
CONTROL SYSTEMS LABORATORY

ECE311

LAB 3: Control Design Using the Root Locus

1 Purpose

The purpose of this laboratory is to design a cruise control system for a car using the root locus.

2 Introduction

+

+

Plant

Disturbance

Input Output
a

s b+

()V s()
m

V s

() dD s
s

=

Figure 1: Block diagram of the plant

Recall the mathematical model of a car moving on a straight road with unknown slope θ derived

in the introduction to laboratory 2. In the block diagram above, d =
g

a
sin θ, where g is the

gravitational constant.

+

+

Plant

+

−

a

s b+

Disturbance

() dD s
s

=

()V s()R s

()E s ()
m

V s

()C s

Figure 2: Block diagram of the closed-loop system

Problem Statement: Consider the feedback control system in Figure 2. Design the controller

C(s) to meet the specifications below.

1

• (SPEC1) The output v(t) of the closed-loop system should asymptotically track reference step

signal r(t) despite the presence of the unknown disturbance d(t) = d · 1(t)

• (SPEC2) The closed-loop system (input R(s), output V (s), and no disturbance, D(s) = 0)

should be BIBO stable.

• (SPEC3) All poles of the closed-loop system should lie on the real axis, so that the output

v(t) does not have oscillatory behavior.

• (SPEC4) When D(s) = 0 (i.e., when the cart track is horizontal), the settling time Ts should

be less than 0.3s.

• (SPEC5) The magnitude voltage vm(t) imparted by the control system to the DC motor

should be less than 11.75V.

Concretely, you are required to design a control system making the cart, track constant reference

speeds even when the track is not horizontal, and meeting certain transient performance specifica-

tions.

The experimental setup used in the lab is shown in figure 3.

PWM Encoder

Arduino

D/A Plant A/D

Controller

a

s b+

Figure 3: Block diagram of the experimental setup

The design controller will be implemented on the Arduino board. As shown in the figure, the micro

controller samples the position of the cart from the encoder (A/D) and computes the control input

to be applied to the cart. Given the desired control input, the motor shield generates a PWM signal

that approximates the desired control value (D/A).

3 Preparation

1. Referring to Figure 2, verify that the plant has type 0. Hence, in order to meet SPEC1, you

need a controller with a pole at zero. Letting E(s) = R(s)− V (s), define the PI controller

Vm(s)

E(s)
= K(1 +

1

TIs
), K, TI > 0.

2

Write the transfer function from R(s) to E(s) (assuming D(s) = 0), and from D(s) to E(s)

(assuming R(s) = 0).

2. Let R(s) = v̄/s and recall that D(s) = d̄/s. Using superposition, write the expression for

E(s) in the closed-loop system.

3. Applying the final value theorem to E(s), show that if limx→∞ e(t) exists, then it must be

zero. You have thus shown that a PI controller is capable of meeting SPEC1.

Submit your derivations for points 1-3 to your lab TA at the beginning of the lab. Thoroughly read

the next section prior to the lab.

4 Experiment

4.1 Identification of model parameters a and b

If you are using a different cart and track unit than the one used in lab 2, you need to re-stimate

the plant parameters a and b following the procedure outlined in lab 2. If instead you are working

with the same experimental setup, use the values of a and b you estimated in lab 2.

4.2 Controller design using Matlab

1. In your preparation you’ve shown that a PI controller is capable of meeting SPEC1. We now

focus on SPEC2-SPEC4. Let θ = 0 or, equivalently, D(s) = 0. Recall that an approximate

expression for the settling time in a second-order system with complex conjugate poles is

Ts =
4

σ
, where σ is the real part of the poles of the closed-loop system . In order to satisfy

SPEC4, you thus need
4

σ
≤ 0.2, or σ ≥ 20. You’ll achieve this by an appropriate choice of K

and TI .

Pick a guess for TI , TI = 1. Using Matlab, you will now draw the root locus of the system,

i.e., the locus of the poles of the closed-loop system as the gain K is varied between 0 and ∞.

First, define the transfer function G(s) of the open-loop system without the gain K. This is

given by

G(s) =
TIs+ 1

TIs

a

s+ b
.

In Matlab, you can define G(s) as follows

>> TI=1; a=(your value); b=(your value);

>> G=tf([TI 1],[Ti 0])*tf([a],[1 b]);

The root locus is the locus of the poles of KG(s)/(1 +KG(s)) as K is varied. Plot the root

locus by issuing the command.

