal
Computers Controllers
<:{(J Ethernet
Sensors Actuators Printers

Figure 4.3: Network configuration

In reality, performance of the controlled system is likely to be affected. For exam-
ple, imagine a company that design and manufacture graphics cards. The designers
send large files through the network regularly, and very often the transmission would
use up most of the network’s capacity, causing slow transmission for the other parties.
This is typical in Ethernet networks that a single intensive user can affect the en-
tire network stems. Consequently, this will increase network delay among controller,
sensors, and actuators. The basic plan of network is that each information packet
sent from a computer is seen by all the other computers on the local network for its
address. This scheme is simple, but has performance consequences as the size or level
of activity of the network increases. Hence, this network configuration is not suitable

for control applications.

4.2.2 Control Network Configuration

In this section, we will present the network model that will be used for timing anal-
ysis. In the previous section, we have explained the reason why traditional network

configuration is not suitable for control application. The main reason is that a single
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intensive user can affect the entire network stems. Consequently, network delay will
be increased. Therefore, the most simple and effective solution is to separate the
network into two sub-networks, one for the control system and one for the office. A

router links the two networks and connects both to the internet, as shown in Fig. 4.4.

Office
Network Control
Network
Personal : ‘
Computers Controllers §
e
Actuators Sensors |
Printers :

Figure 4.4: Network with router

The router is the only device that sees all message sent by any computer on either
of the company’s networks. When a designer sends a huge file to another designer,
the router looks at the recipient’s address and keeps the traffic on the office network.
When a designer, on the other hand, probes a sensor for a measurement, the router
sees the recipient’s address and forwards the message between the two networks. The
router ensures that information would not go where it is not needed. This is crucial for
keeping large volumes of data from clogging the connections of “innocent bystanders”.

We can separate a company’s network into two sub-networks, namely, the control
network and the office network. However, from a control perspective, we only care
about the control network configuration because it is the only part which affects
system performance. Let us consider the network configuration as shown in Fig. 4.4.

If a sensor is transferring data to controller, then all the other sensors that want to
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transfer data to controller have to wait until the bus becomes idle. This behavior is
called half-duplex, which means that data could be transmitted in only one direction
at a time. Obviously, this is not very efficient. In order to increase the efficiency,

Local Area Network (LAN) Switch is introduced to the network.

Control
Network Actuators
LAN Office
Controller =) . Router
ontrofter Switch Network
Sensors

Figure 4.5: Network with switch and router

In a fully switched network (star network), as shown in Fig. 4.5, switches replace
all the hubs of an Ethernet network with a dedicated segment for every node. These
segments connect to a switch, which supports multiple dedicated segments (sometimes
in the hundreds). Since the only devices on each segment are the switch and the
node, the switch picks up every transmission before it reaches another node. The
switch then forwards the frame over the appropriate segment. Since any segment
contains only a single node, the frame only reaches the intended recipient. This
allows many conversations to occur simultaneously on a switched network. Another
major advantage of switching hubs is that they can link LAN segments that run at
different speeds.

All switches contain some high-speed buffer memory in which a frame is stored,

however, before being forwarded onto another port or ports of the switching hub.
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This mechanism is known as store-and-forward switching. A larger amount of buffer
memory allows a switch to handle longer streams of back-to-back frames. This gives
the switch improved performance in the presence of bursts of traffic on the LAN.
When a switch operates at store-and-forward mode, all frames will be checked for
any bit errors that have occurred during frame transmission and reception. This will
prevent switches forward faulty messages to the receiver. Although this configuration
will prevent signal collision between different nodes, it does not prevent signal colli-
sion between incoming and outgoing signals from the same node. This collision will
increase transmission time, especially in a network that required rapid data exchange,

such as control network.

B Trgn;pgiyer Transceiver
(T) m
S TX TX &
E —
5 S
O O
c
S s
2 RX RX S
) 2

Full-duplex link supports simultaneous transmit and receive

Figure 4.6: Full duplex operation[35]

Fortunately, fully switched networks can employ either twisted-pair or fiber-optic
cabling, both of which use separate conductors for sending and receiving data. This
is called full-duplex network, as shown in Fig. 4.6. Information can travel from node
to switch and from switch to node simultaneously, and the network is collision-free.
As a result, the aggregate bandwidth is doubled. Since frame collision will never
occur, CSMA/CD is being disabled in full-duplex Ethernet. In the situation where

a number of sensors simultaneously send signal to a controller, incoming packets are
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saved to the input port temporary memory (buffer) in the switch. The packets in
the buffer will be forwarded to the output port controller in first in first out (FIFO)
manner.

Throughout this chapter, we will assume the control network is a fully switched
network as described in above. This setting is also suggested in [23, 5, 3]. The main
two reasons for [23, 5] to choose full-duplex switched network as a control network are:
eliminate data collisions and increase the network’s efficiency. The switch eliminates
the problem of network determinism by providing full bandwidth with storage to a
node or group of nodes. In addtion, this setting eliminates all collisions that typically
make Ethernet nondeterministic. Also, as stated in [3], today’s Ethernet installations
(100Mbps, full duplex in a switched network) show latency measured in microseconds
— many orders of magnitude better than most factory floor reliability requirements.
These articles confirmed that our network setting is a possible solution for Ethernet
to be used as a control network.

In this section, we have brifely introduced the full-duplex switched network. How-
ever, in some cases where senders transmit signals at a higher rate than a switch can
process, this will lead to “buffer overflow”. Fortunately, switch has a “PAUSE” mech-

anism that can resolve this problem and will be described in section 4.3.

4.3 Full-Duplex Mode

After we have described the control network setting, we are ready to take a close
look on the timing behavior. As we described in the previous section, there are only
two components in each segment of the network and they are LAN switch and a
station. However, in the case where multiple senders transmit messages to a single
receiver, buffer in the switch will lead to buffer overflow problem. In this section,

we will discuss the special operation, PAUSE [32], that is implemented in full-duplex
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Ethernet to resolve the problem.

4.3.1 Buffer Overflow

In section 4.2.1, we have mentioned that messages coming from sender must be stored
in the switch’s buffer and forwarded to receiver. In the case when multiple messages
have the same destination address, messages will be stored in a buffer and forwarded
to the receiver in FIFO manner. In the situation when there is more messages than
the buffer can accommodate, this is called “Buffer Overflow”. In the traditional
Ethernet configuration (half-duplex mode), all incoming messages will be discarded
when the buffer is full. However, in full-duplex mode, media access control (MAC)

has defined a special operation to handle buffer overflow.

4.3.2 MAC Control Protocol

The optional MAC Control portion of the 802.3x supplement provides a mechanism
for real-time control and manipulation of the frame transmission and reception pro-
cess in an Ethernet station. In normal Ethernet operation, the media access control
(MAC) protocol defines how to go about transmitting and receiving frames. In the op-
tional Ethernet flow control system, the MAC Control protocol provides mechanisms
to control when Ethernet frames are sent.

When implemented, the MAC Control system provides a way for the station to
receiver a MAC Control frame and act upon it, The operation of the MAC Control
system is transparent to the normal media access control functions in a station. MAC
Control is not used for a non-real-time function like configuration interfaces, which
is handled by network management mechanisms. Instead, MAC Control is designed
to allow stations to interact in real time to control the flow of traffic. New functions

beyond flow control may be added in the future. In full-duplex mode, MAC issues a
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special operation, PAUSE, that is used to resolve buffer overflow problem.

4.3.3 PAUSE Operation

The PAUSE system of flow control on full-duplex link segments is defined in 802.3x
and uses MAC Control frames to carry the PAUSE commands. A station that receives
a MAC Control frame with this opcode in the first byte of the data field knows that
the control frame is being used to implement the PAUSE operation, for the purpose
of providing flow control on a full-duplex link segment.

The PAUSE function is specifically designed to prevent switches (or end stations)
from unnecessarily discarding frames due to input buffer over flow under short-term
transient overload conditions. Consider a device designed to handle the expected
steady-state traffic of the network, plus an allowance for a some time variation of
that load. The PAUSE function allows such a device to avoid discarding frames even
when the short-term load increases above the level anticipated by the design. The
device can prevent buffer overflow by sending PAUSE frames to the partner which
will cause the partner to stop sending data frames. This gives the first device time to
reduce its buffer congestion either by processing frames in the queue that are destined

for the device (end station operation).

4.3.4 Overview of PAUSE Operation

The PAUSE operation implements a very simple stop-start form of flow control. A
device wishing to temporarily inhibit incoming data sends a PAUSE frame, with
a parameter indicating the length of time that the full duplex partner should wait
before sending any more data frames. When a station receives a PAUSE frame, it
stops sending data frames for the period of time specified as the parameter in the

frame. When this timer expires, the station resumes sending data frames where it
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left off.

A station issuing a PAUSE may cancel the remainder of the PAUSE period by
issuing another PAUSE frame with a parameter of zero time. That is, newly received
PAUSE frames override any PAUSE operation currently in progress. Similarly, the
issuing station can extend the PAUSE period by issuing another PAUSE frame with
a non-zero time parameter before the first PAUSE period has expired. After we have
discussed PAUSE operation, we are going to explain when should a station send out

or cancel a PAUSE frame.

4.3.5 Buffer Thresholds

A typical input-queued switch will have some amount of buffering available for each
port, which holds frames until either the output port or the switching fabric itself is

available to accept the frame, as depicted in Fig. 4.7.

Buffer
Frame 1 :> Forward to ouput buffer
Frame 2 with speed );L—”
Low water mark Frame [
(Cancel PAUSE command when .
buffers drop below this level) 2 :
High water mark Frame h
(Issue PAUSE command when o .
buffers exceed this level) o .
Frame m — 1
Input Channel :> Frame m

Bandwidth \;,

Figure 4.7: Input buffer with PAUSE operation

Depending on the traffic patterns and the total load offered to the switch, frames

will experience a delay in this queue while waiting to be unloaded. During this time,
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additional frames are being received on the same port, causing the queues to fill
further. A reasonable flow control policy would be to send a PAUSE frame (with
a non-zero value for the pause time) when the buffer fills up to a predetermined
high-water mark, so that the switch can prevent frames from being dropped at the
input due to buffer unavailability. while the link partner is throttled in the manner,
the switch will be unloading frames from this queue and forwarding them out other
ports of the switch. When the buffer empties below a predetermined low-water mark,
the flow control can be cancelled (by sending a PAUSE frame with a 0 value for the
pause time), and normal operation resumes. In this manner, the switch can be used
at maximum capacity without discarding any frames.

As discussed earlier, the high-water mark should be set such that there is still
sufficient buffering available above the mark to accommodate the additional traffic
that may still be in the pipeline. This is a function of the data rate, media type, and
length of the link. Similarly, to ensure that buffer starvation does not occur, there
should be sufficient room below the low-water mark that incoming frames can arrive
before the queue is completely emptied. Buffer underflow is less of a problem than
overflow, since starvation will only cause a minor performance degradation rather than
incurring and end-to-end recovery as would be need in the event of a frame discard
on overflow. The room required below the low-water mark is also less predictable,
since it is a function of how fast he switch can empty the queue. This depends to a
great extent on the specific switch architecture, whether there are output queues at
all, the speed of the switching fabric between input and output queues, and the data

rate of the output port.
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4.4 Timing Analysis

After we have described the full-duplex Ethernet, we are ready to take a close look
on the timing behavior. For simplicity, we assume every stations transmit the same
amount of data at the same time. First, we will calculate the response time for n
stations simultaneously transmit to a target station with each station transmitting q
packets. The response time analysis is based on the knowledge of output bandwidth
(Aout), input bandwidth (\;;,), and switch’s processing speed (A,). The above variables
are in frames per second. After that, we will explain the relationship between packet

loss and bandwidth.

