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Preface

This is the first Engineering Science course on control. It may be your one and only course on
control, and therefore the aim is to give both some breadth and some depth. Mathematical models
of mostly mechanical systems is an important component. There’s also an introduction to state
models and state-space theory. Finally, there’s an introduction to design in the frequency domain.

The sequels to this course are ECE557 Systems Control, which develops the state-space method
in continuous time, and ECE411 Real-Time Computer Control, which treats digital control via both
state-space and frequency-domain methods.

There are several computer applications for solving numerical problems in this course. The most
widely used is MATLAB, but it’s expensive. I like Scilab, which is free. Others are Mathematica
(expensive) and Octave (free).
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Chapter 1

Introduction

A familiar example of a control system is the one we all have that regulates our internal body
temperature at 37◦ C. As we move from a warm room to the cold outdoors, our body temperature
is maintained. Other familiar examples of control systems:

• autofocus mechanism in cameras

• cruise control system in cars

• anti-lock brake system (ABS) and other traction control systems in cars

• thermostat temperature control systems.

More widely, control systems are in every manufacturing process. One very interesting application
domain is vehicle motion control, and maybe the best example of this is helicopter flight control.

This course is about the modeling of systems and the analysis and design of control systems.

1.1 Problems

1. List three examples of control systems not mentioned in class. Make your list as diverse as
possible.

2. Go to

http://www.modelaviation.co.uk/heli/models/hoverfly/hoverfly.htm

Imagine yourself flying the model helicopter shown. Draw the block diagram with you in the
loop.

3. Imagine a wooden box of cube shape that can balance itself on one of its edges; while it’s
balanced on the edge, if you tapped it lightly it would right itself. Think of a mechatronic
system to put inside the box to do this stabilization. Draw a schematic diagram of your
mechatronic system.

4. Historically, control systems go back at least to ancient Greek times. More recently, in 1769
a feedback control system was invented by James Watt: the flyball governor for speed control
of a steam engine. Sketch the flyball governor and explain in a few sentences how it works.
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2 CHAPTER 1. INTRODUCTION

[References: Many books on control; also, many interesting websites, for example,

http://www.uh.edu/engines/powersir.htm

Stability of this control system was studied by James Clerk Maxwell, whose equations you
know and love.]

5. The topic of vehicle formation is of current research interest. See for example

http://www.path.berkeley.edu

This is a very simple instance of such a problem.

Consider two cars that can move in a horizontal straight line. Let car #1 be the leader and car
#2 the follower. The goal is for car #1 to follow a reference speed and for car #2 to maintain
a specified distance behind. Discuss how this might be done. (We’ll study this example more
later.)



Chapter 2

Mathematical Models of Systems

The best (only?) way to learn this subject is bottom up—from specific examples to general theory.
So we begin with mathematical models of physical systems. We mostly use mechanical examples
since their behaviour is easier to understand than, say, electromagnetic systems, because of our
experience in the natural world. We have an intuitive understanding of Newtonian mechanics from
having played volleyball, skateboarded, etc.

2.1 Block Diagrams

Block diagrams are fundamental in control analysis and design. We can see how signals affect each
other.

Example 2.1.1 The simplest vehicle to control is a cart on wheels:

Brief Article

The Author

December 7, 2007

y

u

1

This is a schematic diagram, not a block diagram. Assume the cart can move only in a straight
line on a flat surface. (There may be air resistance to the motion and other friction effects.) Assume
a force u is applied to the cart and let y denote the position of the cart measured from a stationary
reference position. Then u and y are functions of time t and we could indicate this by u(t) and y(t).
But we are careful to distinguish between u, a function, and the value u(t) of this function at time
t. We regard the functions u and y as signals.

Newton’s second law tells us that there’s a mathematical relationship between u and y, namely,
u = Mÿ. We take the viewpoint that the force can be applied independently of anything else, that
is, it’s an input. Then y is an output. We represent this graphically by a block diagram:

3



4 CHAPTER 2. MATHEMATICAL MODELS OF SYSTEMS

Brief Article

The Author

December 7, 2007

u y

1

So a block diagram has arrows representing signals and boxes representing system components; the
boxes represent functions that map inputs to outputs. Suppose the cart starts at rest at the origin
at time 0, i.e., y(0) = ẏ(0) = 0. Then the position depends only on the force applied. However y at
time t depends on u not just at time t, but on past times as well. So we can write y = F (u), i.e., y
is a function of u, but we can’t write y(t) = F (u(t)). 2

Block diagrams also may have summing junctions:

Brief Article

The Author

December 7, 2007

u
stands for y = u + v

stands for y = u − v

v

u

v

y

y

-

1

Also, we may need to allow a block to have more than one input:

Brief Article

The Author

December 7, 2007

u

v

y

1

This means that y is a function of u and v, y = F (u, v).

Example 2.1.2

Brief Article

The Author

December 7, 2007

on a fulcrum

d

θ

τ

flat board

can of soup free to
roll on board

1

Suppose a torque τ is applied to the board. Let θ denote the angle of tilt and d the distance of roll.
Then both θ and d are functions of τ . The block diagram could be
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Brief Article

The Author

December 7, 2007

τ

θ

d

1

or

Brief Article

The Author

December 7, 2007

τ

θ

d

1

2.2 State Models

In control engineering, the system to be controlled is termed the plant. For example, in helicopter
flight control, the plant is the helicopter itself plus its sensors and actuators. The control system is
implemented in an onboard computer. The design of a flight control system for a helicopter requires
first the development of a mathematical model of the helicopter dynamics. This is a very advanced
subject, well beyond the scope of this course. We must content ourselves with much simpler plants.

Example 2.2.1 Consider a cart on wheels, driven by a force F and subject to air resistance:

Brief Article

The Author

December 7, 2007

M

y

F

1

Typically air resistance creates a force depending on the velocity ẏ; let’s say this force is a possibly
nonlinear function D(ẏ). Assuming M is constant, Newton’s second law gives

Mÿ = F −D(ẏ).

We are going to put this in a standard form. Define what are called state variables:

x1 := y, x2 := ẏ.
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Then

ẋ1 = x2

ẋ2 =
1
M
F − 1

M
D(x2)

y = x1.

These equations have the form

ẋ = f(x, u), y = h(x) (2.1)

where

x :=
[
x1

x2

]
, u := F

f : R2 × R→ R2, f(x1, x2, u) =

 x2

1
M u−

1
MD(x2)


h : R2 → R, h(x1, x2) = x1.

The function f is nonlinear if D is; h is linear. Equation (2.1) constitutes a state model of the
system, and x is called the state or state vector. The block diagram is

Brief Article

The Author

December 7, 2007

u y
P

(x)

1

Here P is a possibly nonlinear system, u (applied force) is the input, y (cart position) is the output,
and

x =
[

cart pos’n
cart velocity

]
is the state of P . (We’ll define state later.)

As a special case, suppose the air resistance is a linear function of velocity:

D(x2) = D0x2, D0 a constant.

Then f is linear:

f(x, u) = Ax+Bu, A :=
[

0 1
0 −D0/M

]
, B :=

[
0

1/M

]
.

Defining C =
[

0 1
]
, we get the state model

ẋ = Ax+Bu, y = Cx. (2.2)

This model is of a linear, time-invariant (LTI) system. 2
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It is convenient to write vectors sometimes as column vectors and sometimes as n-tuples, i.e.,
ordered lists. For example

x :=
[
x1

x2

]
, x = (x1, x2).

We shall use both.
Generalizing the example, we can say that an important class of models is

ẋ = f(x, u), f : Rn × Rm → Rn

y = h(x, u), h : Rn × Rm → Rp.

This model is nonlinear, time-invariant. The input u has dimension m, the output y dimension p,
and the state x dimension n. An example where m = 2, p = 2, n = 4 is

Brief Article

The Author

December 7, 2007

y1 y2

u1

M1

u2

M2

K

1

u = (u1, u2), y = (y1, y2), x = (y1, ẏ1, y2, ẏ2).

The LTI special case is

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×m

y = Cx+Du, C ∈ Rp×n, D ∈ Rp×m.

Now we turn to the concept of the state of a system. Roughly speaking, x(t0) encapsulates
all the system dynamics up to time t0, that is, no additional prior information is required. More
precisely, the concept is this: For any t0 and t1, with t0 < t1, knowing x(t0) and knowing {u(t) :
t0 ≤ t ≤ t1}, we can compute x(t1), and hence y(t1).

Example 2.2.2

Brief Article

The Author

December 7, 2007

y

M no force; no air resistance

1
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If we were to try simply x = y, then knowing x(t0) without ẏ(t0), we could not solve the initial value
problem for the future cart position. Similarly x = ẏ won’t work. Since the equation of motion,
Mÿ = 0, is second order, we need two initial conditions at t = t0, implying we need a 2-dimensional
state vector. In general for mechanical systems it is customary to take x to consist of positions and
velocities of all masses. 2

Example 2.2.3 mass-spring-damper

Brief Article

The Author

December 7, 2007

u

free-body :

Mg

y

M

K(y − y0) D0ẏ

u

D0K

1

Mÿ = u+Mg −K(y − y0)−D0ẏ

state x = (x1, x2), x1 = y, x2 = ẏ

ẋ1 = x2

ẋ2 =
1
M
u+ g − K

M
x1 +

K

M
y0 −

D0

M
x2

y = x1

This has the form

ẋ = Ax+Bu+ c

y = Cx

where

A =
[

0 1
−K
M −D0

M

]
, B =

[
0
1
M

]
, c =

[
0

g + K
M y0

]
= const. vector

C = [1 0] .

The constant vector c is known, and hence is taken as part of the system rather than
as a signal. 2

Example 2.2.4 Active suspension
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This example concerns active suspension of a vehicle for passenger comfort.

Brief Article

The Author

December 7, 2007

D0

vehicle motion

M1

M2 x1

M1 = mass of chassis & passengers

M2 = mass of wheel carriage

K1

x2

u

road
surface

r

K2

u

1

To derive the equations of motion, bring in free body diagrams:

Brief Article

The Author

December 7, 2007

M1

M2

M2ẍ2 = K1(x1 − x2 − x10) + D0(ẋ1 − ẋ2)

−u − M2g − K2(x2 − r − x20)

K2(x2 − r − x20)

M1ẍ1 = u − K1(x1 − x2 − x10) − M1g − D0(ẋ1 − ẋ2)

u
K1(x1 − x2 − x10)

M1g u
D0(ẋ1 − ẋ2)

D0(ẋ1 − ẋ2)

M2g

K1(x1 − x2 − x10)

1

Define x3 = ẋ1, x4 = ẋ2. Then the equations can be assembled as

ẋ = Ax+B1u+B2r + c1 (2.3)
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where

x =


x1

x2

x3

x4

 , c1 =


0
0

K1
M1
x10 − g

−K1
M2
x20 − g + K2

M2
x20

 = constant vector

A =



0 0 1 0

0 0 0 1

−K1
M1

K1
M1

−D0
M1

D0
M1

K1
M2

−K1+K2
M2

D0
M2

−D0
M2


, B1 =



0

0

1
M1

− 1
M2


, B2 =



0

0

0

K2
M2


.

We can regard (2.3) as corresponding to the block diagram

Brief Article

The Author

December 7, 2007

r(t)

u(t) x(t)
P

1

Since c1 is a known constant vector, it’s not taken to be a signal. Here u(t) is the controlled input
and r(t) the uncontrolled input or disturbance.

The output to be controlled might be acceleration or jerk of the chassis. Taking y = ẍ1 = ẋ3

gives

y = Cx+Du+ c2 (2.4)

where

C =
[
−K1
M1

K1
M1

−D0
M1

D0
M1

]
, D =

1
M1

, c2 =
K1

M1
x10 − g.

Equations (2.3) and (2.4) have the form

ẋ = f(x, u, r)

y = h(x, u).

Notice that f and h are not linear, because of the constants c1, c2. 2

Example 2.2.5 Cart-pendulum
A favourite toy control problem is to get a cart to automatically balance a pendulum.
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Brief Article

The Author

December 7, 2007

M1

u

M2

x1

L

θ

1

x = (x1, x2, x3, x4) = (x1, θ, ẋ1, θ̇)

Again, we bring in free body diagrams:

Brief Article

The Author

December 7, 2007

M2g

F1

x1 + L sin θ

L − L cos θ

1

M2
d2

dt2
(x1 + L sin θ) = F1 sin θ

M2
d2

dt2
(L− L cos θ) = M2g − F1 cos θ

M1ẍ1 = u− F1 sin θ.

