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Abstract: This paper presents the concept of energy control and shows how robust
strategies for swinging up an inverted pendulum are obtained using this idea. The
behavior obtained with the strategy depends critically on the ratio of the maximum
acceleration of the pivot to the acceleration of gravity. A comparison with with minimum
time strategies gives interesting insights into the robustness issues.
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1. INTRODUCTION

Swinging up an inverted pendulum is a classic exper-
iment that is used in control laboratories, see Furuta
et al. (1992). It can be accomplished by minimum time
control. This strategy is, however, not very robust. In
this paper the problem is approached as a problem of
energy control. The pendulum is simply controlled in
such a way that its energy is driven towards a value
equal to the steady-state upright position. The pen-
dulum then approaches the upright position where
it can be caught with an appropriate strategy. The
analysis shows that the problem is completely char-
acterized by two parameters. One is a time scale and
the other is the ratio of the maximum acceleration of
the pivot and the acceleration of gravity. The results
can be generalized to multiple pendulums.

2. PRELIMINARIES

Consider a single pendulum. Let its mass be m and let
the moment of inertia with respect to the pivot point
be J. Furthermore let l be the distance from the pivot
to the center of mass. The angle between the vertical
and the pendulum is θ , where θ is positive in the
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clock-wise direction. The acceleration of gravity is g
and the acceleration of the pivot is u. The equations
of motion of the pendulum is

Jpθ̈ −mgl sinθ +mul cosθ � 0 (1)

The system has two state variables, the angle θ and
the rate of change of the angle θ̇ . It is natural to let
the state space be a cylinder. In this state space the
system has two equilibrium points corresponding to
θ � 0, θ̇ � 0, and θ � π , θ̇ � 0. The model given by
Equation (1) is based on several assumptions, friction
has been neglected and it has been assumed that the
pendulum is a rigid body. It has also been assumed
that there is no limitation on the velocity of the pivot.

Normalization

The model given by Equation (1) has five parameters,
the moment of inertia Jp, the mass m, the length
l, the acceleration of gravity g and the maximum
acceleration of the pivot, which is denoted as ng.
Normalized variables are useful to characterize the
properties of a system. The parameter n is dimension
free. Furthermore we introduce ω0 � √

mgl/Jp,
which is the frequency of small oscillations around
the downward position. The equations of motion are
then characterized by two parameters only.
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It is natural to choose the energy so that it is zero
in the upright position and to normalize it by mgl,
which is the energy required to raise the pendulum
from the downward to the horizontal position. The
normalized energy can then be written as

E � mgl

(
1
2

(
θ̇

ω0

)2

+ cosθ − 1

)
(2)

Controllability

Local controllability means that the linearized model
is controllable. The model given by Equation (1) is
locally controllable when θ 6� π/2, i.e., except when
the pendulum is horizontal. Since the control signal
is bounded to ng, we also find that if the angular
velocity of the pendulum is zero the pendulum can
be moved in an arbitrary direction only if tθ t ≤ θ 0 or
tθ − π t ≤ θ 0, where θ 0 � arctan n. This set depends
critically on the parameter n. It set covers an angle
of 4θ 0, n � 10 gives 4θ 0 � 337 ○ and n � 0.1 gives
4θ 0 � 23 ○ .

3. ENERGY CONTROL

Many tasks can be accomplished by controlling the
energy of the pendulum instead of controlling its
position and velocity directly, see Wiklund et al.
(1993). For example one way to swing the pendulum
to the upright position is to give it an energy that
corresponds to the upright position. The pendulum
will then swing and it can then be caught in the
upright position with a stabilizing strategy.

The energy E of the uncontrolled pendulum is given
by Equation (2). To perform energy control it is nec-
essary to understand how the energy is influenced by
the acceleration of the pivot. Computing the deriva-
tive of E with respect to time we find

dE
dt

� Jpθ̇ θ̈ −mglθ̇ sinθ � −mulθ̇ cosθ (3)

It follows from Equation (3) that it is easy to control
the energy. The system is simply an integrator with
varying gain. Controllability is lost when the coeffi-
cient of u in the right hand side of (3) vanishes. This
occurs for θ̇ � 0 or θ � ±π/2, i.e., when the pen-
dulum is horizontal or when it reverses its velocity.
Control action is most effective when the angle θ is 0
or π and the velocity is large. To increase energy the
acceleration of the pivot u should be positive when
the quantity θ̇ cosθ is negative. To change the energy
as fast as possible the magnitude of the control signal
should be as large as possible.