4.4.1 Assumption

In control systems, sensors and actuators signals are periodically updated by con-
trollers. Therefore, it is naturally to assume every stations begin transmission at the
same time. For simplicity, we will assume n stations simultaneously transmit to a
target station with each station transmitting ¢ packets. Each input/output port has
a buffer that can stored m packets. Furthermore, we assume the knowledge of in-
put bandwidth (A;,), output bandwidth (\,,;), and switch’s processing speed (),) is
available. Every input buffers have a equal probability to be served by the processor
at any moment. Hence, we can assume each input buffers are served by the processor
at a rate of ’\Wp Fig. 4.8 shows the input and output relationship with variables in
place.

There are some assumptions on LAN’s switch behavior that are described below.
The switch monitors its input and output buffers to prevent buffer overflow. For
output buffers, if the buffer is full, then the switch will stop transferring frames from
input buffers to output buffer. The switch will resume transferring frames from input

buffers to output buffers, as soon as the output buffer is no longer full. However,
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LAN Switch

’

Buffer

(e 1 (Gt T

Station

Processor i

Filter/Forward M *

Figure 4.8: LAN Switch (Input/Ouput relationship)

for input buffers, if the buffer reaches high water mark (h), then PAUSE frame will
be transmitted to sender and one more message will be received from sender due
to PAUSE frame latency. After sender received PAUSE frame, sender cannot start
transmission until input buffer reaches low water mark (1) or the predefined pause
time expired. This operation has been described in section 4.3.5 and shown in Fig.
4.7. Furthermore, we assume all input buffers have equal chance to be processed by

the switch.

4.4.2 Output Buffer Behavior

In the case where switch’s processor has a higher frame transfer rate than the output
port’s rate (A, > A,y), the output buffer will eventually get full. It is because
the output channel cannot catch up the processor’s speed. On the other hand, if the
output channel can digest messages faster than processor can handle, then the output
buffer will never fill up. As a result, the amount of time to fill up output buffer with

size m is given as follow:
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S i Ay > Agurs
Tro = (4.1)

00 otherwise.

Example

For example, the output port is connected to 100Mbps Ethernet and each frame
(packet) has a size of 12204 bits (maximum frame size). Therefore, the output band-
width is 8194 frames per second. Furthermore, we use Cisco Catalyst 3000 Ethernet
switch that can process 14880 frames per second and has a buffer size of 16 frames.
Since the processing speed is higher than output sending rate, the output buffer will

be filled up, eventually. The amount of time require to filled up the buffer is

B 16 frames
14880 frames/sec — 8194 frames/sec

= 2.393ms

By the time that output buffer fill up, the receiver has already received 2.393ms

x 8194 frames/sec =19 frames.

4.4.3 Input Buffer Behavior

After we have analyzed the output buffer behavior, we will study the impact of output
buffer on input buffer. In a switch, there is only one single processor that transfer
input buffers frames to output buffers.

The input buffer behavior can be divided into four cases, that are:

1. output and input buffers never fill up,
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2. output buffer fills up but input buffers never fill up,
3. output buffer never fills up and input buffers fill up,

4. output and input buffers fill up.

Case 1

In the case where output buffer never fills up (Ay,y: > A,) and input buffers never fill
up (Ain < ’)L—p), the amount of time required for the switch to receive ¢ packets from

each sender is L.
wm

Example

For example, a network with 10 senders and a switch is connected by 10Mbps Ethernet,
cable. The switch and a receiver is connected by 1Gbps Ethernet cable. Each frame
contains 12204 bits of information plus header. Therefore, the input and output
bandwidth is 819 and 81940 frames per second, respectively. Furthermore, we use
Cisco Catalyst 3000 Ethernet switch that can process 14880 frames per second and
has a buffer size of 16 frames. Since A, > A, and ’1\—5 > Ain, the input and output
buffers never fill up. Therefore, the amount of time require for the switch to receive

50 packets from each sender is # = 0.061sec
persec

Case 11

In the case where the output buffer fills up (A, < A,), the amount of time require to

m

WS e After output buffer fills up, output buffer must

fill up output buffer is Trpo =
transmit a frame to the receiver before it can received a frame from input buffers. The
total amount of time required for a frame to transmit from input to output buffer is

equal to i + ﬁ Hence, from the input buffers point of view, the effective processing

rate is given as follow
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= — 4+ — (4.2)

Since this effective processing rate is being shared among all input buffers with

equal probability, each input buffer has a processing rate of dep, Therefore, we can

e
n

ensure the input buffers never fill up if the effective processing rate is greater than or

Aep > Ain)- The amount of time required for the switch

equal to input channel rate (=

to receiver g packets from each sender is ;L.
N

Example

For example, a network with 5 senders and a switch is connected by 10Mbps Ethernet
cable. The switch and a receiver is connected by 100Mbps Ethernet cable. Each frame
contains 12204 bits of information plus header. Therefore, the input and output
bandwidth is 819 and 8194 frames per second, respectively. Furthermore, we use
Cisco Catalyst 3000 Ethernet switch that can process 14880 frames per second and

has a buffer size of 16 frames. Since A, < Ap, the output buffer will fill up. The

amount of time require to fill up output buffer is Trpo = m = 2.39ms. After
the output buffer filled up, the effective processing rate becomes A, = Sigﬁiﬁggg =

5284 frames per second. The output buffers never fill up becase )‘nﬂ > Ain. The

amount of time required for the switch to receiver 50 packets from each sender is

50 frames _
819 framespersecond =0.061sec.

Case II1

In the case where output buffer never fills up, input buffers will still have a chance to
get filled up. It is because one single processor is being shared by n different input

ports. Therefore, on average, messages transfer from each input to output buffer has
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a rate of % If % < Ain , then input buffer will reach high water mark, eventually.
As a result, the amount of time require for input buffer to reach high water mark, h,

is given as follow:

Ti=— (4.3)

After sender receives PAUSE frame, sender stops transmitting frames to the
switch. At the same time, the processor will transmit frames in input buffers to
output buffer. After input buffer level reaches low water mark, [, or PAUSE time,
Tpause, €xpired, sender will resume for transmission. The amount of time required for

senders to resume transmission is given as follow:

h+1—1
T, = min {+T Tpause} (4.4)

n

Since ’12—” < Ain, input buffer will reach high water mark again. Therefore, buffer
level will fluctuate between lower and higher water mark and the amount of time

require for buffer to reach high water mark again is given as follow:

Trton = M (4-5)

The numerator corresponds to the number of frames space available in input buffer
before it reaches high water mark. The use of a floor function in the above equation

is to model that a switch does not accept or store partial frame.
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Example

For example, a network with 10 senders and a switch is connected by 100Mbps Eth-
ernet cable. Each frame contains 12004 bits of information plus header. Therefore,
the input bandwidth is 8194 frames per second. Furthermore, we use Cisco Catalyst
3000 Ethernet switch that can process 14880 frames per second and has a buffer size
of 16 frames. The high and low water marks are set to 14 and 8 frames level. The
PAUSE time, Tpgyse, is set to 10ms. Since A;, = 8194 > %p = 1488, the input buffer
will cross the high water mark. The amount of time require for input buffer to reach

high water mark is

14 frames

h = 14
8194 frames/sec — —Ssofrf:‘es/sec

= 2.088ms

After the switch sent PAUSE frame to the sender, the amount of time require for

senders to resume transmission is

14+1-—
T, = min { (14 + 8)fmmes’ 10ms}

14880 frames/sec
10

= 4.704ms

When buffer level reaches low water mark, sender starts transmitting frames,
again. The amount of time require for the buffer to reach high water mark is equal

to
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4.704ms
1488 frames/sec

r-to-h = 14880
8194 frames/sec — ﬁ+es/sec

= 0.895ms

Case IV

In the case where the output buffer fills up, the output buffer must transmit a frame

to receiver before it can received a frame from input buffers. The total amount of

1
Aout :

time required for a frame to transmit from input to output buffer is equal to i +
Hence, from the input buffers point of view, the effective processing rate is given as

follow

(4.6)

Since this effective processing rate is being shared among all input buffers with
equal probability, each input buffer has a processing rate of % If )‘nﬂ < Ain, then
input buffers will be filled up eventually. At the time when output buffer fills up,
input buffer has {Tpo X (/\m - %)J frames. Therefore, the amount of time require

for input buffer to reach high water mark is given as follow:

— if 5 < Tro,
T, = o ()| (4.7)

+ Tro otherwise.

The first term in the Eqn. 4.7 corresponds to the case where input buffer filled

up faster than output buffer. The second term corresponds to the case where output
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buffer filled up faster than input buffer. Since the input buffer level will fluctuate
between low and high water mark, the amount of time require to reach low water
mark will be different at different time. Therefore, we will denote T as the i** time

for senders to resume transmission, and it is given as follow:

Xep
n

)
min {'H'l_l Tpause} if T, + Z (T’c + Tk ) > Tro

T; =S min {Ti g, Tpause }  if Th + 3po(TF + T,y 1) + min {’”1 l Tpause} > Tro

n

h+1-1 .
min {— Tpause} otherwise.
\

n

(4.8)

where T, , is correspond to the time require to reach high water mark again for
the i time and 70 equals to 0. The summation term, o\ (T* + Tk .), in the
augmanted statments is corresponds to the time between the 1% and i time reaches
high water mark. The first case correspond to the case where output buffer has
already filled up before PAUSE frame sent out. In the second case, TZ «q 1s given by

; h+1—-7r—1

-
ped Ty Aep
n n

(4.9)

where 7 is the smallest integer satisfies this equation, 7}, + Z C(TE4TE )+ L >

Tro. This is correspond to the case where output buffer became full after it recenived
r frames. This case describes the time require to reach low water mark while the
output buffer becomes full in the mean time that changes the processing rate of the
switch. The last case correspond to output buffer will not full during this high to low

water mark process.

In order to calculate the amount of time require to reach high water mark, we
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need to know the input buffers level after senders resume transmission. We denote,

ni . as the input buffers’ level (after i** pause period) which can be calculated by the

n?

following formula:

e

maz {I,h+ 1= |Toguse2 |} i T+ S (T7 + Thag) > Tro

max {l, h+1-— {Tpause%J } otherwise.

\

(4.10)

The first term in Eqn. 4.10 corresponds to the input buffers’ level when output

buffer is full. In the second term, n;,cd is given by

e

h + 1- \‘Tpause );L_pJ lf Tpause S é
n;,cd =qh+1—1r— \‘(Tpause — %) ’\nﬂJ if & < Tpause < & + % (4.11)
l otherwise
\

where r can be solved by Eqn. 4.9. The first case corresponds to the pause time
expired before output buffer filled up. The second case corresponds to the pause time
expired after output buffer filled up. The last case corresponds to the case where
input buffers return to low-water mark before pause time expired. The second case
in Eqn. 4.10 corresponds to the input buffers’ level when output buffer fills up during
the pause period. The last term corresponds to the input buffers’ level when output
buffer is not full.