These are three equations in the four signals x1, θ, u, F1. Use

d2

dt2
sin θ = θ̈ cos θ − θ̇2 sin θ,

d2

dt2
cos θ = −θ̈ sin θ − θ̇2 cos θ

to get

M2ẍ1 +M2Lθ̈ cos θ −M2Lθ̇
2 sin θ = F1 sin θ
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M2Lθ̈ sin θ +M2Lθ̇
2 cos θ = M2g − F1 cos θ

M1ẍ1 = u− F1 sin θ.

We can eliminate F1: Add the first and the third to get

(M1 +M2)ẍ1 +M2Lθ̈ cos θ −M2Lθ̇
2 sin θ = u;

multiply the first by cos θ, the second by sin θ, add, and cancel M2 to get

ẍ1 cos θ + Lθ̈ − g sin θ = 0.

Solve the latter two equations for ẍ1 and θ̈:[
M1 +M2 M2L cos θ

cos θ L

] [
ẍ1

θ̈

]
=
[
u+M2Lθ̇

2 sin θ
g sin θ

]
.

Thus

ẍ1 =
u+M2Lθ̇

2 sin θ −M2g sin θ cos θ
M1 +M2 sin2 θ

θ̈ =
−u cos θ −M2Lθ̇

2 sin θ cos θ + (M1 +M2)g sin θ
L(M1 +M2 sin2 θ)

.

In terms of state variables we have

ẋ1 = x3

ẋ2 = x4

ẋ3 =
u+M2Lx

2
4 sinx2 −M2g sinx2 cosx2

M1 +M2 sin2 x2

ẋ4 =
−u cosx2 −M2Lx

2
4 sinx2 cosx2 + (M1 +M2)g sinx2

L(M1 +M2 sin2 x2)
.

Again, these have the form

ẋ = f(x, u).

We might take the output to be

y =
[
x1

θ

]
=
[
x1

x2

]
= h(x).

The system is highly nonlinear, though, as you would expect, it can be approximated by a linear
system for |θ| small enough, say < 5◦. 2

Example 2.2.6 Level control
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Brief Article

The Author

December 17, 2007

d

u

valve

x

d = flow rate in, taken to be a disturbance

u = stroke of valve

x = height of liquid in tank

1

Let A = cross-sectional area of tank, assumed constant. Then conservation of mass:

Aẋ = d− (flow rate out).

Also

(flow rate out) = (const)×
√

∆p× (area of valve opening)

where

∆p = pressure drop across valve
= (const)× x.

Thus

(flow rate out) = c
√
x u

and hence

Aẋ = d− c
√
x u.

The state equation is therefore

ẋ = f(x, u, d) =
1
A
d− c

A

√
x u.

2

It is worth noting that not all systems have state models of the form

ẋ = f(x, u), y = h(x, u).

Examples:

1. Differentiator y = u̇

2. Time delay y(t) = u(t− 1)
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3. Time-varying system

Brief Article

The Author

December 17, 2007

M(t) M a function of time (e.g. burning fuel)
u

1

4. PDE model, e.g. vibrating violin string with input the bow force.

Finally, let us see how to get a state model for an electric circuit.

Example 2.2.7

An RLC circuit.

Brief Article

The Author

December 17, 2007

+ CR L

u
−

1

There are two energy storage elements (L,C). It is natural to take the state variables to be voltage
drop across C and current through L:

Brief Article

The Author

December 17, 2007

+

u

−

x1

x2

+ −

1

Then KVL gives

−u+Rx2 + x1 + Lẋ2 = 0

and the capacitor equation is

x2 = Cẋ1.

Thus

ẋ = Ax+Bu

A =
[

0 1
C

− 1
L −R

L

]
, B =

[
0
1
L

]
.

2
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2.3 Linearization

So far we have seen that many systems can be modeled by nonlinear state equations of the form

ẋ = f(x, u), y = h(x, u).

(There might be disturbance inputs present, but for now we suppose they are lumped into u.) There
are techniques for controlling nonlinear systems, but that’s an advanced subject. However, many
systems can be linearized about an equilibrium point. In this section we see how to do this. The
idea is to use Taylor series.

Example 2.3.1

Let’s linearize the function y = f(x) = x3 about the point x0 = 1. The Taylor series expansion is

f(x) =
∞∑
0

cn(x− x0)n, cn =
f (n)(x0)

n!

= f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 + ... .

Taking only terms n = 0, 1 gives

f(x) ≈ f(x0) + f ′(x0)(x− x0),

that is

y − y0 ≈ f ′(x0)(x− x0).

Defining ∆y = y− y0, ∆x = x− x0, we have the linearized function ∆y = f ′(x0)∆x, or ∆y = 3∆x
in this case.

Brief Article

The Author

December 17, 2007

11

1

x

y

slope = 3

∆x

∆y

3

1

Obviously, this approximation gets better and better as |∆x| gets smaller and smaller. 2

Taylor series extend to functions f : Rn → Rm.

Example 2.3.2
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f : R3 → R2, f(x1, x2, x3) = (x1x2 − 1, x2
3 − 2x1x3)

Suppose we want to linearize f at the point x0 = (1,−1, 2). Terms n = 0, 1 in the expansion are

f(x) ≈ f(x0) +
∂f

∂x
(x0)(x− x0),

where

∂f

∂x
(x0) = Jacobian of f at x0

=
(
∂fi
∂xj

(x0)
)

=
[

x2 x1 0
−2x3 0 2x3 − 2x1

]∣∣∣∣
x0

=
[
−1 1 0
−4 0 2

]
.

Thus the linearization of y = f(x) at x0 is ∆y = A∆x, where

A =
∂f

∂x
(x0) =

[
−1 1 0
−4 0 2

]
∆y = y − y0 = f(x)− f(x0)
∆x = x− x0.

2

By direct extension, if f : Rn × Rm → Rn, then

f(x, u) ≈ f(x0, u0) +
∂f

∂x
(x0, u0)∆x+

∂f

∂u
(x0, u0)∆u.

Now we turn to linearizing the differential equation

ẋ = f(x, u).

First, assume there is an equilibrium point, that is, a constant solution x(t) ≡ x0, u(t) ≡ u0. This
is equivalent to saying that 0 = f(x0, u0). Now consider a nearby solution:

x(t) = x0 + ∆x(t), u(t) = u0 + ∆u(t), ∆x(t),∆u(t) small.

We have

ẋ(t) = f [x(t), u(t)]
= f(x0, u0) +A∆x(t) +B∆u(t) + higher order terms

where

A :=
∂f

∂x
(x0, u0), B :=

∂f

∂u
(x0, u0).
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Since ẋ = ∆ẋ and f(x0, u0) = 0, we have the linearized equation to be

∆̇x = A∆x+B∆u.

Similarly, the output equation y = h(x, u) linearizes to

∆y = C∆x+D∆u,

where

C =
∂h

∂x
(x0, u0), D =

∂h

∂u
(x0, u0).

Summary

Linearizing ẋ = f(x, u), y = h(x, u): Select, if one exists, an equilibrium point. Compute the four
Jacobians, A,B,C,D, of f and h at the equilibrium point. Then the linearized system is

∆̇x = A∆x+B∆u, ∆y = C∆x+D∆u.

Under mild conditions (sufficient smoothness of f and h), this linearized system is a valid approxi-
mation of the nonlinear one in a sufficiently small neighbourhood of the equilibrium point.

Example 2.3.3

ẋ = f(x, u) = x+ u+ 1
y = h(x, u) = x

An equilibrium point is composed of constants x0, u0 such that

x0 + u0 + 1 = 0.

So either x0 or u0 must be specified, that is, the analyst must select where the linearization is to
be done. Let’s say x0 = 0. Then u0 = −1 and

A = 1, B = 1, C = 1, D = 0.

Actually, here A,B,C,D are independent of x0, u0, that is, we get the same linear system at every
equilibrium point. 2

Example 2.3.4 Cart-pendulum

See f(x, u) in Example 2.2.5. An equilibrium point

x0 = (x10, x20, x30, x40), u0

satisfies f(x0, u0) = 0, i.e.,

x30 = 0

x40 = 0

u0 +M2Lx
2
40 sinx20 −M2g sinx20 cosx20 = 0
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−u0 cosx20 −M2Lx
2
40 sinx20 cosx20 + (M1 +M2)g sinx20 = 0.

Multiply the third equation by cosx20 and add to the fourth: We get in sequence

−M2g sinx20 cos2 x20 + (M1 +M2)g sinx20 = 0

(sinx20)(M1 +M2 sin2 x20) = 0

sinx20 = 0

x20 = 0 or π.

Thus the equilibrium points are described by

x0 = (arbitrary, 0 or π, 0, 0), u0 = 0.

We have to choose x20 = 0 (pendulum up) or x20 = π (pendulum down). Let’s take x20 = 0. Then
the Jacobians compute to

A =



0 0 1 0

0 0 0 1

0 −M2
M1
g 0 0

0 M1+M2
M1

g
L 0 0


, B =


0

0
1
M1

− 1
LM1

 .

The above provides a general method of linearizing. In this particular example, there’s a faster
way, which is to approximate sin θ = θ, cos θ = 1 in the original equations:

M2
d2

dt2
(x1 + Lθ) = F1θ

0 = M2g − F1

M1ẍ1 = u− F1θ.

These equations are already linear and lead to the above A and B. 2

2.4 Simulation

Concerning the model

ẋ = f(x, u), y = h(x, u),

simulation involves numerically computing x(t) and y(t) given an initial state x(0) and an input
u(t). If the model is nonlinear, simulation requires an ODE solver, based on, for example, the
Runge-Kutta method. Scilab and MATLAB have ODE solvers and also very nice simulation GUIs,
Scicos and SIMULINK, respectively.
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2.5 The Laplace Transform

You already had a treatment of Laplace transforms, for example, in a differential equations or circuit
theory course. Nevertheless, we give a brief review here.

Let f(t) be a real-valued function defined for t ≥ 0. Its Laplace transform (LT) is

F (s) =

∞∫
0

f(t)e−stdt.

Here s is a complex variable. Normally, the integral converges for some values of s and not for
others. That is, there is a region of convergence (ROC). It turns out that the ROC is always an
open right half-plane, of the form {s : Re s > a}. Then F (s) is a complex-valued function of s.

Example 2.5.1 the unit step or unit constant

f(t) =
{

1 , t ≥ 0
0 , t < 0

F (s) =

∞∫
0

e−stdt = −e−st

s

∣∣∣∣∞
0

=
1
s

ROC : Re s > 0

The same F (s) is obtained if f(t) = 1 for all t, even t < 0. This is because the LT is oblivious to
negative time. Notice that F (s) has a pole at s = 0 on the western boundary of the ROC. 2

Example 2.5.2

f(t) = eat, F (s) =
1

s− a
, ROC : Re s > a

2

Example 2.5.3 sinusoid

f(t) = coswt =
1
2
(
ejwt + e−jwt

)
F (s) =

s

s2 + w2
, ROC : Re s > 0

2

It is a theorem that f(t) has a LT provided

1. it is piecewise continuous on t ≥ 0

2. it is of exponential order, meaning there exist constants M, c such that |f(t)| ≤ Mect for all
t ≥ 0.

The LT thus maps a class of time-domain functions f(t) into a class of complex-valued functions
F (s). The mapping f(t) 7→ F (s) is linear.
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Example 2.5.4

Brief Article

The Author

December 17, 2007

f(t)
1

1

Thus f = f1 +f2, where f1 is the unit ramp starting at time 0 and f2 the ramp of slope −1 starting
at time 1. By linearity, F (s) = F1(s) + Fs(s). We compute that

F1(s) =
1
s2
, Re s > 0

F2(s) = −e−s

s2
, Re s > 0.

Thus

F (s) =
1− e−s

s2
, Re s > 0.

2

There are tables of LTs. So in practice, if you have F (s), you can get f(t) using a table.

Example 2.5.5

Given F (s) =
3s+ 17
s2 − 4

, find f(t).

Sol’n

F (s) =
c1

s− 2
+

c2

s+ 2
, c1 =

23
4
, c2 = −11

4

⇒ f(t) = c1e2t + c2e−2t

2

An important use of the LT is in solving initial value problems involving linear, constant-
coefficient differential equations. For this it is useful to note that if

f(t)↔ F (s)

and f is continuously differentiable at t = 0, then

ḟ(t)↔ sF (s)− f(0).

