
ECE311 - Dynamic Systems and Control

Linearization of Nonlinear Systems

Objective

This handout explains the procedure to linearize a nonlinear system around an equilibrium point.

An example illustrates the technique.

1 State-Variable Form and Equilibrium Points

A system is said to be in state-variable form if its mathematircal model is described by a system

of n first-order differential equations and an algebraic output equation:

ẋ1 = f1(x1, . . . , xn, u)

ẋ2 = f2(x1, . . . , xn, u)

· · ·

ẋn = fn(x1, . . . , xn, u)

y = h(x1, . . . , xn, u).

(1)

The column vector x = [x1, . . . , xn]⊤ is called the state of the system. The scalars u and y are

called the control input and the system output, respectively. Denoting

f(x, u) =















f1(x1, . . . , xn, u)

f2(x1, . . . , xn, u)
...

fn(x1, . . . , xn, u)















,

we concisely rewrite (1) as

ẋ = f(x, u)

y = h(x, u).
(2)

When f and h are nonlinear functions of x and u, then we say that the system is nonlinear. In this

course we will work exclusively with linear systems, i.e., systems for which (2) becomes

ẋ = Ax + Bu

y = Cx + Du,
(3)
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ECE311-Dynamic Systems and Control 1 State-Variable Form and Equilibrium Points

where A is n×n, B is n×1, C is 1×n, and D is a scalar. Sometimes, physical systems are described

by nonlinear models such as (2), and the tools we will learn in this course can not be employed to de-

sign controllers. However, if a nonlinear system operates around an equilibrium point, i.e., around a

configuration where the system is at rest, then it is possible to study the behavior of the system in a

neighborhood of such point.

Example 1 (A simple pendulum). Consider the dynamics of the pendulum depicted below,

where u denotes an input torque provided by a DC motor.

l
θ

u

Mg

The equation of motion for this system is

I
d2θ

dt2
+ Mgl sin θ = u

y = θ,

(4)

where I is the moment of inertia of the pendulum around the pivot point, and y is the output

of the system, i.e., the variable one wants to control. Consider now the equivalent state-variable

representation of (4), obtained by choosing x1 = θ and x2 = θ̇,

ẋ1 = x2

ẋ2 = −
Mgl

I
sin x1 +

u

I

y = x1

(5)

The model (5) has precisely the form (2), where in this case x = [x1, x2]
⊤ and

f(x, u) =

[

x2

−Mgl
I

sin x1 + u
I

]

, h(x, u) = x1.

Since f contains the term sin x1, the system (5) is nonlinear. Observe that when (x, u) = (0, 0),

ẋ = f(x, u) = 0 which implies that x(t) = [x1(t) x2(t)]
⊤ is constant for all t. In other words, if the

pendulum is in the vertical downward position with no angular velocity (i.e., x1 = x2 = 0), and

with no input torque (i.e., u = 0), then the pendulum stays in the vertical downward position for

all time (i.e., x(t) is constant for all t). For this reason, the configuration x = [0 0]⊤ is referred to

as an equilibrium point.

△
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We now generalize the intuition developed in the previous example by defining the notion of an

equilibrium point.

Definition 1 (Equilibrium Point) Consider a system in state-variable form (2). Suppose that u

is set to be a constant value u∗. Then, x∗ is said to be an equilibrium point for (2) if f(x∗, u∗) =

[0 0 . . . 0]⊤.

Example 2 (Pendulum - continued) Back to the pendulum example, suppose we turn off the

DC motor, that is, we set u = u∗ = 0. Let’s use the definition above to find all corresponding

equilibria. We set f(x, u)
∣

∣

∣

u=u∗=0

= [0 0]⊤, in other words,

x2 = 0

−
Mgl

I
sin x1 = 0

Thus, the equilibrium points of the pendulum with u = 0 are given by

x∗ =

[

kπ

0

]

, k integer.

Physically, this means that the pendulum is at equilibrium whenever the angle θ is either 0 (pen-

dulum pointing downward) or π (pendulum pointing upward), and the angular velocity θ̇ is zero.

Qualitatively, the equilibrium x∗ = [0 0]⊤ is stable, while the equilibrium x∗ = [π 0]⊤ is unstable.

Now suppose we turn on the DC motor in such a way that it produces a desired constant torque

u = u∗ 6= 0. The corresponding equilibria must satisfy the equation f(x, u∗) = [0 0]⊤, i.e.,

x2 = 0

−
Mgl

I
sin x1 +

u∗

I
= 0.

Note that, setting u = u∗ = Mgl sin x∗

1
, the state

x∗ =

[

x∗

1

0

]

is an equilibrium point of the pendulum. Physically, that means that by imparting a suitable

constant torque to the pendulum one can make the pendulum be at rest at any desired angle x∗
1
.