Similarly, the resume transmission to high water mark process can be divided into

three cases. The first case corresponds to the case where output buffer has already

nl = < n;ch if Th + Z:;%) (TTT + T;:to-h) + min {%7 Tpause} > TFO
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filled up. The second case, T*

pei» corresponds to amount of time require to reach

high water mark while the processing rate changes in the mean time. The last case
corresponds to output buffer will not be full during this resume transmission to high
water mark process. Therefore, the amount of time required for buffer to reach high

water mark after senders resume transmissions is given as follow:

e

M T 4+ S (T TIL) > Tro

)\in_Aﬂ r-to-h
Thon=\Tia T+ (T + Tk + 5 > Tro (4.12)
h’_nén

i otherwise.
Nim — vy
\ \in

n

and T2, equals to 0.

i
i _ T +h—T—nin
pc T \ X N — Aep

m n m n

(4.13)

where 7 is the smallest integer satisfies this equation,T} + ch:l(Tr’“ +TF L)+ 5t >

n

Tro. This is correspond to the case where output buffer became full after it received

r frames.

Example

For a switch with 10 senders and 1 receiver connect to a Cisco Catalyst 3000 switch,
that can process 14880 frames per second and has a buffer size of 16 frames, through
100Mbps Ethernet cable. The high and low water marks are set to 14 and 8 frames
level. The PAUSE time, Tpuuse, is set to 100ms. It will take 2.393ms to fill up

output buffer. Therefore, after output buffer filled up, the effective process rate is

8194 x 14880

equal to g5 Tiss0

= 5284 frame per second. By using Eqn. 4.7, we can calculate
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the amount of time for input buffer to reach high water mark and it is equal to
2.088ms. Since T} + % = 6.792ms > 2.393ms = Trp, it is case two in Eqn.
4.8. Therefore, the am(:unt of time required to reach low water mark is equal to
min {13.2ms,100ms} = 13.2ms. According to Eqn. 4.12, it will take 0.783ms to

reach high water mark, again.

4.4.4 Effective Bandwidth

As we described in section 4.2.2; there are only two components in each segment of a
fully switch network (star network) and they are a LAN switch and a station. Each
station uses a separate channel for sending and receiving data; as a result, packets
loss should never occur. Although the network setting provide a reliable and error
free transmission, bit error will occur from time to time. It is because mechanical
and electrical components generate magnetic field that interfere signal on the bus.
In addition, any error in a frame will lead to retransmission. This will substantially
increase the response time and make the effective bandwidth smaller. Bandwidth is
defined by the amount of information transmitted in a period of time. However, this
definition is not really useful to our analysis. It is because error frames will not be

processed and stored in buffer.

Definition 6. (Effective Bandwidth) It is defined by the amount information,

except error frame, transmitted in a period of time.

When sending a frame in full-duplex mode, the station ignores carrier sense and
does not defer to traffic being received on the channel. However, the station still waits
for an interframe gap period between frame transmissions as Ethernet interfaces are
designed to expect an interframe gap between each frame. Providing the interframe

gap ensures that the interfaces at each end of the link can keep up with the full frame



4.4. TIMING ANALYSIS 74

rate of the link. The interframe gap is a 96 bit time delay[35] provided between frame
transmissions. Also, if we know there will be p error frames out of n frames, then the

total transmission time for n frames plus p retransmissions is given as follow:

Eransmission = (n ks p) (gs i 96) (414)

where C' is the bandwidth and F'S is the frame size in bits. Since there are only

n X F'S bits of useful information, the effective bandwidth is

F
Effective Bandwidth = _nxFS (4.15)

Tt'ransmission
Example

For example, a 100Mbps Ethernet network that transmits frames with size of 12204
bits (maximum frame size) with an error frame rate of 1/1000 (measured from Eth-

ernet cable). The total transmission time for 1000 frames plus 1 retransmission is

1000frames __

equal to 0.1231 second. Therefore, the effective bandwidth is equal to = 757>

99.1Mbps.

4.4.5 Response Time

After we analyzed the timing behavior within LAN switch, we have enough infor-
mation to calculate the amount of time required for n senders transmit ¢ packets
through a switch to a receiver, simultaneously. In section 4.4.3, we have calculated
the amount of time for PAUSE operation to be activated and deactivated. During
PAUSE time, senders are not allowed to transmit any messages to the switch. There-

fore, this PAUSE time substantially increase the amount of time require for senders
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to dispatch their messages completely. After reaching the high water mark for the
first time, the input buffer level will fluctuate between high and low water mark. As
a result, there will be a “transmit-pause” pattern. Once we calculated the amount of
time for each transmit round, we can determine the number of messages being trans-
mitted during each round. Hence we can calculate the number of rounds required for
n stations to transmit g packets.

The response time analysis can be divided into five parts:

1. amount of time, 77, required for the first bit of data to travel from sender to

switch (propagation delay),
2. amount of time, 75, required for switch to receive all frames,
3. amount of time, T3, required to clear all frames in input buffer,
4. amount of time, T}, required to clear all frames in output buffer.,

5. amount of time, T5, required for the last bit of data to travel from switch to

receiver (propagation delay).

The amount of time, 77, required for the first bit of data travel from senders to
switch is depends on the physical distance. The propagational speed for electrical
signal travel through wire is around 2 x 10®m/s. T5 can be calculated in the similar
manner. Since the input and output buffers behavior have a direct impact on response

time analysis, we divide the analysis into four cases, that are:
1. output and input buffers never fill up,
2. output buffer fills up but input buffers never fill up,
3. output buffer never fills up and input buffers fill up,

4. output and input buffers fill up.
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Case 1

In this case, output buffer never fills up (Aot > A,), and input buffers never fill up
(Ain < ’\—Tf) Since the input buffers never fill up, PAUSE operation will never be

activated. Therefore, the amount of time, T3, required for switch to receive ¢ packets

q
Ain

in each input buffers is equal to After the last bit of data is received by input

buffers, there will be one frame left in each input buffers. The amount of time, T3,

required to clear the last frames from input buffers is equal to % Similarly, there

will be one frame left in output buffer. The amount of time, T}, required to clear the
last frame from the output buffer is equal to ﬁ Therefore, the total response time

is equal to T + Ty +T5 + Ty + Ts.

Case 11

In the case where the output buffer fills up (Aot < Ap), the amount of time require to
fill up output buffer is Trwpo = ﬁ After output buffer fills up, output buffer must

transmit a frame to the receiver before it can received a frame from input buffers.

= + = (4.16)

Since this effective processing rate is being shared among all input buffers with

Aep
n

equal probability, each input buffer has a processing rate of =£. Therefore, we can
ensure the input buffers never fill up if the effective processing rate is greater than
or equal to input channel rate (’\% > A\in)- The amount of time required, T, for the
switch to receiver g packets from each sender is ﬁ. Since input buffers never fill up,
only one frame needed to be processed in each buffer. The amount of time require to

process the last frame is given as follow:
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if T, < TFO>

— j"ﬁy|’_‘

(4.17)

otherwise.

>
®
s

3

After T, + T3, no more messages will be transmitted to the output buffer. For the
output buffer, the buffer is full if 75 + 13 > Tro. However, if T5 +13 < Tro, then the
number of frames in buffer is equal to | (1% + 15) (Ap — Aouz)|. Hence, the amount of

time required to clear the output buffer is equal to:

[(@24T3)Qo=dout)| 3¢ T, 4 Ty < T,
T4 )\aut (418)

X otherwise.
out

Case II1

In the case where output buffer never fills up, input buffers will still have a chance to
get filled up. It is because one single processor is being shared by n different input
ports. Therefore, on average, messages transfer from each input to output buffer has
a rate of % In section 4.4.3, we have calculated the amount of time required to reach
high water mark (7},), the amount of time that senders have to wait before resume
transmission after the " visit of high water mark (7}), and the time required to

" resume transmission (7

reach high water mark again after 7’ ?on)- TP corresponds
to the time where sender cannot send messages. Therefore, the number of rounds,
r, required for n senders to transmit ¢ frames from each sender to switch can be

calculated by the following equation:
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Th, mJ + Z to hAm 24 (419)

where £ is the smallest integer satisfies Eqn. 4.19 and );, is the input channel effective
bandwidth. Hence, the amount of time required for a switch to receiver ¢ frames from

n senders can be calculated by the following equation:

T+ S0 (Thion +T0) + T+ £ =ifr >0,
T, — ro-h Ain (4.20)

q

e otherwise.
n

where k is defined by Eqn. 4.19 and Res = ¢ — |Thhin] — Siy [TV 1oy Nin as the
number of messages remain after £ — 1 rounds. The term, 7}, in the first case

corresponds to the amount to time require for input buffers to reach high water

mark for the 1% time. The second term, S ¢ (T

ton + T}, corresponds to the time

between 1°¢ and k' time reaches high water mark.
In order to calculate the amount of time, T3, required to clear all frames in input
buffer, we need to determine the number of messages in the buffer when the last frame

received by the switch and it is given as follow:

ng = L(iln (Ai" B %)J if [Thdin] 2 0, (4.21)

h+1-— {TT%J + V;f: (/\,-n — %”)J otherwise.

The first case corresponds to the case where ¢ frames have been received by the switch

before input buffers reach high water mark. The term, A +1 — [T ’\”J in the second
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case corresponds to the input buffers’ level after (k — l)th pause period. The last floor
term in the second case corresponds to the number of frames increase in the input
buffers. Therefore, the amount of time, T3, required to clear all the frames in input
buffers is equal to 32. Since the output buffer never fills up, only one frame is left
in the output buffernafter input buffers have been cleared. The amount of time, 7},

required to clear the last frame in output buffer is equal to ﬁ

Case IV

In the case where the output buffer fills up, the output buffer must transmit a frame
to receiver before it can received a frame from input buffers. The total amount of
time required for a frame to transmit from input to output buffer is equal to i + ﬁ
Hence, from the input buffers point of view, the effective processing rate is given as

follow

(4.22)

Since this effective processing rate is being shared among all input buffers with
equal probability, each input buffer has a processing rate of )‘nﬂ If ’\nﬂ < Ain, then
input buffers will be filled up eventually. The number of rounds required for n senders
to transmit ¢ frames from each sender to switch can be calculated by the following

equation:

k
LTh)‘mJ + Z LTri.to-h)\z’nJ >q (423)
1=0

where £ is the smallest integer satisfies Eqn. 4.23 and ), is the input channel effective
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bandwidth. The amount of time required for a switch to receive ¢ frames from n

senders can be calculated by the following equation:

Th+ i (Tion + T8 + TF + e =ifr >0,
I = " (4.24)

T otherwise.
mn

where £ is defined by Eqn. 4.23 and Res = q¢ — |Tp\in] — Zi.:ol |T¢, . \in] as the
number of messages remain after £ — 1 rounds. In order to calculate the amount of
time, 75, required to clear all frames in input buffer, we need to determine the number

of messages in the buffer when the last frame received by the switch and it is given

as follow:
(
nkﬁR_ (M—%)J if k # 0 and T < Tro
bi (M—%)J if k=0 and T, < Tro

ns =g | (A = 2) Tro| + | (3£ = Tro) (An—22)| if k= 0and T, > Tro
J ifk#0and Tp — 2 > Ty

Res— .
es—Mep ()\m _ %)J + Nep otherwise.

(4.25)

where ne, = {(Tg —Tro) ()\m - )‘;p)J is the increment of input buffers’ level
after the output buffer filled up and k£ can be determined by Eqn. 4.23. The first case
corresponds to the case where output buffer does not fill up and PAUSE operation
has been activated in the input buffers. The second case corresponds to the case

where PAUSE operation does not activate in the input buffers and output buffers
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does not fill up. The third case corresponds to the case where PAUSE operation
does not activate and output buffers filled up. The fourth case corresponds to the
case where output buffer filled up in the past £ — 1 rounds and PAUSE operation
has been activated in the input buffers. The last case corresponds to the case where
output buffer fills up during the k" round and PAUSE operation has been activated.
Therefore, the amount of time that input buffer required to clear n3 frames is given

as follow:

it o + 32 < Tro
& (4.26)

+ ”f;,k otherwise.

n

&3
I
3 |.§‘|:r 3 |.§‘|§

where k is the smallest integer satisfies the inequality 7T, + k)\—tl > Tro.