Proof The LT of ḟ(t) is
∞∫

0

e−stḟ(t)dt = e−stf(t)
∣∣∞
0

+ s

∞∫
0

e−stf(t)dt

= −f(0) + sF (s).
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2

Likewise

f̈(t)←→ s2F (s)− sf(0)− ḟ(0).

Example 2.5.6

Solve

ÿ + 4ẏ + 3y = et, y(0) = 0, ẏ(0) = 2.

Sol’n We assume y(t) is sufficiently smooth. Then

s2Y (s)− 2 + 4sY (s) + 3Y (s) =
1

s− 1
.

So

Y (s) =
2s− 1

(s− 1)(s+ 1)(s+ 3)

=
1
8

1
s− 1

+
3
4

1
s+ 1

− 7
8

1
s+ 3

y(t) =
1
8

et +
3
4

e−t − 7
8

e−3t

2

The LT of the product f(t)g(t) of two functions is not equal to F (s)G(s), the product of the
two transforms. Then what operation in the time domain does correspond to multiplication of the
transforms? The answer is convolution. Let f(t), g(t) be defined on t ≥ 0. Define a new function

h(t) =

t∫
0

f(t− τ)g(τ)dτ, t ≥ 0.

We say h is the convolution of f and g. Note that another equivalent way of writing h is

h(t) =

t∫
0

f(τ)g(t− τ)dτ.

We also frequently use the star notation h = f ∗ g. To include t in this notation, strictly speaking
we should write h(t) = (f ∗ g)(t). However, it is useful sometimes (and common) to write h(t) =
f(t) ∗ g(t).

Theorem 2.5.1 The LT of f ∗ g is F (s)G(s).
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Proof Let h := f ∗ g. Then

H(s) =

∞∫
0

h(t)e−stdt

=

∞∫
0

t∫
0

f(t− τ)g(τ)e−stdτdt

=

∞∫
0

∞∫
τ

f(t− τ)g(τ)e−stdtdτ

=

∞∫
0

 ∞∫
τ

f(t− τ)e−stdt


︸ ︷︷ ︸

(r=t−τ)

g(τ)dτ

∞∫
0

f(r)e−srdre−sτ

= F (s)G(s).

2

Example 2.5.7

Consider

Mÿ +Ky = u

and suppose y(0) = ẏ(0) = 0. Then

Ms2Y (s) +KY (s) = U(s),

So

Y (s) = G(s)U(s),

where

G(s) =
1

Ms2 +K
.

This function, G(s), is called the transfer function of the system with input u and output y. The
time-domain relationship is y = g ∗ u, where g(t) is the inverse LT (ILT) of G(s). Specifically,

G(s) =
1

Ms2 +K
←→ g(t) =

1√
MK

sin

√
K

M
t (t ≥ 0).

2
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Now we pause to discuss the problematical object, the impulse δ(t). Let us first admit that it
is not a function R −→ R, because its “value” at t = 0 is not a real number. Yet the impulse is so
useful in applications that we have to make it legitimate. Actually, mathematicians have worked
out a very nice, consistent way of dealing with the impulse. We shall borrow the main idea: δ(t) is
not a function, but rather it is a way of defining the mapping f 7→ f(0) that maps a signal to its
value at t = 0. This mapping is usually written like this:∫

f(t)δ(t)dt = f(0).

That is, we pretend δ is a function that has this so-called sifting property. In particular, if we let
f(t) = e−st, we get that the LT of δ is 1. Needless to say, we have to be careful with δ; for example,
there’s no way to make sense of δ2. As long as δ is used in the sifting formula, we’re on safe ground.

The formula y = g∗u is the time-domain relationship between u and y that is valid for any u. In
particular, if u(t) = δ(t), the unit impulse, then y(t) = g(t), so Y (s) = G(s). Thus we see the true
meaning of g(t): It’s the output when the input is the unit impulse and all the initial conditions
are zero. We call g(t) the impulse-response function, or the impulse response.

Example 2.5.8

Consider an RC lowpass filter with transfer function

G(s) =
1

RCs+ 1
.

The impulse response function is

g(t) =
1

RC
e−

t
RC (t ≥ 0).

Now the highpass filter:

G(s) =
RCs

RCs+ 1
= 1− 1

RCs+ 1

g(t) = δ(t)− 1
RC

e−t/RC (t ≥ 0).

2

Inversion

As was mentioned before, in practice to go from F (s) to f(t) one uses a LT table. However, for a
deeper understanding of the theory, one should know that there is a mathematical form of the ILT.
Let

f(t)←→ F (s)

be a LT pair and let Re s > a be the ROC. Let σ be any real number > a. Then the vertical line

{s : Re s = σ}
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is in the ROC. The ILT formula is this:

f(t) =
1

2πj

σ+j∞∫
σ−j∞

estF (s)ds.

Note that the integral is a line integral up the vertical line just mentioned.
This suggests a lovely application of Cauchy’s residue theorem. Suppose F (s) has the form

F (s) =
polynomial of degree < n

polynomial of degree = n
.

For example

F (s) =
1

Ms2 +K
, n = 2

F (s) =
1

RCs+ 1
, n = 1

but not

F (s) =
RCs

RCs+ 1
.

Then it can be proved that the integral up the vertical line equals the limit of the contour integral

1
2πj

∮
Γ

estF (s)ds,

where Γ is the semicircle

Brief Article

The Author

December 17, 2007

Γ

σ

1

and where the limit is taken as the radius of the semicircle tends to ∞. In the limit, Γ encircles all
the poles of estF (s). Hence by the residue theorem

f(t) = Σ residues of estF (s) at all poles.
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Let us review residues.

Example

F (s) =
1

s+ 1

This function has a pole at s = −1. At all other points it’s perfectly well defined. For example,
near s = 0 it has a Taylor series expansion:

F (s) = F (0) + F ′(0)s+
1
2
F ′′(0)s2 + · · · =

∞∑
k=0

1
k!
F (k)(0)sk.

Near s = 1 it has a different Taylor series expansion:

F (s) = F (1) + F ′(1)(s− 1) +
1
2
F ′′(1)(s− 1)2 + · · · =

∞∑
k=0

1
k!
F (k)(1)(s− 1)k.

And so on. Only at s = −1 does it not have a Taylor series. Instead, it has a Laurent series
expansion, where we have to take negative indices:

F (s) =
∞∑

k=−∞
ck(s+ 1)k.

In fact, equating

1
s+ 1

=
∞∑

k=−∞
ck(s+ 1)k

and matching coefficients, we see that ck = 0 for all k except c−1 = 1. The coefficient c−1 is called
the residue of F (s) at the pole s = −1. 2

Example

F (s) =
1

s(s+ 1)

This has a pole at s = 0 and another at s = −1. At all points except these two, F (s) has a Taylor
series. The Laurent series at s = 0 has the form

F (s) =
∞∑

k=−∞
cks

k.

To determine these coefficients, first do a partial-fraction expansion:

F (s) =
1

s(s+ 1)
=

1
s
− 1
s+ 1

.

Then do a Taylor series expansion at s = 0 of the second term:

F (s) =
1
s
− 1 + s+ · · · .
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Thus the residue of F (s) at s = 0 is c−1 := 1. Similarly, to get the residue at the pole s = −1, start
with

F (s) =
1
s
− 1
s+ 1

but now do a Taylor series expansion at s = −1 of the first term:

F (s) = − 1
s+ 1

− 1− (s+ 1)− (s+ 1)2 − · · · .

Thus the residue of F (s) at s = −1 is c−1 := −1. 2

More generally, if p is a simple pole of F (s), then the residue equals

lim
s→p

(s− p)F (s).

Example

F (s) =
1

s2(s+ 1)

This has a pole at s = 0 of multiplicity 2 and a simple pole at s = −1. Partial-fraction expansion
looks like

F (s) =
1

s2(s+ 1)
=
A

s2
+
B

s
+

C

s+ 1
.

We can get A and C by the usual coverup method, e.g.,

A = s2F (s)
∣∣
s=0

= 1.

The formula for B is

B =
d

ds

(
s2F (s)

)∣∣∣∣
s=0

= −1.

Thus for this function, the residue at the pole s = 0 is B = −1. 2

Back to the ILT via residues:

f(t) =
∑

residues of F (s)est at all its poles, t ≥ 0.

Example: F (s) = 1
s(s−1) has two poles and est has none; thus for t ≥ 0

f(t) = Ress=0
1

s(s− 1)
est + Ress=1

1
s(s− 1)

est = −1 + et.
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2.6 Transfer Functions

Linear time-invariant (LTI) systems, and only LTI systems, have transfer functions.

Example 2.6.1 RC filter

Brief Article

The Author

December 17, 2007

u

+

−

C

R

+

−

yi

1

Circuit equations:

−u+Ri+ y = 0, i = C
dy

dt

⇒ RCẏ + y = u

Apply Laplace transforms with zero initial conditions:

RCY (s) + Y (s) = U(s)

⇒ Y (s)
U(s)

=
1

RCs+ 1
=: transfer function.

Or, by voltage-divider rule using impedances:

Y (s)
U(s)

=
1
Cs

R+ 1
Cs

=
1

RCs+ 1
.

This transfer function is rational, a ratio of polynomials. 2

Example 2.6.2 mass-spring-damper

Mÿ = u−Ky −Dẏ

⇒ Y (s)
U(s)

=
1

Ms2 +Ds+K

This transfer function also is rational. 2

Let’s look at some other transfer functions:
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G(s) = 1, a pure gain

G(s) =
1
s

, integrator

G(s) = 1
s2

, double integrator

G(s) = s, differentiator

G(s) = e−τs(τ > 0), time delay; not rational

G(s) =
w2
n

s2 + 2ζwns+ w2
n

(wn > 0, ζ ≥ 0), standard 2nd - order system

G(s) = K1 +
K2

s
+K3s, proportional-integral-derivative (PID) controller

We say a transfer function G(s) is proper if the degree of the denominator ≥ that of the

numerator. The transfer functions G(s) = 1,
1

s+ 1
are proper, G(s) = s is not. We say G(s) is

strictly proper if the degree of the denominator > that of the numerator. Note that if G(s) is
proper then lim|s|→∞G(s) exists; if strictly proper then lim|s|→∞G(s) = 0. These concepts extend
to multi-input, multi-output systems, where the transfer function is a matrix.

Let’s see what the transfer function is of an LTI state model:

ẋ = Ax+Bu, y = Cx+Du

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s)

⇒ X(s) = (sI −A)−1BU(s)

Y (s) = [C(sI −A)−1B +D]U(s).

We conclude that the transfer function from u to x is (sI −A)−1B and from u to y is

C(sI −A)−1B +D.

Example 2.6.3

Two carts, one spring:

A =


0 0 1 0
0 0 0 1
−1 1 0 0

1 −1 0 0

 , B =


0 0
0 0
1 0
0 1


C =

[
1 0 0 0
0 1 0 0

]
, D =

[
0 0
0 0

]

C(sI −A)−1B +D =


s2 + 1

s2(s2 + 2)
1

s2(s2 + 2)
1

s2(s2 + 2)
s2 + 1

s2(s2 + 2)

 .
2

Let us recap our procedure for getting the transfer function of a system:
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1. Apply the laws of physics etc. to get differential equations governing the behaviour of the
system. Put these equations in state form. In general these are nonlinear.

2. Linearize about an equilibrium point.

3. Take Laplace transforms with zero initial state.

The transfer function from input to output satisfies

Y (s) = G(s)U(s).

In general G(s) is a matrix: If dim u = m and dim y = p (m inputs, p outputs), then G(s) is p×m.
In the SISO case, G(s) is a scalar-valued transfer function.

There is a converse problem: Given a transfer function, find a corresponding state model. That
is, given G(s), find A,B,C,D such that

G(s) = C(sI −A)−1B +D.

The state matrices are never unique: Each G(s) has an infinite number of state models. But it is a
fact that every proper, rational G(s) has a state realization. Let’s see how to do this in the SISO
case, where G(s) is 1× 1.

Example 2.6.4 G(s) =
1

2s2 − s+ 3

The corresponding differential equation model is

2ÿ − ẏ + 3y = u.

Taking x1 = y, x2 = ẏ, we get

ẋ1 = x2

ẋ2 =
1
2
x2 −

3
2
x1 +

1
2
u

y = x1

and thus

A =
[

0 1
−3/2 1/2

]
, B =

[
0

1/2

]
C =

[
1 0

]
, D = 0.

This technique extends to

G(s) =
1

poly of degree n
.