Let the desired energy be E0. The following control
law is a simple strategy for achieving the desired
energy:

u � satng (k(E− E0)) sign(θ̇ cosθ ) (4)

where k is a design parameter. In this expression the
function satng denotes a function which saturates at
ng. This strategy is essentially a bang-bang strategy
for large errors and a proportional control for small
errors. It will drive the energy towards the desired
value. The parameter n is crucial because it gives the
maximum control signal and thus the maximum rate
of energy increase. Compare with Equation (3). For
large values of k the strategy (4) is arbitrarily close
to the strategy that gives the maximum increase of
energy.

4. SWING UP STRATEGIES

We will now discuss strategies for bringing the pen-
dulum to the upright position. It is assumed that the
pendulum starts at rest in the stable downward po-
sition. The energy of the pendulum is defined to be
−2mgl initially. In the steady state upright position
the energy is zero. It is very convenient to use argu-
ments based on control of the energy of the pendulum.
One way to swing up the pendulum is to control it so
that its energy increases from −2mgl to zero. The
pendulum then swings towards the upright position
where it can be captured by a stabilizing strategy. It
can be shown that strategies of this type will converge
to the desired solution, see Fradkov (1991) and Frad-
kov et al. (1995). A very simple strategy is obtained
in the following way. Assume that the pendulum is at
rest in the downward position. Accelerate with max-
imum acceleration in an arbitrary direction and re-
verse the acceleration when the velocity becomes zero.
To see what happens with such a strategy we intro-
duce a coordinate system fixed to the pivot point. In
this coordinate system the center of the mass of the
pendulum moves in a circle as indicated in Figure 1.
If the acceleration is towards the right there is a field
in the direction OB with an apparent gravity of mag-
nitude n

√
1+ n2 in the direction OB. The pendulum

then swings symmetrically around OB. Consider, for
example, the situation when the pendulum has zero
velocity at the point A. The pendulum then swings to
the position C where the angle is ϕ + 2θ 0, indicated
by C in Figure 1 where the velocity becomes zero.
The pendulum thus increases its swing by an amount
corresponding to the angle 2θ 0 for each reversal of
the velocity. Notice that this simple strategy is opti-
mal only if the pendulum does not reach the horizon,
because it follows from Equation (4) that the acceler-
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Fig. 1 Geometric illustration of a simple swing-up strategy.

ation should be reversed when the pendulum is hor-
izontal. Also notice that it must be required that it
is possible to maintain maximum acceleration during
the full swing.

5. SINGLE-SWING BEHAVIOR

The behavior of the swing up depends critically on the
maximum acceleration of the pivot. If the parameter
n is sufficiently large the required energy is obtained
very quickly, and the pendulum can be brought up in
one swing, but many swings are required if n is small.

Double-Switch Control

If the available acceleration is sufficiently large, the
pendulum can be swung up simply by using the
maximum acceleration until the desired energy is
obtained and then setting acceleration to zero. With
this strategy the control signal switches from zero
to its largest value and then back to zero again.
This motivates the name of the strategy. To find this
strategy we will consider a coordinate system fixed
to the pivot of the pendulum and regard the force
due to the acceleration of the pivot as an external
force. In this coordinate system the center of mass
of the pendulum moves along a circular path with
radius l. It follows from Equation (4) that the desired
energy must be reached before the pendulum reaches
the horizontal position. If the acceleration of the pivot
is kept at its maximum value ng until it reaches the
horizontal, the energy supplied to the pendulum by
the acceleration of the pivot is nmgl. To swing up
the pendulum its energy must be increased by 2mgl
and we thus find that the maximum acceleration
must be at least 2g. When the acceleration is 2g
the pendulum is accelerated until it is horizontal and
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Fig. 2 Simulation of a single-swing double-switch strategy. The
parameters are n � 2.1, ω 0 � 1 and k � 100.

the control signal is then zero. If the acceleration
is larger than 2g the acceleration will be switched
off when the pendulum has swung the angle φ . The
energy supplied to the pendulum is then nmgl sinφ .
Equating this with 2mgl gives sinφ � 2/n. The
single-switch double-switch strategy is illustrated in
Figure 2 which shows the angle, the angular velocity,
and the control signal for the case n � 2.1. Notice
that maximum control action is used until the desired
energy is reached. This happens shortly before the
pendulum is horizontal.