After input buffers transmit all the frames in their buffer to the output buffer, the
number of frames remain in the output buffer is equal to min {|(T> + T3) (Ap — Aour) | , m}.
Therefore, the amount of time required to clear all the frames remain in the output

buffer is equal to

_ mm{[(Tz + TS) ()‘p B Aout)J am}
/\uut

Ty (4.27)

4.4.6 Example

Consider a control network (fully switched) with 10 sensors and 1 controller. Input
and output ports are connected to 100Mbps full-duplex Ethernet cable. Each sensor
is required to send 50 frames. Each frame contain 1500 bytes of data plus 204bts
header. The frame error rate is 0.001 in each cable. The switch that we assume to be

used is Cisco Catalyst 300 Ethernet switch that can process 14880 frames per second
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and has a buffer size of 16 frames for each port. We have set the high water mark
and low water mark for input buffers at 14 and 9 frames, respectively. The effective
bandwidth is 99.1Mbps. The total response time for 10 sensors to transfer 50 frames

per sensor to a controller is 0.0941s, as shown in Table 4.1.

Time used | 17 | 15 | 15 | 14 | 15 | Notes

5us v 15¢ frame arrived to switch

2.1ms v 17 frames arrived to switch’s
input buffers and reached high water mark
13.3ms v PAUSE period
0.79ms v 6 frames arrived in each input buffers
13.3ms v PAUSE period
0.79ms v 6 frames arrived in each input buffers
13.3ms v PAUSE period
0.79ms v 6 frames arrived in each input buffers
13.3ms v PAUSE period
0.79ms v 6 frames arrived in each input buffers
13.3ms v PAUSE period
0.79ms v 6 frames arrived in each input buffers
13.3ms v PAUSE period
0.37ms v 3 frames arrived in each input buffers
0.019s v Clear the remaining 10 frames in each
input buffers

2ms v Clear the remaining 16 frames in output buffer

oS v | Last bit arrived to receiver
01074s | v | v | v | v | v | Total time used

Table 4.1: Response Time

4.5 Summary

In this chapter, we have introduced Ethernet as a possible network for control ap-
plication. In particular, we have provided a detailed network configuration which is
much more reliable and efficient for control application. We have separated a network

into office and control network by a router. Furthermore, in the control network, we
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placed a LAN switch in between any two devices (e.g. actuators, sensors and con-
trollers). This kind of network is called fully switched network and we take advantage
of using full-duplex Ethernet. Full-duplex Ethernet has two physical media for recep-
tion and transmission that ensure signal collision will never occur. Furthermore, we
have provided a timing analysis which accounts for the PAUSE operation.

The main advantages for this control network are high speed transmission, large
data size as compare to CAN and PROFIBUS, and remote access to control compo-
nents. This control setting provides the most reliable connection in the Ethernet world
as described in [3, 23]. However, it is less reliable than CAN and PROFIBUS because
error correction mechanism is not implemented in Ethernet protocol. Furthermore,
the cost for this network is probably two to three times more than a traditional

Ethernet network.



Chapter 5

Controller Design

In Chapter 2, 3, and 4, we have discussed that different networks will have different
levels and types of delay. In general, the characteristics of time delays can be con-
stant, bounded, or even random, depending on the network protocols and the chosen
hardware. It is well-known in control systems that time delays can degrade a system’s
performance and even cause system instability. Therefore, a more complicated design
approach is necessary to include time delay. Through this chapter, we will only dis-
cuss discrete-time controller design because we assume controller will be implemented
in a digital processor.

This chapter is divided into three sections. In Section 5.1, we will introduce the
networked control system model, major assumption and variables that will be used
through the chapter. In Section 5.3, we will discuss controller design for system (e.g.
CAN and Profibus) with constant delay. This controller is evolved from the famous
Smith predictor [19, 33]. In Section 5.5, we will discuss controller design for system
(e.g. Ethernet) with random delay. In particular, we will only consider the case when
the delay is bounded and governed by a Markov process. Also, the normal sense
of stability and detectability are not directly applicable to this stochastic system.

Therefore, we will present the notion of mean square stability for stochastic systems.

84
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At the end of each sections, an example will be used to illustrate controller design for

constant or random delay.

5.1 System Model

Consider the block diagram of a networked control system with a single controller,
but with multiple sensors and actuators as shown in Fig. 5.1. There are n states (),
m inputs (u), and r outputs (y) in the plant model, and g states (z), r inputs (w),
and m outputs (v) in the controller dynamics model. We use s, and a,, to represent
the sensor-to-controller and controller-to-actuator delays, respectively. The variables

w; and u; are the delayed y; and v; signals, ¢ = 1,...,7 and j = 1, ..., m, respectively.

> Uy Y1

s Plant

HE0

 actuator Communication sensor |
'delay (a s delay'
| AN Channel ! y:
| |
(U A
Controller
z(k)
U1 W1 -

Figure 5.1: Block diagrams of a networked control system

In Fig. 5.1, the continuous time state-space model of the linear time-invariant
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plant can be described by the following standard form:

&(t) = Acx(t) + Beu(t)

y(t) = Cex(t)

(5.1)

where z(t) € R, u(t) € R™, y(¢t) € R" and the constant matrices A., B., and C..
Since the controller is implemented on a digital computer, the controller is designed
in discrete time with a sampling time 7" and the state-space model of the dynamic
controller can be expressed as follows:
z(k+1) = Fz(k) + Gw(k)
(5.2)
v(k) = Hz(k) + Jw(k)
where z(k) = z2(kT) € R?, w(k) = w(kT) € R", v(k) = v(kT) € R™ and the constant
matrices F, G, H, and J.

In practical applications of networked control systems, a sensor signal will be
sampled and stored in a memory slot embedded in a I/O card attached with the
sensor. Afterwards, the I/O card will wait for the availability of the communication
channel to send out information from its memory slot to the controller’s memory slot.
Then, the controller will calculate the corresponding gain for each actuators based
on the information that are available in the memory slot at that sampling instant.
For simplicity, we assume the sensors and actuators have the same sampling time,
T, as the controller and the upper bound of delay is known. This timing behavior is
illustrated in Fig. 5.2.

For an amplifier with gain of two, the closed loop control sequence is shown in
Fig. 5.2. Also, in the figure, we assume the delay is shorter than one sampling period
and control actions initiate at time (k — 1)7". Fig. 5.2a corresponds to analog signal
measured by sensor. The sampled sensor’s signal, with period of 7', is shown in Fig.

5.2b. This sampled signal will be transmitted through a communication channel to
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]

(k-2)T (k nT kT k2T (DT kT
(a) Sensor S|gnal (d) Controller S|gnal :
2+ ‘ 4 / 07

k-2)T (k-1)T kT I (k )T kT
(b) Data in senjsor’s meméw (e) Signal recelved by actLJator

\
5 /delay\\ 4

k2T kDT kT k2T kDT K
(c) Signal received by controller (f) Actuator signal

Figure 5.2: The timing diagram for sensors, controller, and actuators

a controller. However, this signal require some time (e.g. queuing and propagation
time) to transmit to the controller. Therefore, the controller input buffer shows a
delayed version of sampled sensor signal as shown in Fig. 5.2c. Since we assume the
controller will amplify the input signal by two at every sampling time, the controller
signal in its output buffer is shown in Fig. 5.2d. Again, the controller signal experience
some delay before signal arrive to actuator. Therefore, signal received by actuator
is a delayed version of controller signal as shown in Fig. 5.2e. Finally, the actuator

changes its action at every sampling time and the actuator signal is shown in Fig.
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5.2f. As a result, the actuator signal at time k7 is equal to two multiply by the sensor
signal at time (k —2)7T. Hence, the closed loop system is experiencing two step delay.
For more general case where delay may not be less than one sampling period can be

characterized as follow:

(da — 1)T <a; <d,T
(5.3)
(ds — 1T < s; < d,T
where d,, d, € Z* correspond to the number of step delay that sensors and actuators

experience, respectively. Therefore, the closed loop system will experience d, + dj

steps delay.

Y
N
&
Y
LA

C(2Z) P(2)

Figure 5.3: Discrete-time system with delay blocks

In the next two sections, we will discuss design of controller in discrete time
because controllers are usually implemented on a digital computer for networked
control systems. First, we assume dg and d, are constant, which is the case for system
implemented in CAN and Profibus, and the delays are deterministic. Second, we will
consider the case where d, and d, are random variables, which is the case for systems
implemented in Ethernet, and the delays are non-deterministic. Before we start our
discussion on controller design, we have to understand under what conditions a time

delay system can be controlled and observed.
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5.2 Controllability and Observability

Consider the linear system

z1(k+1) = Az1(k) + Buy(k)

yi(k) = Cz1(k)

(5.4)

where 1 € R*, u; € R™ and y; € R'.

w7 Sy e 2w

Figure 5.4: System with delay input and output

Theorem 3. The delay system (Fig. 5.4) is controllable and observable iff the nom-

1nal system is controllable and observable

Proof. e Controllability:
From the input-output point of view for the overall system, we can interchange
the order of system and still preserve the same structure. We define xo(k) =
z1(k — ds) and us(k) = ui(k — ds). If we rearrange the systems so that the

output delays are absorbed by the input delays.

(I,‘z(k' + 1) = A.’I:z(k) + Bus (k‘)

ulky—| 27 o) O T Coa(i)

—y(k)

Now, let us define a new state variable as follow:

2(k) = [22(k) us (k) "ua(k + 1)" ... ug(k +dy +dy —1)7]"
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As a result. the combined system state equation can be written as follow:

(a8 0o ] [o]
sk+1)=10 0 Lpcgeran |2®)+| 0 | u(k)
0 0 0 1,

yk) =[c 0 0]ak)

where z € Rrtmdatds) oy ¢ R™ and y € R'.

We define the controllability matrix for the non-delay system as follow:

C(A,B)=[B AB A"'B] (5.5)

So, the system is controllable if and only if the controllability matrix is full

AB 0 0
rank. Let A ompine = [0 0 Imx(da+d5—l)i| and Beompine = [10 ] and we can define
00 0 m

the controllable matrix for the delayed system as follow:

_ 0 0 0 B AB A"'B Artm=Dldatds) g
0o 0, 0 0 0 0 ... 0
C(Acombinea Bcombz‘ne) =
0 0o 0 0 0 0 ... 0
I, 0 0 0 0 0 0 ... 0
[0 0 0 C(A,B) A"B ArHm-)(dotd) g |
0 0 I, 0 0 0
0 0 0 0 0
I, 0 0 0 0 0

Hence, if C(A, B) is full rank then C(Acombines Beombine) is full rank and vice

versa.
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e Observability

Similarly, we define x5 (k) = z1(k+d,) and yo(k) = y1(k+d,). We can rearrange

the overall system as follow:

z2(k + 1) = Axa(k) + Bu(k)
wkY 1 (k) = Cs (k)

Y

Z—(da+ds) —>y(k)

Now, let us define a new state variable as follow:
2(k) = [22(k)Tya(k — 1)Tya(k — 2)7 ... yolk — dy — d)T]"

As a result. the combined system state equation can be written as follow:

A 0 0 B
zk+1)=| C 0 0 |xz(k)+| 0 |wuk)
0 Iix@dg+ds—1) O 0

y(k) = [ 00 I ]m(k)

where z € Rrt7(datds) 9 ¢ R™ and y € R".

