ECE311S: Dynamic Systems and Control

Problem Set 1

Problem 1

The controlled Van der Pol oscillator has the circuit diagram shown below.

The output of the system is the voltage accross the capacitor, v_C . The nonlinear element of the circuit has a characteristic i = h(v), depicted below, with $h(v) = -v + \frac{1}{3}v^3$.

- (i) Write the mathematical model of the system in terms of v_C , i_L , and u.
- (ii) Letting $x_1 = i_L$ and $x_2 = v_C$, write the state-space model of the system.

Problem 2

Write the equations of motion of the system below, where x_1 and x_2 represent deviations from the equilibrium position.

Problem 3

Write the equations of motion of the system below.

- Suppose the center of gravity of the pendulum rod is at its geometric center.
- Neglect the moment of inertia of the wheels.

Problem 4

- 1. Write the equations of the circuit below.
- 2. Write the state-variable model of the system.
- 3. Find the equilibria holding u constant.