Large Accelerations

If the available acceleration is much larger than 2g,
it is possible to find approximate expressions for the
switching times. We will consider the case when the
pendulum starts in the downward position. If the
acceleration is so large that the desired energy can
be obtained for small angles the equation of motion
(1) can be approximated by

Jp
d2θ
dt2 � mnlg (5)

This equation has the solution θ � (ω0t)2/2. The
energy increase of the pendulum is thus

E � mngl sinθ � mnglθ � mgl
(ω0t)2

2

Requiring this to be equal to the swing-up energy
2mgl we find that the time for full acceleration is

t � 2
nω0

where ω0 is the frequency of small oscillations of the
pendulum. The pendulum changes the angle θ � 2/n,
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Fig. 3 Diagram used to explain the single-swing, triple-switch
behavior.

compare the exact value arctan2/n. With n � 10 we
find, e.g., that the angle changes with about 11.5 ○
during the acceleration required for swing-up.

Triple-Switch Control

In the single-swing strategy discussed above the
pendulum swings to one side and continues to swing
until it reaches the upright position. It is possible to
find strategies where the pendulum behaves in the
same way even when the maximum acceleration is
smaller than 2g. The control signal will, however,
switch several times. The acceleration must be larger
than g in order for the pendulum to reach the
horizontal in one swing. To find out how much larger
it has to be we will consider the situation illustrated
in Figure 3. The pendulum starts at rest at position
A, maximum acceleration ng is first applied in the
positive direction. An observer fixed to the pivot sees
a gravitational field in the direction OB with the
strength

w �
√

u2 + g2

When the pendulum moves from A to D it loses
the potential energy mwa � mw(sinθ 0 − cosθ 0),
which is converted to kinetic energy. It follows from
Equation (3) that the control acceleration of the
pivot should be reversed when the pendulum is
horizontal in order to maximize the energy given to
the pendulum. When the acceleration is reversed an
observer fixed to the pivot sees a gravitational field in
the direction OC. The kinetic energy of the pendulum
must then be sufficiently large to bring the pendulum
to the position E. The difference in potential energy
is mwb. We thus obtain the condition a > b. It follows
from Figure 3 that a � sinθ 0−cosθ 0 and b � 1−sinθ 0
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Fig. 4 Simulation of the single-swing triple-switch control. The
parameters are n � 1.5, ω 0 � 1 and k � 100.

which gives

sinθ 0 − cosθ 0 ≥ 1− sinθ 0 (6)
Introducing n � tanθ 0 and using equality in the
above equation we get

2n �
√

1+ n2 + 1

This equation has the solution n � 4/3. The accelera-
tion must thus be at least 4g/3 to have a single-swing
behavior. When the acceleration is exactly equal to
4g/3 the pivot will first accelerate to the right until
the pendulum reaches the horizontal. The accelera-
tion is then reversed until the pendulum reaches the
desired energy when the acceleration is set to zero.
When n is greater than 4/3 the acceleration of the
pivot can be set to zero before the pendulum reaches
the point E. Let the pendulum form the angle φ with
the horizontal when the acceleration of the pivot is
set to zero. The energy supplied to the pendulum is
then mgl(2− sinφ ), because the pivot moves the dis-
tance l+ L(1− sinφ ) with acceleration ng. Equating
this with 2mgl gives

sinφ � 2− n
n

For n � 4/3 we get φ � 30 ○ .

The single-swing triple-switch control is illustrated
in Figure 4. The maximum control signal is applied
initially. Energy increases but it has not reached the
desired level when the pendulum is horizontal. To
continue to supply energy to the pendulum the control
signal is then reversed until the desired energy is
obtained. The control signal is then set to zero. Since
n � 2.1 is close to the limit n � 2 for this type of
behavior, the pendulum is close to the desired upright
position when the control signal is set to zero.

4



6. MULTI-SWING BEHAVIOR

If the maximum acceleration is smaller than 4g/3
it is necessary to swing the pendulum several times
before it reaches the upright position. Let us first
consider the conditions for bringing the pendulum up
in two swings illustrated in Figure 5, which shows
a coordinate system fixed to the pivot. An observer
in this coordinate system sees a field with strength
w � √

g(1+ n2). The field has direction OB if the
acceleration of the pivot is positive, and the direction
OC when it is negative. Assume that the pendulum
starts at rest at A and that maximum acceleration is
first given in the positive direction. The pendulum
then swings from A to C in the figure. At that
point the pendulum turns and the acceleration of the
pivot is reversed. When the pendulum reaches the
horizontal position at E the acceleration of the pivot is
again reversed. The pendulum will reach the upright
position if the velocity at E is sufficiently large. The
pendulum starts at rest at D. When it has moved to
E it has lost the potential energy mwa, which has
been transferred to kinetic energy. This kinetic energy
must be sufficiently large to move the pendulum to F.
This energy is mwb and we get the condition b ≥ a.
It follows from Figure 5 that a � sinθ 0 − cos 3θ 0 and
b � 1− sinθ 0. Hence

sinθ 0 − cos 3θ 0 ≥ 1− sinθ 0

or 2 sinθ 0 � 1+ cos 3θ 0 (7)
This equation has the solution θ 0 � 30 ○ . The maxi-
mum acceleration required is thus 0.58g. The control
signal switches four times in this strategy because it
is necessary to reverse control at D in order to reduce
the energy of the pendulum.