We define the observability matrix for the non-delay system as follow:

C
CA

caAr!

So, the system is observable if and only if the observability matrix is full rank.
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A 0 0
Let Acompine = | C 0 0] and Clompine = [00 1, ] and we define the ob-
0 I"‘X(da+ds—1) 0

servable matrix for the delayed system as follow:

0 0 0 I

0 0 0

0 I. 0 0

C 0 0 O

O(Acombvines Ceombine) = CA 0 0 0
0 0 0

CA™ ! 0 0 O

CAn—f—(r—l)(da—f—ds) 0 0 0

0 0 0 I,
0 0 0
0 I, 0 0
= O(A,C) 00 0
CA" 00 0

CAn—I—(r—l)(da-i-ds) 0 0 0

Hence, if O(A, C) is full rank then O(Aompines Ceompine) is full rank and vice

versa.
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5.3 Controller Design with Constant Delay

Control of system with delay in the feedback loop has been a challenge problem for
the last 50 years. The most common type of controller, which compensates delay, is
known as the Smith predictor [19, 33]. A discrete time version [27] of Smith predictor
is shown in Fig. 5.5. The Smith predictor consists of a primary controller (C(z))
and models of the controlled process with (27% P(z)) and without (P(z)) time delay.
When the models and the process match exactly, the compensator removes the time

delay factor from the characteristic equation.

P2)

A

|
V<

Y

O C(Z) P(2)

A

Z~4sla— P(2)

7% -

Figure 5.5: Smith Predictor

However, there is a major drawback due to the internal instability of the prediction
that the controller will fail to stabilize unstable system. It will be more obvious as
we explicitly write down the equation for Smith predictor, as follow:

_ 0(2)
[+ CR)PE)(1— =)

Csmitn(2) (5.7)

If P(z) has an unstable pole, then Cy;, will have the same unstable zero. Hence,
the closed loop system becomes unstable as there is unstable pole-zero cancellation.
Although Smith predictor cannot stabilize an unstable system, its rather simple design

methodology attracts many researchers to develop different types of controllers based
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on the same framework. In [21, 20], an improved model of Smith predictor was

developed and we will discuss their ideas and results.

5.3.1 Continuous Resetting Smith Predictor

In this section, we consider observable liner multi-variable system with nominal delay

h in the input described by

&(t) = Acx(t) + Beu(t — h)

y(t) = Cex(t)

(5.8)

where A, € R¥", B, € R™™ and C. € RP*™. A prediction z,(t) for the variable

x(t+h), is given by

Defining 7 = 0 — h, z,(t) can be rewritten as
¢
1, (t) = eha(t) +/ e Bou(r)dr (5.10)
t—h

The above depends only on past and present values of z(t), and u(t). Thus, z,(¢) is
available at time ¢. However, as shown in [31], when the integral is calculated with
a constant step method, such implementation produces an unstable behavior if the
control law is itself unstable, whatever the precision of the integration method.

The purpose of [20], is to allow the Smith predictor to control unstable systems,
without losing its main advantage, namely, the simple design procedure. In [20], the
authors developed a Smith predictor which refreshes (resets and updates) its initial
condition periodically. The calculator block computes an estimate of the state x(¢;+h)

fori =1,...,k,k+1,.... The estimated value z(¢; +h) is used as the initial value of the
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x,(t +Y+ Output
) (oot s o

Predictorf

a:c(tk =+ h)

A

Calculatorf

Figure 5.6: Continuous Resetting Smith Predictor

predictor which will deliver a ”continuous” estimate of the state z(¢ + h). The initial

condition of the model is periodically reset to the value of the state of the system.

Calculator

During the time interval [ty — h,tx) we compute the value of the integral
tr
/ e Bou(r)dr (5.11)
tr,—h

as a solution to the differential equation
Z(t) = Acz(t) + Beu(t) (5.12)

with zero initial conditions at time ¢, — h. At time t; this integral, along with the

measured value of the state of the system allows the computation of

th+h
Te(ty + h) = et (ty) + / eAtth=) B y(o — h)do
e (5.13)

tr
= ety (ty,) + / e Bou(r)dr
tr—h
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where 7 = 0 —h and Eqn. 5.13 is an estimate of x(f; + h) computed at time ¢. Next,

at time tg, k = 1,2, ... the predictor is initialized with the computed value z.(tx + h).

Predictor

At time g, k = 1,2, ... the predictor is initialized with the computed value z.(tx + h).

The prediction z,(t) of the state z(¢ + h) is given as the solution to

Tp(t) = Acy(t) + Bou(t) for t € [ty, tyi1),

Tp(tk) = zc(ty + h)

Equivalently, z,(t) is given by

t

2, (t) = e Wy (), + h) —l—/ AN Bau(r)dr, t € [ty, tesr)

123
Control law

The control law is a static state feedback

u(t) = —Kexp(t); t<0

that stabilizes the system for the nominal parameters.

(5.14)

(5.15)

We will skip the stability analysis in this paper because we will implement control

algorithm in digital computer. The brief summary of continuous resetting Smith

predictor is introduce the idea of how to interpret the design. In short, the predictor

is governed by the stable difference equation

Ty (tpy1) = e BeKlteni=t g (1) for k =1,2, ...

(5.16)
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where K, is the static controller gain that stabilize the non-delay closed loop system.
For those who are interested in the continuous dynamics can study the stability and

robust analysis given in [21].

5.3.2 Discrete Resetting Smith Predictor

For the discretization of the scheme, the sampling period, 7, is selected such that
the design time delay, h, is an integer multiple of 7. It is well known that in the
discrete framework the sampling period must be small enough so that it meets the
requirements inherent to the discretization process. Since the sampling period is
a design parameter it can be chosen so that it fulfills both requirements, namely,
nT = h, where n is an integer.

The discrete resetting Smith predictor is obtained by choosing the resetting time
of the previous section so that it coincides with the sampling time. A zero order hold

is used in the control action. Consider Eqn. 5.14 at time ¢t = kT, £k =0, 1,2, ..., then

kT
2, (kT) = "Dy (KT) +/ eA*T=T) B u(7)dr (5.17)
kT—nT
Let kT — 7 = (, it follows that
nT
2, (ET) = e Ty (ET) + / e Bou(kT — ¢)d¢ (5.18)
0

Because of the zero order hold, u(kT —() is piecewise constant over each intersampling

interval, hence

n 3T
xp(kT) = e D (kT) + / e*¢ B.d(u(kT — 5T) (5.19)

j=170-1T
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Define 0 = ( — (j — 1)T for j =1, ...,n, in the following equations

T
/] ACCBdC / (G- 1T+U]Bdo_
(G-nT

. (5.20)
= eAC(jl)T/ e’ B,do
0
then
n 5T
zp(kT) = e* Dy (kT) + ) / e*<C B,d¢Cu(kT — jT)
j=170-1T
= eAC("T)m(kT) + Z ¢ Tu(kT — jT) (5.21)

i=1

= ¢"z(kT) + ®(2)u(kT)

where 2z u(kT) = u(kT —T), ¢ = A7, T = fOT e’ B.do and, ®(z) = ¢" T2~ +
..+ ¢T'z=2 + T2z71. Again, due to the delayed nature of the input, the prediction at
the sampling time kT + nT, depends only on z(kT) and of values of the input at &7
and previous sampling instants. Hence this prediction is available at time £7". The

overall control scheme is then:

-‘T @ m(kT) (1)

Figure 5.7: Discrete resetting Smith Predictor (DRSP)

The design of this predictor is based on the continuous time resetting Smith pre-
dictor that has been explained in section 5.3.1. DRSP is a predictor which refreshes
(resets and updates) its initial condition periodically. This refresh mechanism avoids

drifting of the state estimation error. The predicted states can then be used by
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constant gain state feedback controller (Kj) to control the delayed system.
Stability Analysis
The reference to output transfer function is

z(z) _ K P*(2)z™
r(z) I+ Kq®(z) + Kg¢pnP*(z)z"

(5.22)

where P(z) is the model transfer function and * corresponds to the real behavior.
Since the denominator of the transfer function contain ®(z) term, which is directly

related to the system, we can find the relationship of ®(z) and P(z), as follows:

B(z) =¢" T2+ ...+ gLz + T2

= (¢" e "V 4+ 1) T2

= [I = (¢2)"] (I = ¢z71) 'z (5.23)
=[I-(¢z)"] (:I - ¢)~'T
= [I—(¢z7)"] P(2)

Substitute Eqn. 5.23 into Eqn. 5.22, we get

iC(Z) _ KdP* (Z)Z_n*
r(@) I+ Kl = (6= P() + Kad P (2) 2™

(5.24)

When there is no mismatch in the parameters, the delay of the process (n = n*), and

the design model (P(z) = P*(z)), this transfer function simplifies to

z(2) _ KyP(z)z™"
r(z) I+ K4P(2)

(5.25)

Therefore, if the controller gain K, is designed so that the closed loop system with

no delay has a stable closed loop polynomial, it follows that the closed loop system
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resulting from the scheme of Fig. 5.7 has the same characteristic polynomial. Hence,

it is stable.

Robustness Analysis

Theorem 4. (Theorem 1 of [20])
Consider the discretization of the process in closed loop with the control law, K,
Egn. 5.21, and assume that the controller is designed so that under ideal circum-

stances, the closed loop is stable. Assume also that the real process and design model

differ. Then, if the condition
| K 49" {P*(z)z"**” — P(2)} 2" < |I + Kq®(z) + Kq¢"P(2)2"| (5.26)
holds for all z on the unit circle, then the closed loop remains stable.

5.3.3 Example: Magnetically Levitated Ball (MLB)

Magnetic Coil

Ground

Figure 5.8: Magnetically levitated ball

We illustrate the discrete resetting Smith predictor scheme using a magnetic lev-

itation system as shown in Fig. 5.13. The simplified differential equation for the
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system is given by

y=g—k (Z—j) (5.27)

where u the control input is the current through the electromagnet, y the output is the
vertical displacement of the ball from the magnet, g is the gravitational acceleration,
and k is a constant determined by the physical dimensions and material of the system.
For this example, ¢ = 9.81, and £ = 0.01, the sampling time is 7" = 0.05 second.
Assume the system is linearized at y = 0.5, and there is 1-step delay on both sensor

output and controller output. The discretized system is giving as follows:

1.0495 0.0508 —0.0016
z(k+1) = z(k) + u(k) (5.28)
1.9942 1.0495 —0.0637

First, we design an LQR controller using weighting matrices (), = I5 for the states

and R, = 1 for the control signal. We get

Ky=|-54.1949 —8.6815 (5.29)

and poles at 0.7529 and 0.7076. Since we expect the overall system will experience
2-step delay, we design the discrete resetting Smith predictor that control the system
with 2-step delay that is, n = 2. The equation for state prediction is written as
follows:
2y (k) = > (k) + O (2)u(k)
(5.30)
= 24Ty (k) + Tu(k — 1) + ¢Tu(k — 2)

Fig. 5.9 is a simulation result uses continuous dynamics with initial condition of

y(0) = 1.3 and 7(0) = 0.5. The figure shows that the closed loop system is stable.
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T T

~15F

I I I I I I
0 0.5 1 15 2 25 3 3.5
Time (s)

Figure 5.9: Transient Response
5.4 Mean Square Stability

In the previous section, we have discussed the control design methodology for system
with constant delay. However, if a system is implemented through a communication
network, such as Ethernet, then the system may not experience constant delay all the
time. Therefore, we should find a way to characterize stability for such a stochastic
system. Furthermore, we will only consider a special class of stochastic systems that
is a Markovian jump system. Discrete time linear jump systems are systems which
are subject to abrupt changes in their parameters. These abrupt changes can be
modeled by a Markov chain with a finite state-space. So, each mode of a jump
system corresponds to a particular parameter setting for a system at a time instance.