For instance, by imparting a torque u = u∗ = Mgl, the configuration x1 = π/2, x2 = 0 is an

equilibrium of the pendulum. Is such configuration stable or unstable?

△
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2 Linearization

Although almost every physical system contains nonlinearities, oftentimes its behavior within a

certain operating range of an equilibrium point can be reasonably approximated by that of a linear

model. One reason for approximating the nonlinear system (2) by a linear model of the form (3)

is that, by so doing, one can apply rather simple and systematic linear control design techniques

such as those introduced in this course. Keep in mind, however, that a linearized model is valid

only when the system operates in a sufficiently small range around an equilibrium point. To take

into account the presence of nonlinearities, more sophisticated tools are needed which are beyond

the scope of this course.

Given the nonlinear system (2) and an equilibrium point x∗ = [x∗
1

· · · x∗
n]⊤ obtained when

u = u∗, we define a coordinate transformation as follows. Denote ∆x = x− x∗, i.e.,

∆x =









∆x1

...

∆xn









=









x1 − x∗

1

...

xn − x∗
n









.

Further, denote ∆u = u − u∗, and ∆y = y − h(x∗, u∗). The new coordinates ∆x, ∆u, and ∆y

represent the variations of x, u, and y from their equilibrium values. You have to think of these as

a new state, new control input, and new output respectively.

The linearization of (2) at x∗ is given by

∆̇x = A∆x + B∆u

∆y = C∆x + D∆u,
(6)

where

A =

[

∂f

∂x

]

x
∗,u∗

=











∂f1

∂x1

(x∗
1
, . . . , x∗

n, u∗) · · ·
∂f1

∂xn
(x∗

1
, . . . , x∗

n, u∗)

· · · · · · · · ·

∂fn

∂x1

(x∗
1
, . . . , x∗

n, u∗) · · ·
∂fn

∂xn
(x∗

1
, . . . , x∗

n, u∗)











,

B =

[

∂f

∂u

]

x
∗,u∗

=











∂f1

∂u
(x∗

1
, . . . , x∗

n, u∗)
...

∂fn

∂u
(x∗

1
, . . . , x∗

n, u∗)











,

C =

[

∂h

∂x

]

x
∗,u∗

=
[

∂h
∂x1

(x∗

1
, . . . , x∗

n, u∗) · · · ∂h
∂xn

(x∗

1
, . . . , x∗

n, u∗)
]

, D =

[

∂h

∂u

]

x
∗,u∗

.

Remark 1: The linearization (6), also referred to as a small-signal model, is valid only in a

sufficiently small neighborhood of the equilibrium point x∗. Notice that, as expected, (6) has the

linear structure (3).
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Remark 2: Note that the matrices A, B, C, D have constant coefficients in that all partial

derivatives are evaluated at the numerical values (x∗
1
, . . . , x∗

n, u∗). Please avoid the common mistake

of producing matrices A, B, C, D containing expressions that are functions of the symbolic variables

x1, . . . , xn!

Example 3 (Linearization of the pendulum system). Return to the pendulum example.

Recall that the state-variable model is given by

ẋ1 = x2

ẋ2 = −
Mgl

I
sin x1 +

u

I

y = x1

Consider the equilibrium point, obtained by setting u = u∗ = 0, corresponding to the vertical

upward position and no control input, i.e., x∗ = [π 0]⊤. Following the procedure outlined above,

we define

∆x = x − x∗ =

[

x1 − π

x2 − 0

]

, ∆u = u − 0 = u, ∆y = y − π,

and we form the matrices containing partial derivatives

∂f

∂x
=

[

0 1

−Mgl
I

cos x1 0

]

,
∂f

∂u
=

[

0
1

I

]

,
∂h

∂x
= [1, 0],

∂h

∂u
= 0.

Next, we evaluate the matrices above at (x∗
1
, x∗

2
, u∗) = (π, 0, 0) and we write the linearized model

[

˙∆x1

˙∆x2

]

=

[

0 1
Mgl

I
0

][

∆x1

∆x2

]

+

[

0
1

I

]

∆u

∆y =
[

1 0
]

[

∆x1

∆x2

]

= ∆x1.

Notice how the linearized model is expressed in terms of a new state ∆x, new control input δu, and

new output δy. Recall that these represent variations of x, u, and y from their equilibrium values.

The linearized model above is only valid in a small neighborhood of the equilibrium x∗ = [π 0]⊤,

that is, it is only valid when the components ∆x1 and ∆x2 of the vector ∆x, are small. Physically

this can be rephrased as follows: the linearized model of the pendulum at the vertical upward

position is only valid when the angle θ is in a small neighborhood of π and the angular velocity θ̇

is small.

△
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