Problem Set 1 Solutions

Problem 1

The mathematical model is
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ir +Cd—tc + h(ve) = 0.

The state space model is
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Problem 2
Free-body diagram: there are two masses, m; and ms, hence we will draw two diagrams:
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b(X) — Xy) = L b(X — Xo)

Figure 1: Free-body diagrams

Note that, when x; > x2 and hence x; — x2 > 0, the spring ks pushes m; to the left, and mo to the right.
Hence the orientation of the forces in the free-body diagram. A similar reasoning holds for the damper b.

Applying Newton’s law to the free-body diagram we get:

mliél = —klxl — kg(l‘l — ,TQ) — b(,Tl — iz) +u

mgig = —kgIQ + kQ(ZCl — IQ) —+ b(Il — IQ)

NOTE: Suppose that one wants to position ms at a desired location, i.e., to control z2. In this case, the
control input is the force u, the output is zs.

Problem 3

Free-body diagram:
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We need to characterize three things:
(i) The translational motion of body 1
(ii) The rotational motion of the body 2
(iii) The translational motion of body 2

Part (i). Fix an inertial reference frame and let « denote the corresponding displacement of the cart, as in
the figure above. Apply Newton’s law to body 1:

Mi = —H + u. (1)

Part (ii). Pass a vertical axis through the center of gravity of body 2, as in the figure above. Let I denote
the moment of inertia of the rod measured at its center of gravity. Then Newton’s law for rotational motion
gives:

I6 = Visin§ — Hl cos 6. (2)

Part (iii). The displacement of the center of gravity of body 2 with respect to the inertial reference frame
is ¢ + [sinf. Apply Newton’s law to characterize the translational motion of the center of gravity of body
2. We write two equations for the horizontal and vertical motions, respectively.

d? .
H = mﬁ(x—i—lsm@
. d ;
=mi + mﬁ(l cos 00)
= mi — mlsin 0(6)% + ml cos 66
d2
V—mg= mﬁ(lcosé’)
=V = mg + ml(— cos0(8)? — sin )

We now replace the expressions for H and V just found into (1) and (2). In conclusion:

Mi = —mi + mlsin0(0)% — ml cos 00 + u

16 = mi?[—sin 0 cos 0(0) — sin O(A) + sin 6 cos 6(8)? — cos? 0(6)] — mli: cos § + mglsin 6

= —ml?f — mlicos O + mglsin 6

In order to get the equation of motion we need to solve the two equations above for & and 0. This part is
left as an exercise.



Problem 4

(a)KVL to loop

ve +vp +Rip, —U =0

Noting that vy, = L4L we get | V. + LLL + Rij, — U = (1)

KCL to node 1
i, =1ic + IR

Noting that i. = C22 and ig = h(vg) = h(vc)

we have that | i, = C'd;—f + h(ve) (2)

(b) Choose state variables z1 = ve, T2 = iy.
By massaging (1) and (2) we get:
[—h(z1) + 2]

T =

Ty =

= Qf —

[—z1 — Rz + u]

(¢) Equilibria are found by setting ¢; = 0 and @5 = 0.
In other words,

1
6[—h(x1) + 3] =0 or 23 = h(z1)
1 1 U
E[_xl—RI2+U] =0or xg_——xl—l-ﬁ
1 U .
—}—%:101 + B= (x1) — gives x1

x2 = h(x1) — gives zo

Graphically the equilibria are given by:
Equilibria: (x1,21), (23, 23), (23, 23)

Depending on U and R there may be one, two, or three equilibria. In other words, the circuit may have
more than one operating point. This type of circuit is said to be MULTISTABLE.
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Figure 2: Equilibria of the Tunnel-Diode