We consider jump linear systems described by
z(k+1) = Agyz(k) (5.31)

where € R" is the z-process state, and A\T(k) € {A\O, ...,/ll\d} is appropriately di-

mensioned matrices. Here, k € ZT is the time index and r(k) is a discrete-time
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Markov process which takes values in the finite set D= {1,2,...,d}. It is a finite state

discrete-time Markov chain, with transition probability matrix
Pr{ir(k+1) = j|r(k) = i} = {p;;} € RP*P (5.32)

where 4,7 =1,2,..., D.

7

Definition 7. (Mean Square Stable[6]) The model (5.31) is mean square stable
(MSS) if for any initial condition x(0) there exist ¢ € R™ and Q) € R*™™ independent
of £(0) such that:

1. || Elz(k)] —q||— 0 as k = o0

2. || Elz(k)z(k)T] = Q ||= 0 as k — oo

Define the mode indicator function:

(k) = I, ifr(k)=1

0, ifr(k)#1

There are two ways to define the mode-dependent covariance matrices [6, 9]

(a)  Mi(k) = E [z(k)x(k)" (k)] (5.33)

) M) = E [e(®)a(k) Lk —1)] (5.34)
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They satisfy the linear recursions
‘(k+1) Z pjiA; M (k (5.35)

MP(k+1) (Z p;i M2 (k) ) (5.36)

respectively. All these equations hold for 7 = 0,1,...,d. The mode-independent

covariance matrix is

M(k) = E [z(k)z(k)"] = Z MA(k) = Z M? (k) (5.37)

The system is mean square stable if limy_, o, M (k) = 0 regardless of z(0). A necessary
and sufficient condition for a jump linear system to be mean square stable is

lim M#(k)=0 lim M?(k)=0, i=0,1,...,d (5.38)

k—00 k—o00

Theorem 5. (Theorem 1 of [6]) Let A = (PT ® I,2) diag(;l\r(k) ®A\r(k)). The system
5.31 is mean square stable if and only if the spectral radius of A is less than 1, where

® denotes the matriz Kronecker product [11].

This theorem is normally used to check the mean square stability of a system
and it is rather difficult to do controller design through this expression. For design

purposes, one may want to use the next theorem.

Theorem 6. (Theorem 2 of [6]) The mean square stability of system 5.81 is equiva-

lent to the existence of symmetric positive definite matrices Qg, Q1, ..., Qq satisfying
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any one of the following 4 conditions:

d
1. ;{Z (ZpﬂQ]> ;ff < Q, 1=0,..,d

Jj=0

d
2. ;fgr (ijz@z) A; <@, j=0,..,d

=0

d
3. ijz‘Aij;ij< Qs i=0,..,d
=0

d
4. > pidiQAT <Q;,  j=0,...d (5.39)

=0

As we mentioned in Section 5.3.3, the normal sense of stabilizability does not
apply to Markovian jump system. Therefore, we have to redefine the stabilizability

and detectability for Markovian jump system which has the following form:

:L‘(k + 1) = Ar(k)l‘(k) + Br(k)u(k)

(5.40)
y(k) = Cryz(k)

Definition 8. (Mean square stabilizability) Consider system 5.40. We say that
(A,B) is mean square stabilizable if there exists { Ky, ..., K4 | K; € R™" for i =0, ...,d}
for which the system z(k + 1) = (Ar(k) + Br(k)KT(k)) z(k), z(0) = zo, k > 0, is mean

square stable.

Definition 9. (Mean square detectability) Consider system 5.40. We say that
(A,C) is mean square detectable if there exists {L,...,Lq | Li € R*" fori=0,...,d}
for which the system z(k + 1) = (Ar(k) + Lr(k)C’r(k)) z(k), z(0) = z9, k > 0, is mean

square stable.
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One interesting property is that stability of every mode is neither sufficient nor

necessary for mean square stability of the jump system [13].

5.5 Controller design with random delay

In section 5.3, we have discussed the control design methodology for system with
constant delay. However, if a system is implemented through a communication net-
work, such as Ethernet, then the system may not experience constant delay all the
time. In addition, we cannot use the usual control design methodology, like the Smith
predictor, for system with random delay because it does not guarantee stability for
such system. In section 5.4, we have presented the notion of mean square stability
for Markovian jump systems. This notion enables us to design controller for systems
with random delay. First, we will model the random delay system with state feedback
control as a jump system[45]. Secondly, we will model the delay sequence as a Markov
process. Thirdly, we will derive a more general model for Markovian jump system by
using dynamic controller. Finally, we will provide a controller design algorithm and

an illustrative example.

5.5.1 Delayed State Deedback Model

—= Plant
x(k)
/
u(k) Random Delay
or Package Loss
— Controller[=

Figure 5.10: Networked Control System
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First consider the simple system setup in Fig. 5.10. The discrete-time linear

time-invariant plant model is
z(k + 1) = Az (k) + Bu(k) (5.41)

where z(k) € R, u(k) € R™. It is assumed that there are random but bounded delays
from the sensor to the controller. The mode-dependent switching state feedback

control law is
u(k) = Krs(k)m(k —r4(k)) (5.42)

where {rs(k)} is a bounded random integer sequence with 0 < r4(k) < dy < o0,
and dy is the finite integer delay bound. Let us introduce a new state variable, that

contain all the state information of the linear system with different delay, as follow:
#k) = [z(k)" a(k—-1)" ... wk—d)"]"
where #(k) € R¢+1n then the closed loop system is

#(k+1) = (A+ B, Cruge)) 5(5) (5.43)
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where
A0 00 B
I 0 00 0
A=1o0 1 00 B=0
00 ..10 0
érs(k):[o L0710 ... 0

and C’Ts(k) has all elements being zero except for the 74(k)th block being an identity
matrix. Eqn. 5.43 corresponds to a discrete-time jump linear system. Notice that
these equations are in the form of an output feedback control problem, even if a state
feedback control law, Eqn. 5.42, was intended for the original system, Eqn. 5.41.
However, we haven’t properly characterize the random sequence rs(k) and this will

be formulated in the next section.

5.5.2 Markovian Jump System

One of the difficulties with this approach is how to model rs(k) sequence. One way is
to model the transitions of the random delays 7(k) as a finite state Markov process
[25, 45]. In general, system networks (such as fully-switched ethernet) are under
control environment which is not totally random with the future system characteristics
dependent on the current state. Therefore, it is a reasonable assumption to model

the delay sequence as a Markov process. In this case we have

PTOb{Ts(k + 1) = .7|Ts(k) = Z} = Dij (544)
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where 0 < 4,7 < d,. This model is quite general, communication package loss in the
network can be included naturally as explained below. The assumption here is that
the controller will always use the most recent data. Thus, if we have z(k — ry(k)) at
step k, but there is no new information coming at step k£ 4+ 1 because data are lost
or there is a longer delay, then we at least have z(k — r4(k)) available for controller.
So in our model of the system in Fig. 5.10, the delay r;(k) can increase at most by 1

each step, and we constrain

Prob{rs(k+1) >rs(k)+1} =0 (5.45)

However, the delay r;(k) can decrease as many steps as possible. Decrement of r(k)
models communication packet loss in the network, or disregarding old data if we have

newer data coming at the same time. Hence, the structured transition probability

matrix is
Poo Por O 0o ... 0
po pun P2 0 ... 0
Py=1: : : S : (5.46)
Pd;—1d,
| Pds1 Pds2 Pde3 Pdsa --- Pdgds |

where 0 < p;; < 1 and Z?S:o pij = 1. The diagonal elements are the probabilities
of data coming in sequence with equal delays. The elements above the diagonal are
the probabilities of encountering longer delays, and the elements below the diagonal
indicate packet loss or disregarding old data. Fig. 5.11 shows a four state transition
diagram with such a structure, which clearly shows that we can jump from r = 0 to
r = 1 and from all other states to » = 0, but we cannot jump directly from r» = 0 to

r=2orr=3.
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Figure 5.11: Markovian Jump States

5.5.3 Dynamic Output Feedback

oo Y

Random Delay
or Package Loss

i bmmmmm e ‘

|

i | Random Delay
' | or Package Losps
|

Generalized
Controller

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5.12: Networked Control System: the general case

Next we consider a more general model with a dynamic feedback controller, Fig

5.12,

z(k+1) = Fz(k) + Gy(k)
(5.47)
v(k) = Hz(k) + Jy(k)



5.5. CONTROLLER DESIGN WITH RANDOM DELAY 111

where y(k) = Cz(k — rs(k)) and u(k) = v(k — r4(k)). In this case we use a mode-
independent controller to simplify the notation which means the controller’s param-
eters will not change, e.g. F = Fy = ... = F, () for Vk € Z*. More importantly,
because it is hard to predict the delays from the controller to the actuator at the time
the control signal is calculated, the mode-independent controller is probably the most

relevant for this application. To proceed, augment the controller state variable
2k) = [2(0)T o(k-1T ... w(k—d)T]"

where d, is the bound for the random delays 7, (k) from the controller to the actuator.

The generalized controller can be written as

3(k+1) = Fz(k) + Gy(k)

(5.48)

where

F O ..00
H 0 0 0 J
F=10 I 0 0 G=lo

0 0 I 0 0

)
5 [H 0 00 . 0] if ro(k) =0
Hroh) = 4

k[0 071 0 .. 0] if ro(k) #0
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K, ) =

J ifra(k) =0

0 if ro(k)#0

The identity matrix, I, in ﬁra(k) is positioned at the 7,(k)®" entry of the row matrix.
Here we use the control signal v(k),...,v(k — d,) generated at different steps for
analysis and design purpose only. After the controller, Eqn. 5.47, is designed using
the generalized model, we need not to store them in real-time control applications.
The transition probability matrix P, has the same structure as P, in Eqn. 5.46.

For a discrete-time linear time-invarient plant model
z(k + 1) = Az (k) + Bu(k)

where z(k) € R” and u(k) € R™, we can transform this model into a generalized
plant model that include output delay. Let us introduce a new state variable, that

contain all the state information of the linear system with different delay, as follow:
Fk) = [z(k)" x(k—1)" ... zk—d)"]"

where 7 € Rl4+D" then the generalized plant model can be written as follow:

i(k +1) = Az(k) + Bu(k)
(5.49)

y(k) = CCy i (k)
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where
A0 00 B
I 0 00 0
A=1o0 1 00 B=0
0 0 I 0 0
érs(k):[o .01 0 ... 0

After defining the generalized plant and controller model, the next step is to
combined these two models together as a generalized close loop system. First, we
will combine Eqn. 5.48 and Eqn. 5.49 together and the resulting state equations are

given as follow:

#(k + 1) = Ai(k) + BH,,)2(k) + BK,,()CC\, 17 (k) (5.50)

2(k+1) = Fz(k) + GCCy )2 (k)

=T ~T]T

Secondly, by introducing a new state variable z = [Z' Z']", we can write the

generalized closed loop system dynamics as

'i'(k + 1) = (A + BKTa(k)érs(k)) i(k) (551)
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where
4 o _lo B
A: B:
_0 0 _I 0
) 0 I _ PG
Cray = | Krory = | . N
|CCr) O | Hror) Kror)

This general system is also a jump linear system. The Markovian jump parameter now
becomes r(k) = (rs(k),7.(k)), and the transition probability matrix is P = P, @ P,,
where ® denotes the matrix Kronecker product [11]. So, both static and dynamic
feedback with random delays can be formulated as discrete-time jump system control
problems.