2

Example 2.6.5

G(s) =
s− 2

2s2 − s+ 3
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Introduce an auxiliary signal V (s):

Y (s) = (s− 2)
1

2s2 − s+ 3
U(s)︸ ︷︷ ︸

=:V (s)

Then

2v̈ − v̇ + 3v = u

y = v̇ − 2v.

Defining

x1 = v, x2 = v̇,

we get

ẋ1 = x2

ẋ2 =
1
2
x2 −

3
2
x1 +

1
2
u

y = x2 − 2x1

and so

A =
[

0 1
−3/2 1/2

]
, B =

[
0
1

]
C =

[
−2 1

]
, D = 0.

This extends to any strictly proper rational function. 2

Finally, if G(s) is proper but not strictly proper (deg num = deg denom), then we can write

G(s) = c+G1(s),

c = constant, G1(s) strictly proper. In this case we get A,B,C to realize G1(s), and D = c.

2.7 Interconnections

Frequently, a system is made up of components connected together in some topology. This raises
the question, if we have state models for components, how can we assemble them into a state model
for the overall system?

Example 2.7.1 series connection

A1 B1

C1 D1

A2 B2

C2 D2

u y1 y
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This diagram stands for the equations

ẋ1 = A1x1 +B1u

y1 = C1x1 +D1u

ẋ2 = A2x2 +B2y1

y = C2x2 +D2y1.

Let us take the overall state to be

x =
[
x1

x2

]
.

Then

ẋ = Ax+Bu, y = Cx+Du,

where

A =
[

A1 0
B2C1 A2

]
, B =

[
B1

B2D1

]
C =

[
D2C1 C2

]
, D = D2D1.

2

Parallel connection

A1 B1

C1 D1

A2 B2

C2 D2

u

y1

y

y2

is very similar and is left for you.

Example 2.7.2 feedback connection

A1 B1

C1 D1

A2 B2

C2 D2

u y

−

r e

ẋ1 = A1x1 +B1e = A1x1 +B1(r − C2x2)
ẋ2 = A2x2 +B2u = A2x2 +B2(C1x1 +D1(r − C2x2))
y = C2x2
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Taking

x =
[
x1

x2

]
we get

ẋ = Ax+Br, y = Cx

where

A =
[

A1 −B1C2

B2C1 A2 −B2D1C2

]
, B =

[
B1

B2D1

]
C =

[
0 C2

]
.

2

2.8 Problems

1. Consider the following system with two carts and a dashpot:

M1 M2

x1 x2

D

(Recall that a dashpot is like a spring except the force is proportional to the derivative of
the change in length; D is the proportionality constant.) The input is the force u and the
positions of the carts are x1, x2. The other state variables are x3 = ẋ1, x4 = ẋ2. Take M1 = 1,
M2 = 1/2, D = 1. Derive the matrices A,B in the state model ẋ = Ax+Bu,

2. This problem concerns a beam balanced on a fulcrum. The angle of tilt of the beam is denoted
α(t); a torque, denoted τ(t), is applied to the beam; finally, a ball rolls on the beam at distance
d(t) from the fulcrum.

Introduce the parameters

J moment of inertia of the beam
Jb moment of inertia of the ball
R radius of the ball
M mass of the ball.

The equations of motion are given to you as(
Jb
R2

+M

)
d̈+Mg sinα−Mdα̇2 = 0

(Md2 + J + Jb)α̈+ 2Mdḋα̇+Mgd cosα = τ.

Put this into the form of a nonlinear state model with input τ .
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3. Continue with the same ball-and-beam problem. Find all equilibrium points. Linearize the
state equation about the equilibrium point where α = d = 0.

4. Let A be an n× n real matrix and b ∈ Rn. Define the function

f(x) = xTAx+ bTx f : Rn −→ R,

where T denotes transpose. Linearize the equation y = f(x) at the point x0.

5. Linearize the water-tank example.

6. Consider the following feedback control system:

tan−1- j - -- - -

6

u e v x1 x2

−

The nonlinearity is the saturating function v = tan−1(e), and the two blank blocks are inte-
grators modeled by

ẋ1 = v, ẋ2 = x1.

Taking these state variables, derive the nonlinear state equation

ẋ = f(x, u).

Linearize the system about the equilibrium point where u = 1 and find the matrices A and B
in the linear equation

∆̇x = A∆x+B∆u.

[Hint:
d

dy
tan−1 y = cos2(tan−1 y).]

7. Sketch the function

f(t) =
{
t+ 1, 0 ≤ t ≤ 10
−2et, t > 10

and find its Laplace transform, including the region of convergence.

8. (a) Find the inverse Laplace transform of G(s) =
1

2s2 + 1
using the residue formula.

(b) Repeat for G(s) =
1
s2

.

(c) Repeat for G(s) =
s2

2s2 + 1
. [Hint: Write G(s) = c+G1(s) with G1(s) strictly proper.]

9. Explain why we don’t use Laplace transforms to solve the initial value problem

ÿ(t) + 2tẏ(t)− y(t) = 1, y(0) = 0, ẏ(0) = 1.
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10. Consider a mass-spring system where M(t) is a known function of time. The equation of
motion in terms of force input u and position output y is

d

dt
Mẏ = u−Ky

(i.e., rate of change of momentum equals sum of forces), or equivalently

Mÿ + Ṁẏ +Ky = u.

This equation has time-dependent coefficients. So there’s no transfer function G(s), hence no
impulse-response function g(t), hence no convolution equation y = g ? u.

(a) Find a linear state model.

(b) Guess what the correct form of the time-domain integral equation is. [Hint: If M is
constant, the output y at time t when the input is an impulse applied at time t0 depends
only on the difference t − t0. But if M is not constant, it depends on both t and t0
separately.]

11. Consider Problem 1. Find the transfer function from u to x1. Do it both by hand (from the
state model) and by Scilab or MATLAB.

12. Find a state model (A,B,C,D) for the system with transfer function

G(s) =
−2s2 + s+ 1
s2 − s− 4

.

13. Consider the parallel connection of G1 and G2, the LTI systems with transfer functions

G1(s) =
10

s2 + s+ 1
, G2(s) =

1
0.1s+ 1

.

(a) Find state models for G1 and G2.

(b) Find a state model for the overall system.



Chapter 3

Linear System Theory

In the preceding chapter we saw nonlinear state models and how to linearize them about an equi-
librium point. The linearized systems have the form (dropping ∆)

ẋ = Ax+Bu, y = Cx+Du.

In this chapter we study such models.

3.1 Initial-State-Response

Let us begin with the state equation forced only by the initial state—the input is set to zero:

ẋ = Ax, x(0) = x0, A ∈ Rn×n.

Recall two facts:

1. If n = 1, i.e., A is a scalar, the unique solution of the initial-value problem is x(t) = eAtx0.

2. The Taylor series of the function et at t = 0 is

et = 1 + t+
t2

2!
+ · · ·

and this converges for every t. Thus

eAt = 1 +At+
A2t2

2!
+ · · · .

This second fact suggests that in the matrix case we define the matrix exponential eA to be

eA := I +A+
1
2!
A2 +

1
3!
A3 + · · · .

It can be proved that the right-hand series converges for every matrix A. If A is n× n, so is eA; eA

is not defined if A is not square.

Example 3.1.1

35
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A =
[

0 0
0 0

]
, eA =

[
1 0
0 1

]
Notice that eA is not obtained by exponentiating A componentwise. 2

Example 3.1.2

A =
[

1 0
0 1

]
, eA =

[
e 0
0 e

]
= eI

2

Example 3.1.3

A =

 0 1 0
0 0 1
0 0 0


This matrix has the property that A3 = 0. Thus the power series has only finitely many nonzero
terms:

eA = I +A+
1
2
A2 =

 1 1 1
2

0 1 1
0 0 1


This is an example of a nilpotent matrix. That is, Ak = 0 for some power k. 2

Replacing A by At (the product of A with the scalar t) gives the matrix-valued function eAt,

t 7−→ eAt : R −→ Rn×n,

defined by

eAt = I +At+A2 t
2

2!
+ · · · .

This function is called the transition matrix.
Some properties of eAt:

1. eAt
∣∣
t=0

= I

2. eAt1eAt2 = eA(t1+t2)

Note that eA1eA2 = eA1+A2 if and only if A1 and A2 commute, i.e., A1A2 = A2A1.

3. (eA)−1 = e−A, so (eAt)−1 = e−At

4. A, eAt commute

5.
d

dt
eAt = AeAt

Now the main result:
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Theorem 3.1.1 The unique solution of the initial-value problem ẋ = Ax, x(0) = x0, is x(t) = eAtx0.

This leaves us with the question of how to compute eAt. For hand calculations on small problems
(n = 2 or 3), it’s convenient to use Laplace transforms.

Example 3.1.4

A =

 0 1 0
0 0 1
0 0 0

 , eAt =

 1 t t2

2
0 1 t
0 0 1


The Laplace transform of eAt is therefore 1/s 1/s2 1/s3

0 1/s 1/s2

0 0 1/s

 .
On the other hand,

(sI −A)−1 =

 s −1 0
0 s −1
0 0 s

−1

=
1
s3

 s2 s 1
0 s2 s
0 0 s2

 .
We conclude that in this example eAt, (sI − A)−1 are Laplace transform pairs. This is true in
general. 2

If A is n× n, eAt is an n× n matrix function of t and (sI −A)−1 is an n× n matrix of rational
functions of s.

Example 3.1.5

A =
[

0 1
−1 0

]
(sI −A)−1 =

[
s −1
1 s

]−1

=
1

s2 + 1

[
s 1
−1 s

]
=⇒ eAt =

[
cos t sin t
− sin t cos t

]
2

Another way to compute eAt is via eigenvalues and eigenvectors. Instead of a general treatment,
let’s do two examples.

Example 3.1.6

A =
[

0 1
−2 −3

]
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The MATLAB command [V,D] = eig (A) produces

V =
[

1 −1
−1 2

]
, D =

[
−1 0

0 −2

]
.

The eigenvalues of A appear on the diagonal of the (always diagonal) matrix D, and the columns
of V are corresponding eigenvectors. So for example

A

[
1
−1

]
= −1

[
1
−1

]
.

It follows that AV = V D (check this) and then that eAtV = V eDt (prove this). The nice thing is
that eDt is trivial to determine because D is diagonal. In this case

eDt =
[

e−t 0
0 e−2t

]
.

Then

eAt = V eDtV −1.

2

Example 3.1.5 (Cont’d)

A =
[

0 1
−1 0

]
, D =

[
j 0
0 −j

]
, V =

1√
2

[
1 1
j −j

]
eDt =

[
ejt 0
0 e−jt

]
eAt = V eDtV −1 =

[
cos t sin t
− sin t cos t

]
2

The above method works when A has n linearly independent eigenvectors, so V is invertible.
Otherwise the theory is more complicated and requires the so-called Jordan form of A.

3.2 Input-Response

Now we set the initial state to zero and consider the response from the input:

ẋ = Ax+Bu, x(0) = 0.

Here’s a derivation of the solution: Multiply by e−At:

e−Atẋ = e−AtAx+ e−AtBu.

Noting that

d

dt
[e−Atx(t)] = −Ae−Atx(t) + e−Atẋ(t),
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we get

d

dt
[e−Atx(t)] = e−AtBu(t).

Integrate from 0 to t:

−eAtx(t)− x(0)︸︷︷︸
=0

=

t∫
0

e−AτBu(τ)dτ.

Multiply by eAt:

x(t) =

t∫
0

eA(t−τ)Bu(τ)dτ. (3.1)

Equation (3.1) gives the state at time t in terms of u(τ), 0 ≤ τ ≤ t, when the initial state equals
zero.

Similarly, the output equation y = Cx+Du leads to

y(t) =

t∫
0

CeA(t−τ)Bu(τ)dτ +Du(t).

Special case Suppose dim u = dim y = 1, i.e., the system is single-input, single-output (SISO).
Then D = D, a scalar, and we have

y(t) =

t∫
0

CeA(t−τ)Bu(τ)dτ +Du(t). (3.2)

If u = δ, the unit impulse, then

y(t) = CeAtB1+(t) +Dδ(t),

where 1+(t) denotes the unit step,

1+(t) =
{

1 , t ≥ 0
0 , t < 0.

We conclude that the impulse response of the system is

g(t) := CeAtB1+(t) +Dδ(t) (3.3)

and equation (3.2) is a convolution equation:

y(t) = (g ∗ u)(t).