>> rlocus(G)

Verify, using the plot, that for all K > 0 the poles of the closed-loop system have negative

real part, and hence SPEC2 is met. However, for the present value of TI , SPEC4 cannot be

met by any choice of K > 0. Specifically, there doesn’t exist K > 0 such that the closed-loop

3

system has two poles on the real axis with real part ≤ −20. Prove the truth of the claim by

using the root locus plot.

Evidently, we need to choose a different value for TI . Try different (positive) values of TI . For

each choice of TI , plot the corresponding root locus. By trial and error, find the value of TI
compatible with this requirement: there exist K > 0 such that the closed-loop system has two

poles close to s = −20 on the negative real axis. Save the root locus plot.

Once you found TI > 0 satisfying the requirement above, you need to find K > 0 for which the

closed-loop system has two poles close to s = −20. First, plot the root locus corresponding

to the value of TI you just selected. Next, issue the command

>> rlocfind(G)

Move the mouse cursor over the root locus and click on the desired location of the closed-loop

poles on the real axis as s = −20. This action will return the value of K you were looking for.

Notice that the PI controller with the values of K and TI you have just found should meet

SPEC2-SPEC4.

Have your TA sign here before proceeding to the next step.

2. Next, you’ll double-check that using the values of K and TI you just found, SPEC2-SPEC4

are met in simulation. Download the file lab3.mdl from Blackboard and open it. Begin by

double-checking that your controller indeed meets SPEC4. Enter the values of θ, TI and K

into the Matlab workspace

>> a=(your value); b=(your value); theta = 0; TI=(your value); K=(your value);

>> VMAX UPM=11.75;

Run the Simulink block by clicking on Simulation > Start. The scopes depict (i) the output

v(t) versus the reference signal r(t), (ii) the tracking error e(t), and (iii) the voltage vm(t).

The reference signal is a square wave of frequency 0.5Hz and amplitude 0.2m/s.

Recall that the settling time Ts of v(t) is the time v(t) takes to reach and stay within the

range

[v(∞)− 0.02(v(∞)− v(0)), v(∞) + 0.02(v(∞)− v(0))]

where v(∞) is the value v(t) asymptotically settles to. By zooming in on one period of the

simulation output, graphically estimate the settling time Ts. Save the plot you used to derive

your estimate. Is it true that Ts ≈ 0.2 sec.? Verify that SPEC5 is approximately met.

Have your TA sign here before proceeding to the next step.

3. Now you’ll try to design a more ”aggressive” PI controller. Similarly to what you did in step

1, use the root locus and trial error to find the value of TI > 0 such that there exists K > 0

such that the closed-loop system has two poles close to s = −30. Use the command rlocfind

to find the value of K for which the closed-loop system has two poles close to -30.

Enter the values of K and TI you just found in the Matlab workspace and run the Simulink

diagram lab3.mdl. Similarly to what you did in step 2, evaluate the settling time Ts by

zooming in on one period of the simulation output. Save the plot. Compare the performance

of this ”aggressive” controller to that of the controller you evaluated earlier.

4

How do the settling times and overshoots compare?

Which controller is best suited to meet the specs?

What is the cause of the differences you observe?

Have your TA sign here before proceeding to the next step.

4.3 Controller Implementation

To perform the practical experiment for each part, open its Arduino file with ”.ino” suffix and the

associated Matlab m-file. You will enter your controller in the Arduino code and will record the

data using Matlab. Follow your TA’s instructions on how to compile the Arduino code and how to

perform the experiment. Perform the following steps:

• Open the Arduino code file named as ”Lab3.ino”, The velocity reference is set to a square

wave form with the amplitude of 0.2 m/s and frequency of 0.5 Hz.

• In the beginning of the code, modify and adjust the variables ”K” and ”Ti”.

• Enter the values of K and TI associated with the less ”aggressive” controller. Upload the code

and launch the Matlab m-file located in the same directory named ”real time data plot Lab3”.

• Save the obtained plot. Does your controller satisfy the design specifications?

Have your TA sign here before proceeding to the next step.

• Now you’ll test the performance of your controller against the unknown disturbance d(t).

Using one or more books, raise one end of the track. This corresponds to setting θ 6= 0. While

holding the track in a firm position, run the experiment again and compare the results.

• Now enter the values of K and TI associated with the more ”aggressive” controller and repeat

all the above steps.

Have your TA sign here before proceeding to the next step.

5 Report

Please submit your final report before the assigned deadline to your laboratory TA.

5

	Purpose
	Introduction
	Preparation
	Experiment
	Identification of model parameters a and b
	Controller design using Matlab
	Controller Implementation

	Report