However, if the transition probability matrix P is only known to belong to the
polytopes II = Cy{ Py, P, ..., P,}, then a necessary and sufficient condition for the
jump system to be mean square stable for every P € II is that Theorem 6 holds for

every vertex P; of the polytopes [9)]

L L
P:{H:ZAka|Ak>o,k:1,...,L,ZAk:1} (5.52)
k=1 k=1

where IT*F = (pi'cj)lﬁi,j,SNa k =1,..., L are given transition probability matrices. The
convex hull Co{8} of a set § is the intersection of all convex sets containing 8. For
example, if a closed loop system with transition probability matrix P; and P, is
mean square stable, then the closed loop system with transition probability matrix
Py = M\ Pi+ X\ P, where A\ + Xy = 1, is also mean square stable. We will demonstrate

this idea in the next example.
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Magnetic Coil

Ground

Figure 5.13: Magnetically levitated ball

Example

Let us consider the same magnetic levitation system as described in Section 5.3.3.

The simplified differential equation for the system is given by

2

y=g9—k (%) (5.53)

where u the control input is the current through the electromagnet, y the output is the
vertical displacement of the ball from the magnet, g is the gravitational acceleration,
and k is a constant determined by the physical dimensions and material of the system.
For this example, ¢ = 9.81, and £ = 0.01, the sampling time is 7" = 0.05 second.
Assume the system is linearized at y = 0.5, and there is 1-step delay on both sensor

output and controller output. The discretized system is giving as follows:

e [1.0495 0.0508} o)+ [0.0016] )

[1.9942 1.0495 —0.0637J (5.54)

y(k) = |1 0] a(k—ry(k))

For simplicity, we will assume no delay between controller and actuator and 0 or

1-step delay, r5(k) = {0, 1}, could happen between sensor and controller. Indeed, the
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delay factor is governed by Markov process and the transition probability matrix has
the same structure as Eqn. 5.46. According to the design procedure in Section 5.5.4,

we find a dynamic controller

0.6681 —0.0432 0.4057
z(k+1) = z(k) + y(k)
—0.6361 —0.0282 —1.0942 (5.55)

u(k) = [-8.1992 4.1011] z(k) + 52.8908y (k)

that can stabilize the system with two different transition probability matrix given
as follow:

0.3450 0.6550 0.6625 0.3375

0.3450 0.6550 0.9800 0.0200
According to Eqn. 5.52, the controller should able to achieve mean square stability

for every transition probability matrix in the following form:

P3 = )\1P1 + (]_ - /\1)P2 (557)

where all entries in P; must be greater than or equal to zero. Fig. 5.14 is a simulation
result uses nonlinear dynamics with initial condition of y(0) = 1.3 and y(0) = 0.5. In

the simulation, we set A\; = 0.6 and the results are consistent with the theory.

5.5.4 V-K iteration

In the previous section, we have transformed the random delay closed loop system
into a Markovian jump linear system. Furthermore, we have a theorem that charac-
terize the stability for this system. Therefore, as long as we find a set of controller’s

parameters that satisfies Theorem 6, the random delay control problem is solved.
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Figure 5.14: Transient Response with different transition probability

However, it is extremely difficult to find the set of parameters because it is a matter
of trial and error. Fortunately, a systematic algorithm has been developed in [45] to
solve this problem. Now we consider the problem of using output feedback control to

stabilize the jump system, Eqn. 5.40. The closed loop system dynamics are
o(k +1) = (Ar) + Brgy K Criiy) (k) (5.58)

which can represent the static feedback case, Eqn. 5.43, or the dynamic output
feedback case, Eqn. 5.51, but is more general than these cases. Before we discuss the
algorithm, we need to modify Eqn. 5.39 slightly by including a decay rate term. The
decay rate is defined as the largest 8 > 1 such that lim,_,., S¥M (k) = 0. A lower
bound of the decay rate g = é must satisfy the inequalities 5.39 by replacing @); or
(; on the right hand side by aQ); or a);. The functionality of decay rate will become
obvious as we go through the algorithm.

Since the four conditions in Theorem 6 are equivalent, we can use any one of them

to describe our algorithm. For example, condition 4 in Eqn. 5.39 with decay rate
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8= é for the closed loop system, Eqn. 5.58, becomes
d A~
Zpij;finiAi < aQ; (5.59)
i=0

where we define A; = A; + B;K;C,. Using Schur complements [2], Eqn. 5.59 can be
written in an equivalent form

OZQ]' gng .. Z{de
Qodo pdQy ... 0
v T Y (5.60)
_Qdle\d 0o ... p;ded_

which must be true for j = 0,1,...,d (Q>0 means Q is positive definite). These
are coupled bilinear matrix inequalities (BMI) in the variables «, K;, and Q;, i =
0,1,...,d, and every K; and (); appear in all of the d + 1 inequalities. Of course, if we
fix @ and the K;’s, then these equations are LMI’s in the @);’s, and vice versa.

1

A lower bound for the decay rate 8 = _ can be found by solving the following

optimization problem

minimize o
subject to  Eqn. 5.60 for j =0,1,...,d (5.61)

and Qg > 0,...,Qq >0

If we fix the Kj;’s, this corresponds to a generalized eigenvalue problem. The general-
ized eigenvalue problem (GEVP) is to minimize the maximum generalized eigenvalue

of a pair of matrices that depend affinely on a variable, subject to an LMI constraint.
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The general form of a GEVP[2] is:

minimize o
(5.62)
subject to aB(z) — A(z) > 0,B(z) >0

where A, and B are symmetric matrices that are affine functions of x. We can express
this as
minimize oy (A(z), B(z))

(5.63)
subject to B(z) >0

where amax (X,Y) denotes the largest generalized eigenvalue of Y — X with Y > 0,
i.e., the largest eigenvalue of the matrix Y3 XY~3. In our case, Eqn. 5.59, () and
E?:o p,-j;l\iTQiA\i are equal to z and A(z), respectively.

On the other hand, if we fix the Q);’s, it is a eigenvalue problem to minimize the
maximum eigenvalue of a matrix that depends affinely on a variable, subject to an

LMI constraint (or determine that the constraint is infeasible)

minimize o
d (5.64)
subject to al — Zpij;l\iTQ,-A\in_l >0
i=0

where ol — Z?:o pij;l\iTQiA\,-Qj_l are symmetric matrices that depend affinely on the
optimization variable K, the controller gain matrix. This is a convex optimization
problem. Both of these problems can be solved very efficiently by MATLAB’s LMI
toolbox or SeDuMi[28] through convex optimization [2].

Note that we want to design a controller for a specified transition probability

matrix P. However, it is often difficult to obtain an initial guess that works well

for this P, So we start with a simple P, for which it is easy to design a stabilizing
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controller, and then change P in an outer loop as we proceed through the design

iteration.

1. Design a LQR (or LQG for dynamic output feedback) controller K for the
plant, Eqn. 5.41, without considering delays in the loop. Let K; = K, for

1=20,1,...,d, and initialize the transition probability matrix, let P = F.

2. Design Iterations

Repeat{

(a) V-step. Given the controllers K;, i = 0,1, ...,d, solve the LMI feasibility
problem, Eqn. 5.60, for all j = 0,...,d with @« =1 to find Q;, 2 =0, ....d

to prove that the K;’s stabilize the jump system.

(b) K-step. Given Q;, i = 0, ...,d found in V-step, solve the eigenvalue prob-
lem, Eqn. 5.61, to find the K;, i« = 0, ..., d which maximize the decay rate

of the closed loop jump system with respect to the @);’s.

(c) A-step. Perturb the transition probability matrix P by adding a small

perturbation matrix A: P = P+ A.

} Until the desired transition probability matrix P is reached or the V-step is

not feasible.

Since the LQR (LQG) controller corresponds to the no delay case, a reasonable

initial transition probability matrix is

10 ... 0 1-(d—1)e € ... €
10 ... 0 I1—(d—1) € ... €

fas
I
2

(5.65)
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This particular matrix has zero in all the rows except the first row that represents no
delay. However, zero entries will cause some computation problem because Eqn. 5.59
contains inverse of probability matrix’ entries in its elements. To solve it numerically,
we replace p;; by a very small positive number € whenever it is zero in our structured
transition probability matrix, Eqn. 5.46. At the same time, we must slightly change
the matrix elements in the same row to keep the constraints being satisfied. For ¢
small enough, the first V-step will always be feasible. For each succeeding iteration
step we add a small perturbation matrix A to the transition probability matrix. How-
ever, each entry of A must be small enough to make the next V-step have a feasible
solution. This routine will repeat itself until the desired transition probability matrix
P is reached or the V-step becomes infeasible. Therefore, the transition probabil-
ity matrix P that is used in the last iteration may not be equal to the desired one
and there is no guarantee that the desired transition probability matrix is achievable
numerically. Furthermore, from our experience, smaller perturbation matrix can al-
ways improve the difference between the resulting and desired transition probability
matrix. Obviously, this will increase the number of iteration.

According to our experience, MATLAB’s LMI toolbox work faster than SeDuMi
when solving lower number of variables. On the other hand, SeDuMi will work
faster than LMI toolbox when solving larger number of variables. For V-step, we
will have )4, ..., Q4 as the matrix variable where d = d, x d, is the dimension of
transition probability matrix and each matrix variable @Q; = QT € R?7%?, where ¢ =
n(ds+1)+m(d, — 1), will have Z(1+ ¢) number of variable. Hence, the total number
of variable need to be solve in v-step will be huge. On the other hand, there will only
be n? + m(2n + r) number of variable in k-step that is independent to the number
of step delay. Hence, this number of variable needed to be solve in k-step will be

minimum. As a result, we will use SeDuMi and LMI toolbox in v-step and k-step,
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respectively.

5.5.5 Example: Magnetically Levitated Ball (MLB)

Consider the magnetic levitation system problem in Fig. 5.13. This is a second order
unstable system. The state variables are [y y']T. The parameters used are: g = 9.81,
and k = 0.01. The sampling time is 7" = 0.05 second. Assume the case where random
delays exist from the sensor to controller and from the controller to the actuator,
and they are bounded by 2: r(k) € {0,1,2}. The controllers are designed using the
linearized model, which linearized at y = 0.5, but the computer simulation uses the
nonlinear dynamics. The initial condition for simulation is ¥y = 1.3 and y = 0.5.

Given the "expected” transition probability matrix

0.1410 0.8590 0
P =10.1410 0.4295 0.4295 (5.66)
0.1410 0.4295 0.4295

which has a stationary distribution given as follow: [0.14 0.49 0.37]. We started

from an LQG controller

0.3270  0.0372 0.6368
z(k+1)= z(k) + y(k)
—5.4479 0.4983 3.9892 (5.67)

v(k) = 54.2303 8.6564| z(k)

The initial transition probability matrix and the small perturbation matrix used are

0.98 0.01 0.01 —0.0050 0.0050 0
Py= 1098 0.01 0.01], A= {-0.0050 0.0025 0.0025 (5.68)
0.98 0.01 0.01 —0.0050 0.0025 0.0025
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The iterative design procedure terminate after 119 iterations (approximately 10 hours
on a Pentium III workstation) because of an infeasible solution for V-step and the
resulting transition probability matrix is Py = [82%38 0:303 0,305 | with stationary dis-
0.390 0305 0.305
tribution [0.39 0.42 0.19]. There is a huge difference between the resulting and
desired transition probability matrix.
One of the reason for v-step becomes infeasible is the perturbation matrix is too

big.. Therefore we try another design iteration with smaller perturbation matrix

0.98 0.01 0.01 —0.0010 0.0010 0
P=1098 0.01 0.01], A= {-0.0010 0.0005 0.0005 (5.69)
0.98 0.01 0.01 —0.0010 0.0005 0.0005

The iterative design procedure provides a controller which makes the closed-loop

system mean square stable for the desired P.