The General Case

It is easy to extend the argument to cases where
more swings are required. For example in a strategy
with three swings the pendulum first swings 2θ 0 in
one direction. Next time it swings 4θ 0 in the other
direction, and the condition to reach the upright
position becomes

2 sinθ 0 ≥ 1+ cos 5θ 0

A case with k swings gives the equation

2 sinθ 0 ≥ 1+ cos (2k− 1)θ 0 (8)
Solving this equation numerically we obtain the the
following values:

n 1.333 0.577 0.388 0.296 0.241 0.128

k 1 2 3 4 5 10
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Fig. 5 Figure used to derive the conditions for the double-swing
behavior.
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Fig. 6 Simulation of energy control for the case n � 0.25, ω 0 � 1
and k � 100. Five swings are required in this case.

For small values of n the relation between n and k is
approximately given by

k � π
2k− 1

The number of switches required increases with de-
creasing n. With n � 0.25 we find that five switches
are required to swing up the pendulum. This is illus-
trated in Figure 6.

7. MINIMUM TIME STRATEGIES

It follows from Pontryagins maximum principle that
the minimum time strategies for swinging up the
pendulum are of bang-bang type. It can be shown that
the strategies have a nice interpretation as energy
control. They will inject energy into the pendulum at
maximum rate and then remove energy at maximum
rate in such a way that the energy corresponds to
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Fig. 7 A comparison of energy control with minimum time control
for n � 2.1 (left) and n � 5 (right).

the equilibrium energy when the upright position is
reached. For small values of n the minimum time
strategies give control signals that are identical with
the strategies based on energy control initially. The
final part of the control signals are, however, different
because the strategies we have described will set the
control signal to zero when the desired energy has
been obtained. The strategies we have given can thus
be described as strategies where there is no overshoot
in the energy.

Consider for example the case n > 2, where a one-
swing strategy can be used. To swing up the pendu-
lum its energy must be increased with 2mgl. This
can be achieved by a single-swing double-switch strat-
egy illustrated in Figure 2. The maximum accelera-
tion is used until the pendulum has moved the angle
arctan2/n. The energy can be increased further by
continuing the acceleration, until the pendulum has
reached the horizontal position. It follows from Equa-
tion (3) that the acceleration should then be reversed.
By reversing the acceleration at a proper position the
energy can then be reduced so that it reaches the de-
sired value when the pendulum is horizontal. Work-
ing out the details we find that the maximum energy
is obtained for the angle

arcsin1− 1/n

The energy is then reduced at the maximum rate.
Figure 7 compares the minimum time strategies and
the energy control strategies. The figure also shows
that the difference in the time to reach the upright
position increases with increasing n. It also shows
that the minimum time strategy has an overshoot in
the energy. The overshoot increases with increasing
n. For the case n � 5 the overshoot is more than

200%. This explains why the minimum time strate-
gies are quite sensitive. The excess energy is dissi-
pated rapidly when the pendulum approaches the up-
right position. The energy control gives a much gen-
tler approach towards the upright position. Several
different strategies are often combined to swing up
the pendulum. A catching strategy is used when the
pendulum is close to the upright position. A good prac-
tical approach is to use an energy control strategy
with an energy excess of 10–20% and catch the pen-
dulum when it is close to the upright position. Such
a strategy is simple and quite robust to modeling er-
rors.

8. CONCLUSION

It has been shown that it is very convenient to
swing up a pendulum by controlling its energy. The
control strategy, which is given by Equation (4), is
very simple. The behavior obtained with this strategy
depends critically on one parameter, the available
acceleration. If the acceleration is sufficiently large,
u > 2g the pendulum can be brought to the upright
position with one swing. The control signal uses its
maximum value until the desired energy is obtained
and is then set to zero. For u > 4g/3 the pendulum
can still be brought up with one swing, but the
control signal now makes three switches. For lower
accelerations the pendulum has to swing several
times.
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