Example 3.2.1
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ÿ + ẏ = u

Take the state to be

x =
[
x1

x2

]
:=
[
y
ẏ

]
.

Then

A =
[

0 1
0 −1

]
, B =

[
0
1

]
C = [ 1 0 ], D = 0.

The transition matrix:

(sI −A)−1 =


1
s

1
s(s+ 1)

0
1

s+ 1


eAt =

[
1 1− e−t

0 e−t

]
, t ≥ 0.

Impulse response:

g(t) = CeAtB, t ≥ 0
= 1− e−t, t ≥ 0.

2

3.3 Total Response

Consider the state equation forced by both an initial state and an input:

ẋ = Ax+Bu, x(0) = x0.

The system is linear in the sense that the state at time t equals the initial-state-response at time
t plus the input-response at time t:

x(t) = eAtx0 +

t∫
0

eA(t−τ)Bu(τ)dτ.

Similarly, the output y = Cx+Du is given by

y(t) = CeAtx0 +

t∫
0

CeA(t−τ)Bu(τ)dτ +Du(t).

These two equations constitute a solution in the time domain.
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Summary We began with an LTI system modeled by a differential equation in state form:

ẋ = Ax+Bu, x(0) = x0

y = Cx+Du.

We solved the equations to get

x(t) = eAtx0 +

t∫
0

eA(t−τ)Bu(τ)dτ

y(t) = CeAtx0 +

t∫
0

CeA(t−τ)Bu(τ)dτ +Du(t).

These are integral (convolution) equations giving x(t) and y(t) explicitly in terms of x0 and u(τ), 0 ≤
τ ≤ t. In the SISO case, if x0 = 0 then

y = g ∗ u, i.e., y(t) =

t∫
0

g(t− τ)u(τ)dτ

where

g(t) = CeAt B1+(t) +Dδ(t)
1+(t) = unit step.

3.4 Logic Notation

We now take a break from linear system theory to go over logic notation. Logic notation is a great
aid in precision, and therefore in a clear understanding of mathematical concepts. These notes
provide a brief introduction to mathematical statements using logic notation.

A quantifier is a mathematical symbol indicating the amount or quantity of the variable or
expression that follows. There are two quantifiers:

∃ denotes the existential quantifier meaning “there exists” (or “for some”).

∀ denotes the universal quantifier meaning “for all” or “for every.”

As a simple example, here’s the definition that the sequence {an}n≥1 of real numbers is bounded:

(∃B ≥ 0)(∀n ≥ 1) |an| ≤ B. (3.4)

This statement is parsed from left to right. In words, (3.4) says this: There exists a nonnegative
number B such that, for every positive integer n, the absolute value of an is bounded by B. Notice
in (3.4) that the two quantifier phrases, ∃B ≥ 0 and ∀n ≥ 1, are placed in brackets and precede
the term |an| ≤ B. This latter term has n and B as variables in it that need to be quantified. We
cannot say merely that {an}n≥1 is bounded if |an| ≤ B (unless it is known or understood what the
quantifiers on n and B are). In general, all variables in a statement need to be quantified.

As an example, the sequence an = (−1)n of alternating +1 and −1 is obviously bounded. Here
are the steps in formally proving (3.4) for this sequence:
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Take B = 1.

Let n ≥ 1 be arbitrary.

Then |an| = |(−1)n| = 1. Thus |an| = B.

The order of quantifiers is crucial. Observe that (3.4) is very different from saying

(∀n ≥ 1)(∃B ≥ 0) |an| ≤ B, (3.5)

which is true of every sequence. Let’s prove, for example, that the unbounded sequence an = 2n

satisfies (3.5):

Let n ≥ 1 be arbitrary.

Take B = 2n.

Since |an| = 2n, so |an| = B.

As another example, here’s the definition that {an}n≥1 converges to 0:

(∀ε > 0)(∃N ≥ 1)(∀n ≥ N) |an| < ε. (3.6)

This says, for every positive ε there exists a positive N such that, for every n ≥ N , |an| is less than
ε. A formal proof that an = 1/n satisfies (3.6) goes like this:

Let ε > 0 be arbitrary.

Take N to be any integer greater than 1/ε.

Let n ≥ N be arbitrary.

Then |an| = 1
n ≤

1
N < ε.

The symbol for logical negation is ¬. Thus {an}n≥1 is not bounded if, from (3.4),

¬(∃B ≥ 0)(∀n ≥ 1) |an| ≤ B.

This is logically equivalent to

(∀B ≥ 0)(∃n ≥ 1) |an| > B.

Study how this statement is obtained term-by-term from the previous one: ∃B ≥ 0 changes to
∀B ≥ 0; ∀n ≥ 1 changes to ∃n ≥ 1; and |an| ≤ B is negated to |an| > B. The order of the variables
being quantified (B then n) does not change.

Similarly, the negation of (3.6), meaning {an} does not converge to 0, is

(∃ε > 0)(∀N ≥ 1)(∃n ≥ N) |an| ≥ ε. (3.7)

For example, here’s a proof that an = (−1)n satisfies (3.7):

Take ε = 1/2.

Let N ≥ 1 be arbitrary.
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Take n = N .

Then |an| = 1 > ε.

As the final example of this type, here’s the definition that the function f(x), f : R −→ R, is
continuous at the point x = a:

(∀ε > 0)(∃δ > 0)(∀x with |x− a| < δ) |f(x)− f(a)| < ε. (3.8)

The negation is therefore

(∃ε > 0)(∀δ > 0)(∃x with |x− a| < δ) |f(x)− f(a)| ≥ ε.

Try your hand at proving, via the last statement, that the step function

f(x) =
{

0, x < 0
1, x ≥ 0

is not continuous at x = 0.
Logical conjunction (and) is denoted by ∧ or by a comma, and logical disjunction (or) is denoted

by ∨. The negation of P ∧Q is ¬P ∨ ¬Q. The negation of P ∨Q is ¬P ∧ ¬Q.
The final logic operation is denoted by the symbol ⇒, which means “implies” or “if . . . then.”

For example, here’s a well-known statement about three real numbers, a, b, c:

b2 − 4ac ≥ 0⇒ ax2 + bx+ c has real roots.

We read this as follows: If b2−4ac ≥ 0, then the polynomial ax2 + bx+ c has real roots. As another
example, the statement (convergence of {an}n≥1 to 0)

(∀ε > 0)(∃N ≥ 1)(∀n ≥ N) |an| < ε.

can be written alternatively as

(∀ε > 0)(∃N ≥ 1)(∀n) n ≥ N ⇒ |an| < ε.

Similarly, the statement (continuity of f(x) at x = a)

(∀ε > 0)(∃δ > 0)(∀x with |x− a| < δ) |f(x)− f(a)| < ε

can be written alternatively as

(∀ε > 0)(∃δ > 0)(∀x) |x− a| < δ ⇒ |f(x)− f(a)| < ε. (3.9)

The statement P ⇒ Q is logically equivalent to the statement ¬Q⇒ ¬P . Example:

ax2 + bx+ c does not have real roots⇒ b2 − 4ac < 0.

That is, if the polynomial ax2 + bx+ c does not have real roots, then b2 − 4ac < 0.
The truth table for the logical implication operator is

P Q P ⇒ Q

T T T
T F F
F T T
F F T

Writing out the truth table for P ∧¬Q will show you that it is (logically equivalent to) the negation
of P ⇒ Q. So for example, the negation of (3.9) (f(x) is not continuous at x = a) is

(∃ε > 0)(∀δ > 0)(∃x) |x− a| < δ, |f(x)− f(a)| ≥ ε.
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3.5 Lyapunov Stability

Stability theory of dynamical systems is an old subject, dating back several hundred years. The goal
in stability theory is to draw conclusions about the qualitative behaviour of trajectories without
having to solve analytically or simulate exhaustively for all possible initial conditions. The theory
introduced in this section is due to the Russian mathematician A.M. Lyapunov (1892).

To get an idea of the stability question, imagine a helicopter hovering under autopilot control.
Suppose the helicopter is subject to a wind gust. Will it return to its original hovering state? If so,
we say the hovering state is a stable state.

Let’s look at a much simpler example.

Example 3.5.1

Brief Article

The Author

December 18, 2007

M

y

K

D

1

The model with no external forces:

Mÿ = −Ky −Dẏ

or

ẋ = Ax, A =
[

0 1
−K
M − D

M

]
.

The point x = 0 is an equilibrium point.
Now suppose a wind gust of finite duration is applied:

Brief Article

The Author

December 18, 2007

d

d(t)

T t

1

The model is

Mÿ = d−Ky −Dẏ,

or

ẋ = Ax+ Ed, E =
[

0
1
M

]
.
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If x(0) = 0, then at time t = T

x(T ) =

T∫
0

eA(T−τ)Ed(τ)dτ 6= 0 in general.

For t > T , the model is ẋ = Ax. Thus the effect of a finite-duration disturbance is to alter the
initial state. In this way, the stability question concerns the qualitative behaviour of ẋ = Ax for an
arbitrary initial state; the initial time may be shifted to t = 0. 2

We’ll formulate the main concepts for the nonlinear model ẋ = f(x), x(0) = x0, and then
specialize to the linear one ẋ = Ax, x(0) = x0, for specific results.

Assume the model under study is ẋ = f(x) and assume x = 0 is an equilibrium point, i.e.,
f(0) = 0. The stability questions are

1. If x(0) is near the origin, does x(t) remain near the origin? This is stability.

2. Does x(t)→ 0 as t→∞ for every x(0) ? This is asymptotic stability.

To give precise definitions to these concepts, let ‖x‖ denote the Euclidean norm of a vector x,
i.e., ‖x‖ = (xTx)1/2 = (Σix

2
i )

1/2. Then we say the origin is a stable equilibrium point if

(∀ε > 0)(∃δ > 0)(∀x(0))‖x(0)‖ < δ ⇒ (∀t ≥ 0)‖x(t)‖ < ε.

In words, for every ε > 0 there exists δ > 0 such that if the state starts in the δ-ball, it will remain
in the ε-ball:

Brief Article

The Author

December 18, 2007

δ

x(t)

ε
Rn

1

The picture with t explicit is
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Brief Article

The Author

December 18, 2007

‖x(t)‖

δ

0
t

ε

1

Another way of expressing the concept is: the trajectory will remain arbitrarily (i.e., ∀ε) close to
the origin provided it starts sufficiently (i.e., ∃δ) close to the origin.

The origin is an asymptotically stable equilibrium point if

(i) it is stable, and

(ii) (∃ε > 0)(∀x(0))‖x(0)‖ < ε⇒ lim
t→∞

x(t) = 0.

Clearly the second requirement is that x(t) converges to the origin provided x(0) is sufficiently near
the origin.

If we’re given the right-hand side function f , it’s in general very hard to determine if the
equilibrium point is stable, or asymptotically stable. Because in this course we don’t have time to
do the general theory, we’ll look at the results only for the linear system ẋ = Ax,A ∈ Rn×n. Of
course, 0 is automatically an equilibrium point. As we saw before, the trajectory is specified by
x(t) = eAtx(0). So stability depends on the function t 7−→ eAt : [0,∞)→ Rn×n.

Proposition 3.5.1 For the linear system ẋ = Ax, 0 is stable iff eAt is a bounded function; 0 is
asymptotically stable iff eAt → 0 as t→∞.

The condition on A for eAt to be bounded is a little complicated (needs the Jordan form). The
condition on A for eAt → 0 is pretty easy:

Proposition 3.5.2 eAt → 0 as t→∞ iff every eigenvalue of A has negative real part.

Example 3.5.2

1. ẋ = −x: origin is asymptotically stable

2. ẋ = 0: origin is stable

3. ẋ = x: origin unstable

4.

Brief Article

The Author

December 18, 2007

origin asymp. stable

1
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5.

Brief Article

The Author

December 18, 2007

origin stable

1

6.

Brief Article

The Author

December 18, 2007

origin asymp. stable

1

7.

Brief Article

The Author

December 18, 2007

origin stable

1

8. maglev

Brief Article

The Author

December 18, 2007

origin unstableorigin unstable

1

2

Proposition 3.5.2 is easy to prove when A has n linearly independent eigenvectors:
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eAt = V eDtV −1

eAt → 0⇐⇒ eDt → 0

⇐⇒ eλit → 0 ∀i
⇐⇒ Re λi < 0 ∀i.

3.6 BIBO Stability

There’s another stability concept, that concerns the response of a system to inputs instead of initial
conditions. We’ll study this concept for a restricted class of systems.