0.8013 0.1474 0.6535
z(k+1)= z(k) + y(k)
—2.3919 0.5287 1.7800 (5.70)

v(k) = |1.8702 13.5617| z(k) + 65.7471y(k)

In this case, there were 840 design iterations, but it took approximately 36 hours on
a Pentium 3 workstation. Fig. 5.15 shows one simulation run of the Markovian jump
delays according to the given transition probability matrix, and the initial condition
response of the closed-loop system using this controller. The first part of this figure
corresponds to the sensor delay sequence. For example, at 9 second, the delay steps is
equal to 2 that means the controller is using sensor information provided at 8.9 second
because 2-steps is equal to 0.1 second. The second part of the figure corresponds to
the control delay sequence. For example, at 16 second, the delay steps is equal to

0 that means the actuator is using non-delayed controller information. Finally, the
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Figure 5.15: Random Delays and Initial Condition Response

last plot corresponds to the initial condition response of the closed-loop system. The
closed loop Markovian jump system with the above controller has a spectral radius
of 0.9955. According to Theorem 5, the system is mean square stable and Fig. 5.15
has confirmed this result. The time that is required for the system to reach steady
state in Fig. 5.15 is 35 sec. This result is expected because the controller has to take

a little longer to stabilize the system because of delayed information and action.

5.6 Limitation and Summary

In section 5.1, we have introduced the networked control system model, major as-

sumption and variables that are used through the chapter. In section 5.2, we have
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stated the necessary and sufficient conditions for constant delay system to be con-
trollable and observable.

In section 5.3, we have introduced discrete resetting Smith predictor to control
system with constant delay. The design process is rather simple and easy to imple-
ment. This predictor relies on complete observation for the system internal states.
In addition, this controller requires huge memory storage that is directly proportion
to the number of delay steps and internal states. Furthermore, this type of controller
cannot guarantee stability for delay system with jump (random) behavior.

The random delay system can be modeled as a Markovian jump system. The
notion of mean square stability for random delay systems is introduced in section 5.4.
One interesting point is that stability of every mode is neither necessary nor sufficient
for mean square stability of jump system.

In section 5.5, we model a random delay system as a Markovian jump system. By
using Theorem 5.4, we can design a dynamic controller that can stabilize a system
with transition probability matrix P as long as the closed loop system satisfies Eqn.
5.60. This controller does not require full observation of the system’s internal states.
The memory storage is directly proportional to the number of internal states but
irrelevant to the number of delay steps. Furthermore, this controller can also stabilize
system with constant delay. For example, for system with 1-step delay, the transition
probability is equal to P = [§ ?} §} . However, the main disadvantage for this controller
is it requires huge computation power and the design time is extremely long.

In this chapter, we have introduced controller design for networked control system.
The discrete resetting Smith predictor is suitable for system with constant delay (e.g.
CAN and Profibus) and full state observation. This controller is rather easy to design.
However, for system that is implemented through Ethernet requiring a controller

that can handle random delay, the controller design procedure is relatively long and
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requires huge computation power. The main advantage is that the controller does
not require huge memory storage and full state observation. We believe these two
controllers cover most of the cases for linear system controller design implemented

through a communication network.



Chapter 6

Conclusion

In this thesis, we have studied extensively networked control systems (NCS). The
main reason for such systems to gain popularity in the control industry is because
they can reduce wiring as compared to typical point-to-point wiring scheme. Further-
more, it becomes much easier for an engineer to monitor the signal flow. However,
the major obstacle for NCS to be successfully implemented is the communication
delay induced by the network. It is well known that delays can destabilize control
systems. Therefore, this issue plays an important role in networked control systems.
However, the characteristic of network delay depends on the type of network being
used for systems. Therefore, we have focused our attention on three types of network:
Controller Area Network (CAN), Process Field Bus (Profibus), and Ethernet.

In chapter 2, we described the protocol and delay model of CAN. CAN system can
prioritize messages and determine which messages have a higher priority and should
be transmitted first. It has the best error detection and recovery mechanism (with
HD!'=6) as compared to other networks. CAN can linked up to 110 nodes on a single
network. It offers high-speed communication rate up to 1 Mbits/sec with maximum

data size of 8 bytes. Therefore, this network is only suitable for small system with

'Hamming Distance
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minimum data exchange. For CAN, detailed timing analysis has been studied in [12,
38]. Their models are incomplete because they did not characterize transmission error
appropriately. Since CAN is a prioritized network, any retransmission on high priority
messages will substantially increase the response time for lower priority messages. By
including transmission errors in our model, we are able to produce a more realistic
estimate of the response time. The is crucial for controller design.

In chapter 3, we described the protocol and delay model of Profibus. Profibus
is a token passing network that contains master and slave stations. Master devices
(active stations) determine the data communication on the bus. A master can send
message without an external request when it holds the bus access rights (the token).
Slave devices (passive station) are peripherals such as I/O devices, valves, drives and
measuring transducers. PROFIBUS can link up to 124 stations with a maximum of
244 bytes input and output data for each slave with high-speed communication rate
up to 12Mbits/sec. Therefore, this network is suitable for small system with medium
data size for exchange. A detailed timing analysis has been studied in [22, 40]. Their
models do not include error retransmission. It is important to include transmission
error to the timing model because it is often unavoidable and will substantially in-
crease the response time. By including transmission error to our model, we again are
able to produce a more realistic estimate of the response time.

In chapter 4, we described the protocol of Ethernet. However, this protocol was
designed with the needs of Office/Enterprise users in mind. Issues of paramount con-
cern in control networks, such as real-time performance and redundancy were not part
of the original designers’ concerns. In section 4.2.1, we presented a traditional network
configuration and showed that this configuration is inapplicable to control systems.
It is because a single intensive user can affect the entire network stems. Therefore,

we separate an office network into two subnetworks: “control network” and “office



CHAPTER 6. CONCLUSION 129

network”. For control network, we modeled the network as a fully switched network.
A switch is placed in a Ethernet network with a dedicated segment for every node.
These segments connect to a switch, which supports multiple dedicated segments
(sometimes in the hundreds). This setting allows many conversations to occur si-
multaneously on a switched network. Ethernet offers high-speed communication rate
up to 1Gbits/sec with maximum data size of 1500 bytes. Therefore, this network
is suitable for large system with huge amounts of data exchange. However, Ether-
net does not provide any error recovery process that will increase the possibility of
retransmission, as any detected error will lead to retransmission.

In our timing analysis, we have include the “PAUSE” operation that is built into
switch. The PAUSE function is specifically designed to prevent switches (or end
stations) from unnecessarily discarding frames due to input buffer overflow under
short-term transient overload conditions. This operation is a very simple stop-start
form of flow control that can avoid discarding frames even when the short-term load
increases above the level anticipated by the design. Our timing analysis is the first
analysis that consider the “PAUSE” operation.

In chapter 5, we discussed controller design for networked control systems. In
section 5.3, we discussed discrete resetting Smith predictor [21, 20| for systems with
constant delay. This predictor is easy to design and implement. However, it requires
full observation of systems’ internal states. Furthermore, it requires large memory
storage for long delay. Therefore, this predictor is only suitable for system with short
and constant delay. However, for systems which are implemented through Ethernet
may need a controller that can handle random delay because Ethernet does not have
any error recovery process. Therefore, any detected error will lead to retransmission
resulting in random delays. In section 5.5, we described a controller design proce-

dure for system with delay that can be modeled as a Markovian jump system. This
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controller design procedure is relatively long and require huge computation power.
However, it does not require large memory storage and full state observation.

The networks studied in this thesis, CAN, Profibus, and Ethernet, cover small
and large systems, and systems that require small or large amount of data transfer.
Furthermore, we have provided controller designs suitable for systems implemented
through these communication networks. We believe that we have provided guidance

to system engineers planning to design system through communication networks.

6.1 Future Work

In terms of delay models, we can take some statistical measurement of packet loss from
the control network. By using these measurement, we can improve our delay model.
Furthermore, for Ethernet, we can consider the case where multiple LAN switches
are used in the control network. In terms of controller design, the amount of time
require to solve the Markovian jump system is enormous. It is because there is a large
number of equations and variables to solve. The existing software (e.g SeDuMi[28]
and Matlab’s LMI toolbox) is not efficient. Therefore, a more efficient algorithm is
needed to solve the LMI problem. Finally, we may also consider non-Markovian delay
system because it is possible for some network behavior to be dependent on the past

history of the network.



Appendix A

Hamming Distance

Data together with the parity bits form codewords, which are transmitted via physical
connections. If we assume we have k data bits, there are 2% different groups of data
words. However if one data word is received by the receiver having one, two, or more
errors, how could the errors be detected and finally corrected? If there is a single
error in the received data word, the receiver cannot detect it because it represents

another correct data word. For example, If we have 3 data bits, then:

The possible form

== == OO OO
== OO =IO O
[l el ol Nen) ol Nen ) ol e

If the word 101 is transmitted and the third bit is received in error, then it would
be 100. This is also one of the correct data words and there is no way that the receiver
may know the original word has been changed. Therefore, additional bits must be

added to the word with certain properties. First, they must be determined only
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by using the current data word (memoryless). Second, they must be unique. That
is, for a unique data word, a unique parity word must be generated and maintain
a certain distance (bit difference) between other codewords. As mentioned before,
the received codeword with error, must not only be taken as another codeword, but
also it must be close in form to the original codeword. This is important for error
correction. There must be a minimum bit difference between each codewords (data
words plus parity words) in order to let the received error codeword be recognizable
and be correctable. Therefore in the case where two data words are similar to each
other (e.g., 100 and 101), the parity words must be very different (e.g., 00 and 11)
to maintain the minimum bit difference in form of codeword (e.g., 10000 and 10111).
Therefore, if the first codeword had an error in the fifth bit (10001), then it could be
recognized that this is not a correct codeword and it is also recognized that it could
have been 10000 but not 10111.

A very simple scheme is sending a single data bit with two other parity bits.
The 3 bits form a 3 dimensional cube, where all possible codewords are situated at
vertices. Let the one be accompanied by two other ones and zero with two other
zeros. Therefore, 111 is meant for 1 and 000 is meant for 0. However, if there occurs
a single error, then the receiver is able to recognize the actual word. For example,
if we receive 101, and a single error has occurred, then we conclude that it must
have been 111 and the second bit has been changed. However, if a second bit is also
received by error, then there is no way to know which one has been sent. This scheme
is being shown in Fig. A. As it is obvious, only 000 and 111 have the reliable distance
of three from one another. This assures up to one bit error correction. By referring
to the 2t + 1 law we also find that for one error correction there must be at least
2+1=3 bit in any codewords.

For error detection, there is an another criterion. If we assume for one error bit,
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then receiving a non-valid codeword would be counted as error detection. This is

shown in Fig. A.

This scheme explains that in order to have error correction, the spheres (with unit
radius) around each codewords must not intersect or touch (tangent) other spheres.
In case of intersecting, all the common points bear ambiguity, such that, if a codeword
is being exposed to error and fall in this common space, there is no way to identify to
which original codeword it belongs. Referring the ¢ + 1 rule, it specifies that in order

to have t error detection, the codewords must be separated by a distance of t 4 1.
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