Consider an LTI system with a single input, a single output, and a strictly proper rational
transfer function. The model is therefore y = g ∗ u in the time domain, or Y (s) = G(s)U(s) in
the s-domain. We ask the question: Does a bounded input (BI) always produce a bounded output
(BO)? Note that u(t) bounded means

(∃B)(∀t ≥ 0)|u(t)| ≤ B.

The least upper bound B is actually a norm, denoted ‖u‖∞.

Example 3.6.1

1. u(t) = 1+(t), ‖u‖∞ = 1

2. u(t) = sin(t), ‖u‖∞ = 1

3. u(t) = (1− e−t)1+(t), ‖u‖∞ = 1

4. u(t) = t1+(t), ‖u‖∞ =∞, or undefined.

Note that in the second case, ‖u‖∞ = |u(t)| for some finite t; that is, ‖u‖∞ = max
t≥0
|u(t)|. Whereas

in the third case, ‖u‖∞ > |u(t)| for every finite t. 2

We define the system to be BIBO stable if every bounded u produces a bounded y.

Theorem 3.6.1 Assume G(s) is strictly proper, rational. Then the following three statements are
equivalent:

1. The system is BIBO stable.

2. The impulse-response function g(t) is absolutely integrable, i.e.,

∞∫
0

|g(t)|dt <∞.

3. Every pole of the transfer function G(s) has negative real part.

Example 3.6.2 RC filter
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Brief Article

The Author

December 18, 2007

−

+

u

−

+

y

R

C

1

G(s) =
1

RCs+ 1

g(t) =
1

RC
e−t/RC1+(t)

According to the theorem, every bounded u produces a bounded y. What’s the relationship
between ‖u‖∞ and ‖y‖∞? Let’s see:

|y(t)| =

∣∣∣∣∣∣
t∫

0

g(t− τ)u(τ)dτ

∣∣∣∣∣∣
≤

t∫
0

|g(t− τ)||u(τ)|dτ

≤ ‖u‖∞

t∫
0

|g(t− τ)|dτ

≤ ‖u‖∞

∞∫
0

|g(t)|dt

= ‖u‖∞

∞∫
0

1
RC

e−t/RCdt

= ‖u‖∞.

Thus ‖y‖∞ ≤ ‖u‖∞ for every bounded u. 2

Example 3.6.3 integrator

G(s) =
1
s
, g(t) = 1+(t)

According to the theorem, the system is not BIBO stable. Thus there exists some bounded input
that produces an unbounded output. For example

u(t) = 1+(t) = bounded⇒ y(t) = t1+(t) = unbounded.
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Notice that it is not true that every bounded input produces an unbounded output, only that some
bounded input does. Example

u(t) = (sin t)1+(t)⇒ y(t) bounded.

2

The theorem can be extended to the case where G(s) is only proper (and not strictly proper).
Then write

G(s) = c+G1(s), G1(s) strictly proper.

Then the impulse response has the form

g(t) = cδ(t) + g1(t).

The theorem remains true with the second statement changed to say that g1(t) is absolutely inte-
grable.

Finally, let’s connect Lyapunov stability and BIBO stability. Consider a single-input, single-
output system modeled by

ẋ = Ax+Bu, y = Cx+Du

or

Y (s) = G(s)U(s)

G(s) = C(sI −A)−1B +D

=
1

det(sI −A)
C adj (sI −A)B +D.

From this last expression it is clear that the poles of G(s) are contained in the set of eigenvalues of
A. Thus

Lyapunov asymptotic stability⇒ BIBO stability.

Usually, the poles of G(s) are identical to the eigenvalues of A, that is, the two polynomials

det(sI −A), C adj (sI −A)B +D det(sI −A)

have no common factors. In this case, the two stability concepts are equivalent. (Don’t forget:
We’re discussing only LTI systems.)

Example 3.6.4 Maglev
Consider the problem of magnetically levitating a steel ball:
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Brief Article

The Author

December 18, 2007

M

R

+ u

i

d
y

L

−

1

u = voltage applied to electromagnet
i = current
y = position of ball
d = possible disturbance force

The equations are

L
di

dt
+Ri = u, M

d2y

dt2
= Mg + d− c i

2

y2

where c is a constant (force of magnet on ball is proportional to i2/y2). The nonlinear state equations
are

ẋ = f(x, u, d)

x =

 y
ẏ
i

 , f =


x2

g +
d

M
− c

M

x2
3

x2
1

−R
L
x3 +

1
L
u

 .
Let’s linearize about y0 = 1, d0 = 0:

x20 = 0, x10 = 1, x30 =

√
Mg

c
, u0 = R

√
Mg

c
.

The linearized system is

∆ẋ = A∆x+B∆u+ E∆d
∆y = C∆x

A =


0 1 0

2g 0 −2
√

g

Mc

0 0 −R
L

 , B =

 0
0
1
L

 , E =

 0
1
M
0


C =

[
1 0 0

]
.
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To simplify notation, let’s suppose R = L = M = 1, c = g. Then

A =

 0 1 0
2g 0 −2
0 0 −1

 , B =

 0
0
1

 , E =

 0
1
0


C =

[
1 0 0

]
.

Thus

∆Y (s) = C(sI −A)−1B∆U(s) + C(sI−A)−1E∆D(s)

=
−2

(s+ 1)(s2 − 2g)
∆U(s) +

1
s2 − 2g

∆D(s).

The block diagram is

∆U

∆D

∆Y−2
s + 1

1
s2 − 2g

Note that the systems from ∆U to ∆Y and ∆D to ∆Y are BIBO unstable, each having a pole
at s =

√
2g. To stabilize, we could contemplate closing the loop:

∆U

∆D

∆Y−2
s + 1

1
s2 − 2g

?

If we can design a controller (unknown box) so that the system from ∆D to ∆Y is BIBO stable
(all poles with Re s < 0 ), then we will have achieved a type of stability. We’ll study this further in
the next chapter. 2

3.7 Frequency Response

Consider a single-input, single-output LTI system. It will then be modeled by

y = g ∗ u or Y (s) = G(s)U(s).

Let us assume G(s) is rational, proper, and has all its poles in Re s < 0. Then the system is
BIBO stable.

The first fact we want to see is this: Complex exponentials are eigenfunctions.
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Proof

u(t) = ejωt, y(t) =

∞∫
−∞

g(t− τ)u(τ)dτ

⇒ y(t) =

∞∫
−∞

g(t− τ)ejωτdτ

=

∞∫
−∞

g(τ)ejωte−jωτdτ

= G(jω)ejωt

2

Thus, if the input is the complex sinusoid ejωt, then the output is the sinusoid

G(jω)ejωt = |G(jω)|ej(ωt+∠G(jw))

which has frequency = ω = frequency of input, magnitude = |G(jω)| = magnitude of the transfer
function at s = jω, and phase = ∠G(jω) = phase of the transfer function at s = jω.

Notice that the convolution equation for this result is

y(t) =

∞∫
−∞

g(t− τ)u(τ)dτ,

that is, the sinusoidal input was applied starting at t = −∞. If the time of application of the
sinusoid is t = 0, there is a transient component in y(t) too.

Next, we want to look at the special frequency response when ω = 0. For this we need the
final-value theorem.

Example 3.7.1 Let y(t), Y (s) be Laplace transform pairs with Y (s) =
s+ 2

s(s2 + s+ 4)
.

This can be factored as

Y (s) =
A

s
+

Bs+ C

s2 + s+ 4
.

Note that A equals the residue of Y (s) at the pole s = 0:

A = Res (Y, 0) = lim
s→0

s Y(s) =
1
2
.

The inverse LT then has the form

Y (t) = A1+(t) + y1(t),

where y1(t)→ 0 as t→∞. Thus

lim
t→∞

y(t) = A = Res (Y, 0).

2

The general result is the final-value theorem:
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Theorem 3.7.1 Suppose Y (s) is rational.

1. If Y (s) has no poles in <s ≥ 0, then y(t) converges to 0 as t→∞.

2. If Y (s) has no poles in <s ≥ 0 except a simple pole at s = 0, then y(t) converges as t → ∞
and limt→∞ y(t) equals the residue of Y (s) at the pole s = 0.

3. If Y (s) has a repeated pole at s = 0, then y(t) doesn’t converge as t→∞.

4. If Y (s) has a pole at <s ≥ 0, s 6= 0, then y(t) doesn’t converge as t→∞.

Some examples: Y (s) =
1

s+ 1
: final value equals 0; Y (s) =

2
s(s+ 1)

: final value equals 2;

Y (s) =
1

s2 + 1
: no final value. Remember that you have to know that y(t) has a final value, by

examining the poles of Y (s), before you calculate the residue of Y (s) at the pole s = 0 and claim
that that residue equals the final value.

Return now to the setup

Y (s) = G(s)U(s), G(s) proper, no poles in Re s ≥ 0.

Let the input be the unit step, u(t) = 1+(t), i.e., U(s) =
1
s

. Then Y (s) = G(s)
1
s

. The final-value

theorem applies to this Y (s), and we get lim
t→∞

y(t) = G(0). For this reason, G(0) is called the DC

gain of the system.

Example 3.7.2 Using MATLAB, plot the step responses of

G1(s) =
20

s2 + 0.9s+ 50
, G2(s) =

−20s+ 20
s2 + 0.9s+ 50

.

They have the same DC gains and the same poles, but notice the big difference in transient response.

2

3.8 Problems

1. Find the transition matrix for

A =

 1 1 0
−1 1 0

0 0 0


by two different methods (you may use Scilab or MATLAB).

2. Consider the system ẋ = Ax, x(0) = x0. Let T be a positive sampling period. The sampled
state sequence is

x(0), x(T ), x(2T ), . . . .

Derive an iterative equation for obtaining the state at time (k + 1)T from the state at time
kT .
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3. Consider a system modeled by

ẋ = Ax+Bu, y = Cx+Du,

where dimu = dim y = 1, dimx = 2.

(a) Given the initial-state-responses

x(0) =
[

1
0.5

]
=⇒ y(t) = e−t − 0.5e−2t

x(0) =
[
−1
1

]
=⇒ y(t) = −0.5e−t − e−2t,

find the initial-state-response for x(0) =
[

2
0.5

]
.

(b) Now suppose

x(0) =
[

1
1

]
, u a unit step =⇒ y(t) = 0.5− 0.5e−t + e−2t

x(0) =
[

2
2

]
, u a unit step =⇒ y(t) = 0.5− e−t + 1.5e−2t.

Find y(t) when u is a unit step and x(0) = 0.

4. This problem requires formal logic.

(a) Write the definition that the function f : R→ R is not continuous at t = 0.

(b) Prove that the unit step 1+(t) satisfies the previous definition.

(c) Write the definition that the equilibrium 0 of the system ẋ = f(x) is not stable.

(d) Prove that the equilibrium point 0 of the system ẋ = x satisfies the previous definition.

5. Consider ẋ = Ax with

A =

 0 −2 −1
0 −1 0
1 0 0

 .
Is the origin asymptotically stable? Find an x(0) 6= 0 such that x(t)→ 0 as t→∞.

6. Consider ẋ = Ax.

(a) Prove that the origin is stable if

A =
[

0 1
−1 0

]
.

(b) Prove that the origin is unstable if

A =
[

0 1
0 0

]
.
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7. Consider the cart-spring system. Its equation of motion is

Mÿ +Ky = 0,

where M > 0, K > 0. Take the natural state and prove that the origin is stable. (For an
arbitrary ε, you must give an explicit δ.)

8. Consider the convolution equation y = g ? u, where g(t) is absolutely integrable, that is, the
system is BIBO stable.. The inequality

‖y‖∞ ≤ ‖u‖∞
∫ ∞

0
|g(t)|dt

is derived in the course notes. Show that this is the best bound; that is, construct a nonzero
input u(t) for which the inequality is an equality.

9. Consider the maglev example, Example 3.6.4. Is there a constant gain to put in the unknown
box so that the system from ∆D to ∆Y is BIBO stable?

10. Give an example of a continuously differentiable, bounded, real-valued function defined on the
open interval (0, 1) whose derivative is not bounded on that interval. What can you conclude
about BIBO stability of the differentiator? Discuss stability of the differentiator in the sense
of Lyapunov.

11. The transfer function of an LC circuit is G(s) = 1/(LCs2 + 1).

(a) Is the output bounded if the input is the unit step?

(b) Prove that the circuit is not a BIBO stable system.

12. A rubber ball is tossed straight into the air, rises, then falls and bounces from the floor, rises,
falls, and bounces again, and so on. Let c denote the coefficient of restitution, that is, the
ratio of the velocity just after a bounce to the velocity just before the bounce. Thus 0 < c < 1.
Neglecting air resistance, show that there are an infinite number of bounces in a finite time
interval.

Hint: Assume the ball is a point mass. Let x(t) denote the height of the ball above the floor
at time t. Then x(0) = 0, ẋ(0) > 0. Model the system before the first bounce and calculate
the time of the first bounce. Then specify the values of x, ẋ just after the first bounce. And
so on.

13. The linear system ẋ = Ax can have more than one equilibrium point.

(a) Characterize the set of equilibrium points. Give an example A for which there’s more
than one.

(b) Prove that if one equilibrium point is stable, they all are.



Chapter 4

Feedback Control Theory

Feedback is a miraculous invention. In this chapter we’ll see why.

4.1 Closing the Loop

As usual, we start with an example.

Example 4.1.1 linearized cart-pendulum

Brief Article

The Author

January 29, 2008

M1

u

M2
x1

L

x2

1

The figure defines x1, x2. Now define x3 = ẋ1, x4 = ẋ2. Take M1 = 1 Kgm, M2 = 2 Kgm, L = 1
m, g = 9.8 m/s2. Then the state model is

ẋ = Ax+Bu, A =


0 0 1 0
0 0 0 1
0 −19.6 0 0
0 29.4 0 0

 , B =


0
0
1
−1

 .
Let’s suppose we measure the cart position only: y = x1. Then

C =
[

1 0 0 0
]
.

57
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The transfer function from u to y is

P (s) =
s2 − 9.8

s2(s2 − 29.4)
.

The poles and zeros of P (s) are

Brief Article

The Author

January 29, 2008

X X

-5.4 -3.13 3.13 5.4

XX

1

Having three poles in Re s ≥ 0, the plant is quite unstable. The right half-plane zero doesn’t
contribute to the degree of instability, but, as we shall see, it does make the plant quite difficult to
control. The block diagram of the plant by itself is

Brief Article

The Author

January 29, 2008

y

force on
cart, N

position of cart, m

u
P (s)

1

Let us try to stabilize the plant by feedback:

Brief Article

The Author

January 29, 2008

C(s) P (s)
yr u

−

1

Here r is the reference position of the cart and C(s) is the transfer function of the controller to be
designed. One controller that does in fact stabilize is

C(s) =
10395s3 + 54126s2 − 13375s− 6687
s4 + 32s3 + 477s2 − 5870s− 22170

.

You’re invited to simulate the closed-loop system; for example, let r be the input

Brief Article

The Author

January 29, 2008

r

0.1

5 t

1
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which corresponds to a command that the cart move right 0.1 m for 5 seconds, then return to its
original position. Plot x1 and x2, the cart and pendulum positions. 2

Our objective in this section is to define what it means for the following feedback system to be
stable:

Brief Article

The Author

January 29, 2008

P (s)
y

C(s)

d

ur e

−

1

The notation is this:

systems : P (s), plant transfer function
C(s), controller transfer function

signals : r(t), reference (or command) input
e(t), tracking error
d(t), disturbance
u(t), plant input
y(t), plant output.

We shall assume throughout that P (s), C(s) are rational, C(s) is proper, and P (s) is strictly
proper.

Internal Stability

For this concept, set r = d = 0 and bring in state models for P and C:

Brief Article

The Author

January 29, 2008

DcCc

Ac Bc

(xc) (xp)

Ap Bp

−

e yu

OCp

1

The closed-loop equations are

ẋp = Apxp +Bpu

u = Ccxc +Dce

ẋc = Acxc +Bce

e = −Cpxp.
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Defining the closed-loop state xcl = (xp, xx), we get simply

ẋcl = Aclxcl, Acl =
[
Ap −BpDcCp BpCc
−BcCp Ac

]
.

Internal Stability is defined to mean that the origin is an asymptotically stable equilibrium
point, that is, that all the eigenvalues of Acl have Re λ < 0. Thus the concept means this: With no
inputs applied (i.e., r = d = 0), the internal states xp(t), xc(t) will converge to zero for every initial
state xp(0), xc(0).

Example 4.1.2

Take C(s) = 2, P (s) = 1/(s− 1). Then

Ap = 1, Bp = 1, Cp = 1; Dc = 2

and

Acl = Ap −BpDcCp = −1.

Thus the unstable plant
1

s− 1
is internally stabilized by unity feedback with the pure-gain controller

2. 2

Example 4.1.3

Let’s see that 1/(s− 1) cannot be internally stabilized by cancelling the unstable pole:

Brief Article

The Author

February 1, 2008

(xc) (xp)

yur s − 1

s + 1

1

s − 1

1

The transfer function from r to y equals
1

s+ 1
. Hence the system from r to y is BIBO stable. But

with r = 0, the state model is

Brief Article

The Author

February 1, 2008

-1 1

(xc) (xp)

1

01

0 1

-2 1

1

Thus

ẋp = xp − 2xc
ẋc = −xc

ẋcl = Aclxcl, Acl =
[

1 −2
0 −1

]
= unstable.

Clearly xp(t) doesn’t converge to 0 if xp(0) 6= 0. 2
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Input-Output Stability

Now we turn to the second way of thinking about stability of the feedback loop. First, let’s solve
for the outputs of the summing junctions:

E = R− PU
U = D + CE[

1 P
−C 1

] [
E
U

]
=
[
R
D

]
.

In view of our standing assumptions (P strictly proper, C proper), the determinant of[
1 P

−C 1

]
is not identically zero (why?). Thus

[
E
U

]
=
[

1 P
−C 1

]−1 [
R
D

]
=


1

1 + PC

−P
1 + PC

C

1 + PC

1
1 + PC

[ R
D

]

Y = PU =
PC

1 + PC
R+

P

1 + PC
D.

We just derived the following closed-loop transfer functions:

R to E :
1

1 + PC
, R to U :

C

1 + PC
, R to Y :

PC

1 + PC

D to E :
−P

1 + PC
, D to U :

1
1 + PC

, D to Y :
P

1 + PC
.

The above method of finding closed-loop transfer functions works in general.

Example 4.1.4

Brief Article

The Author

February 1, 2008

r y

P4

−

x1

P3

x2 P2

P5

P1

−

1
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Let us find the transfer function from r to y. Label the outputs of the summing junctions, as shown.
Write the equations at the summing junctions:

X1 = R− P2P5X2

X2 = P1X1 − P2P4X2

Y = P3X1 + P2X2.

Assemble as 1 P2P5 0
−P1 1 + P2P4 0
−P3 −P2 1

 X1

X2

Y

 =

 R
0
0

 .
Solve for Y by Cramer’s rule:

Y =

det

 1 P2P5 R
−P1 1 + P2P4 0
−P3 −P2 0


det

 1 P2P5 0
−P1 1 + P2P4 0
−P3 −P2 1

 .

Simplify:

Y

R
=
P1P2 + P3(1 + P2P4)
1 + P2P4 + P1P2P5

.

2

Now back to

Brief Article

The Author

February 1, 2008

y

d

ur e

−

C P

1

We say the feedback system is input-output stable provided e, u, and y are bounded signals
whenever r and d are bounded signals; briefly, the system from (r, d) to (e, u, y) is BIBO stable.
This is equivalent to saying that the 6 transfer funtions from (r, d) to (e, u, y) are stable, in the
sense that all poles are in Re s < 0. It suffices to look at the 4 transfer functions from (r, d) to
(e, u), namely,

1
1 + PC

−P
1 + PC

C

1 + PC

1
1 + PC

 .

(Proof: If r and e are bounded, so is y = r − e.)
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Example 4.1.5

P (s) =
1

s2 − 1
, C(s) =

s− 1
s+ 1

The 4 transfer functions are

[
E
U

]
=


(s+ 1)2

s2 + 2s+ 2
s+ 1

(s− 1)(s2 + 2s+ 2)

(s+ 1)(s− 1)
s2 + 2s+ 2

(s+ 1)2

s2 + 2s+ 2


[
R
D

]
.

Three of these are stable; the one from D to E is not. Consequently, the feedback system is not
input-output stable. This is in spite of the fact that a bounded r produces a bounded y. Notice
that the problem here is that C cancels an unstable pole of P . As we’ll see, that isn’t allowed.

2

Example 4.1.6

P (s) =
1

s− 1
, C(s) = k

The feedback system is input-output stable iff k > 1 (check). 2

We now look at two ways to test feedback IO stability. The first is in terms of numerator and
denominator polynomials:

P =
Np

Dp
, C =

Nc

Dc
.

We assume (Np, Dp) are coprime, i.e., have no common factors, and (Nc, Dc) are coprime too.
The characteristic polynomial of the feedback system is defined to be NpNc +DpDc.

Example 4.1.7

P (s) =
1

s2 − 1
, C(s) =

s− 1
s+ 1

The characteristic polynomial is

s− 1 + (s2 − 1)(s+ 1) = (s− 1)(s2 + 2s+ 2).

2

Theorem 4.1.1 The feedback system is input-output stable iff the char poly has no roots in Re s ≥
0.
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Proof We have 1
1+PC

−P
1+PC

C
1+PC

1
1+PC

 =
1

NpNc +DpDc

[
DpDc −NpDc

NcDp DpDc

]
. (1)

(⇐ Sufficiency) If NpNc + DpDc has no roots in Re s ≥ 0, then the four transfer functions on the
left-hand side of (1) have no poles in Re s ≥ 0, and hence they are stable.
(⇒ Necessity) Conversely, assume the feedback system is stable, that is, the four transfer functions
on the left-hand side of (1) are stable. To conclude that NpNc + DpDc has no roots in Re s ≥ 0,
we must show that the polynomial NpNc + DpDc does not have a common factor with all four
numerators in (1), namely, DpDc, NpDc, NcDp. That is, we must show that the four polynomials

NpNc +DpDc, DpDc, NpDc, NcDp

do not have a common root. This part is left for you. 2

The second way to test feedback IO stability is as follows.

Theorem 4.1.2 The feedback system is input-output stable iff 1) the transfer function 1 + PC
has no zeros in Re s ≥ 0, and 2) the product PC has no pole-zero cancellations in Re s ≥ 0.

(Proof will be an exercise.)

Example 4.1.8

P (s) =
1

s2 − 1
, C(s) =

s− 1
s+ 1

Check that 1) holds but 2) does not. 2

The Routh-Hurwitz Criterion

In practice, one checks feedback stability using MATLAB to calculate the eigenvalues of Acl or
the roots of the characteristic polynomial. However, it is sometimes useful, and also of historical
interest, to have an easy test for simple cases.

Consider a general characteristic polynomial

p(s) = sn + an−1s
n−1 + ...+ a1s+ a0, ai real.

Let’s say p(s) is stable if all its roots have Re s < 0. The Routh-Hurwitz criterion is an algebraic
test for p(s) to be stable, without having to calculate the roots. Instead of studying the complete
criterion, here are the results for n = 1, 2, 3:

1. p(s) = s+ a0 : p(s) is stable (obviously) iff a0 > 0

2. p(s) = s2 + a1s+ a0 : p(s) is stable iff (∀i) ai > 0

3. p(s) = s3 + a2s
2 + a1s+ a0 : p(s) is stable ⇐⇒ (∀i) ai > 0 and a1a2 > a0 .
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4.2 The Internal Model Principle

A thermostat-controlled temperature regulator controls temperature to a prescribed setpoint. Like-
wise, cruise control in a car regulates the speed to a prescribed setpoint. What is the principle
underlying their operation? The answer lies in the final value theorem (FVT).

Example 4.2.1

Brief Article

The Author

February 1, 2008

C(s) P (s)
−

e(t)r(t)

1

Take the controller and plant

C(s) =
1
s
, P (s) =

1
s+ 1

.

Let r be a constant, r(t) = r0. Then we have

E(s) =
1

1 + P (s)C(s)
R(s)

=
s(s+ 1)
s2 + s+ 1

r0

s

=
s+ 1

s2 + s+ 1
r0

The FVT applies to E(s), and e(t) → 0 as t → ∞. Thus the feedback system provides perfect
asymtotic tracking of a step input! How it works: C(s) contains an internal model of R(s) (i.e., an
integrator); closing the loop creates a zero from R(s) to E(s) exactly to cancel the unstable pole
of R(s). (This isn’t illegal pole-zero cancellation.) 2

Example 4.2.2

This time take

C(s) =
1
s
, P (s) =

2s+ 1
s(s+ 1)

and take r to be a ramp, r(t) = r0t. Then R(s) = r0/s
2 and so

E(s) =
s+ 1

s3 + s2 + 2s+ 1
r0.

Again e(t) → 0; perfect tracking of a ramp. Here C(s) and P (s) together provide the internal
model, a double integrator. 2

Let’s generalize:
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Theorem 4.2.1 Assume P (s) is strictly proper, C(s) is proper, and the feedback system is stable.
If P (s)C(s) contains an internal model of the unstable part of R(s), then perfect asymptotic tracking
occurs, i.e., e(t)→ 0.

Example 4.2.3

R(s) =
r0

s2 + 1
, P (s) =

1
s+ 1

Design C(s) to achieve perfect asymptotic tracking of the sinusoid r(t), as follows. From the
theorem, we should try something of the form

C(s) =
1

s2 + 1
C1(s),

that is, we embed an internal model in C(s), and allow an additional factor to achieve feedback
stability. You can check that C1(s) = s works. Notice that we have effectively created a notch filter
from R to E, a notch filter with zeros at s = ±j. 2

Example 4.2.4

An inverted pendulum balanced on your hand.

Brief Article

The Author

February 1, 2008

Mg

M

u

L

θ

u + Lθ

1

The equation is

ü+ Lθ̈ = Mgθ.

Thus

s2U + s2Lθ = Mgθ.

So the transfer function from u to θ equals

−s2

Ls2 −Mg
.

Step tracking and internal stability are not simultaneously achievable. 2
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4.3 Principle of the Argument

This section and the following two develop the Nyquist stability criterion.

Consider a closed path D in the s-plane, with no self-intersections and with negative, i.e.,
clockwise (CW) orientation.

Brief Article

The Author

February 2, 2008

s-plane

D

1

Let G(s) be a rational function. As s goes once around D from any starting point, the point G(s)
traces out a closed curve denoted G, the image of D under G(s).

Example 4.3.1

G(s) = s− 1

Brief Article

The Author

February 2, 2008

G

G-plane

G(s)

D

1

s

s − 1

s-plane

1

D encircles one zero of G(s); G encircles the origin once CW. 2

Example 4.3.2

G(s) = s− 1
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Brief Article

The Author

February 2, 2008

s

s − 1

1

GD

1

D encircles no zero of G(s); G has no encirclements of the origin. 2

Example 4.3.3

G(s) =
1

s− 1

Brief Article

The Author

February 2, 2008

s − 1

G

D

s

1

D encircles one pole; G encircles the origin once counterclockwise (CCW). 2

Theorem 4.3.1 Suppose G(s) has no poles or zeros on D, but D encloses n poles and m zeros
of G(s). Then G encircles the origin exactly n−m times CCW.

Proof Write

G(s) = K

∏
i(s− zi)∏
i(s− pi)

with K a real gain, {zi} the zeros, and {pi} the poles. Then for every s on D

arg(G(s)) = arg(K) + Σ arg(s− zi)− Σ arg(s− pi).

If zi is enclosed by D, the net change in arg(s − zi) is −2π; otherwise the net change is 0. Hence
the net change in arg(G(s)) equals m(−2π)− n(−2π), which equals (n−m)2π. 2

The special D we use for the Nyquist contour is
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Brief Article

The Author

February 2, 2008

radius → ∞

1

Then G is called the Nyquist plot of G(s). If G(s) has no poles or zeros on D, then the Nyquist
plot encircles the origin exactly n−m times CCW, where n equals the number of poles of G(s) in
Re s > 0 and m equals the number of zeros of G(s) in Re s > 0. From this follows

Theorem 4.3.2 Suppose G(s) has no poles on D. Then G(s) has no zeros in Re s ≥ 0 ⇔ G
doesn’t pass through the origin and encircles it exactly n times CCW, where n equals the number of
poles in Re s > 0.

Note that G(s) has no poles on D iff G(s) is proper and G(s) has no poles on the imaginary axis,
and G(s) has no zeros on D iff G(s) is not strictly proper and G(s) has no zeros on the imaginary
axis.

In our application, if G(s) actually does have poles on the imaginary axis, we have to indent
around them. You can indent either to the left or to the right; we shall always indent to the right:

Brief Article

The Author

February 2, 2008

x

x

x

x

D

poles

1

4.4 Nyquist Stability Criterion (1932)

This beautiful stability criterion is due to a mathematician, Harry Nyquist, who worked at AT&T
and was asked by some engineers to study the problem of stability in feedback amplifiers.

The setup is

Brief Article

The Author

February 2, 2008

P (s)
−

KC(s)

1

where K is a real gain. We’re after a graphical test for stability involving the Nyquist plot of
P (s)C(s).
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The assumptions are that P (s), C(s) are proper, with P (s)C(s) strictly proper, the product
P (s)C(s) has no pole-zero cancellations in Re s ≥ 0, and K 6= 0.

Theorem 4.4.1 Let n denote the number of poles of P (s)C(s) in Re s > 0. Construct the
Nyquist plot of P (s)C(s), indenting to the right around poles on the imaginary axis. Then the
feedback system is stable iff the Nyquist plot doesn’t pass through − 1

K and encircles it exactly n
times CCW.

Proof Define G(s) = 1 + KP (s)C(s). By Theorem 4.3.2, the feedback system is stable iff G(s)
has no zeros in Re s ≥ 0. Note that G(s) and P (s)C(s) have the same poles in Re s ≥ 0, so
G(s) has precisely n there. Since D indents around poles of G(s) on the imaginary axis and since
G(s) is proper, G(s) has no poles on D. Thus by Theorem 4.1.2, the feedback system is stable
⇔ the Nyquist plot of G(s) doesn’t pass through 0 and encircles it exactly n times CCW. Since

P (s)C(s) =
1
K
G(s)− 1

K
, this latter condition is equivalent to: the Nyquist plot of P (s)C(s) doesn’t

pass through − 1
K and encircles it exactly n times CCW. 2

4.5 Examples

Example 4.5.1 PC(s) =
1

(s+ 1)2

Re PC(jω) =
1− ω2

(1− ω2)2 + (2ω)2
, Im PC(jω) =

−2ω
(1− ω2)2 + (2ω)2

Brief Article

The Author

February 2, 2008

1

B

A

C

D

B, C A

Nyquist plot of PC

1

n = 0. Therefore the feedback system is stable iff −1/K < 0 or −1/K > 1; that is, K > 0 or
−1 < K < 0; that is, K > −1,K 6= 0. The condition K 6= 0 is ruled out by assumption. But we
can check now that the feedback system actually is stable for K = 0. So finally the condition is
K > −1. 2

Example 4.5.2 PC(s) =
s+ 1
s(s− 1)

Re PC(jω) = − 2
ω2 + 1

, Im PC(jω) =
1− ω2

ω(ω2 + 1)
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Brief Article

The Author

February 2, 2008

xx

D

D
A

B

C D

-1

-2

A

B, C

1

n = 1. Feedback stability iff −1 < −1/K < 0; equivalently, K > 1. 2

Example 4.5.3 PC(s) =
1

(s+ 1)(s2 + 1)

Re PC(jω) =
1

1− ω4
, Im PC(jω) =

−ω
1− ω4

Brief Article

The Author

February 2, 2008

x

x

x

x
C

D

A

G

E

D

C

+1 G

A

BF

E
D

1

-1

B

F

1

n = 0. Feedback stability iff −1/K > 1; equivalently, −1 < K < 0. 2

Shortcuts:

1. Principle of conformal mapping.

2. If an indentation in D bypasses a pole of multiplicity k, the Nyquist plot will go through kπ
radians.

4.6 Stability and Bode Plots

Control design is typically done in the frequency domain using Bode plots. For this reason it’s
useful to translate the Nyquist criterion into a condition on Bode plots.

First, let’s review the drawing of Bode plots. (You’re likely to be unfamiliar with these when
the plant has right half-plane poles or zeros.) We consider only rational G(s) with real coefficients.
Then G(s) has a numerator and denominator, each of which can be factored into terms of the
following forms:

1. gain: K
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2. pole or zero at s = 0 : sn

3. real nonzero pole or zero : τs± 1

4. complex conjugate pole or zero :
1
ω2
n

(s2 ± 2ζωns+ ω2
n), ωn > 0, 0 ≤ ζ < 1

For example

G(s) =
40s2(s− 2)

(s− 5)(s2 + 4s+ 100)

=
40× 2
5× 100

s2(1
2s− 1)

(1
5s− 1)[ 1

100(s2 + 4s+ 100)]
.

As an intermediate step, we introduce the polar plot : ImG(jω) vs Re G(jω) as ω : 0→∞.
We now look at polar and Bode plots for each of the four terms.
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1. G(s) = K

Brief Article

The Author

February 2, 2008

polar plot

K > 0
K

|G(jω)|

10

K

1
0.1

loglog scale

10
0

0.1

semilog scale

deg

arg(G(jω))

arg(G)

1

1

ω

ω

1

Brief Article

The Author

February 2, 2008

polar plot

K < 0

K

K

1

|G|

ω

ω

arg(G)
0
◦

−180◦

1
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2. G(s) = sn, n ≥ 1

Brief Article

The Author

February 2, 2008

0.1

1 10

1

0.1

0.1

1 10

1

0.1

|G|
10 n

ω

n = 2

n = 3
arg(G)

180

270

90

0

n = 1

n = 4, 8, ...

n = 3, 7, ...

n = 2, 6, ...

n = 1, 5, ...

polar plot

1



4.6. STABILITY AND BODE PLOTS 75

3. G(s) = τs+ 1, τ > 0

Brief Article

The Author

February 2, 2008

11

1 decade

= |1 + j| =
√

2 = 3dB

1

|G|

exact

approx

+1

polar plot

max
error

G(jω) = 1 + jτω

LHP zero

1

τ
= corner freq.

approx

exact

0.1

τ

10

τ

arg(G)

90◦

0◦

1
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G(s) = τs− 1, τ > 0

Brief Article

The Author

February 2, 2008

!1!1

G(jω) = −1 + jτω

RHP zero

|G|

same as for τs + 1

180

90

0

0.1

τ

arg(G)

1

τ

10

τ

polar plot

1
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4. G(s) = 1
ω2

n

(
s2 + 2ζωns+ ω2

n

)
, ωn > 0, 0 < ζ < 1

G(jω) =
1
ω2
n

[
(ω2
n − ω2) + j2ζωnω

]

0.1ωn ωn

90

approx

10ωn

180

arg(G)

polar plot

j2ζ

1

at
ω = ωn

1

2

exact ζ <
1√
2

approx

exact ζ > 1/
√

2

ωn

|G|

2
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G(s) =
1
ω2
n

(s2 + ω2
n), ωn > 0 (i.e., ζ = 0)

Brief Article

The Author

February 2, 2008

1

polar plot

1

polar plot

1

|G| approx

exact
ωn

180

0
ωn

arg(G)

1
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G(s) =
1
ω2
n

(s2 − 2ζωns+ ω2
n), ωn > 0, 0 < ζ < 1

Brief Article

The Author

February 2, 2008

1
polar plot

1
polar plot

|G|

1

same as for G(s) =
1

ω2
n

(s2 + 2ζωns + ω2

n
)

0

-90

-180

0.1ωn ωn 10ωn

1



80 CHAPTER 4. FEEDBACK CONTROL THEORY

Example 4.6.1 G1(s) =
1

s+ 10
= 0.1

1
0.1s+ 1

minimum phase TF

0.1

polar plot is a semicircle:

|G(jω) − 0.05| = 0.05

-1

10 100

10 1001

0.1

1
|G1|

-90

0

arg(G1)

0.01

1

2

2
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Example 4.6.2 G2(s) =
1− s
1 + s

allpass TF

polar plot

1

|G2|

0

arg(G2)

-180

0.1 1 10

2

2
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Example 4.6.3

G3 = G1G2 nonminimum phase TF

G3(s) =
1

s+ 10
1− s
1 + s

|G3(jω)| = |G1(jω)|
arg(G3) = arg(G1) + arg(G2) ≤ arg(G1)

Brief Article

The Author

February 2, 2008

!90

!180

!270

0.1 1 10 100

!90

!180

!270

0.1 1 10 100

arg(G2)

arg(G1)

arg(G3)

phase lag at ω = 10

1

Of all TFs having the magnitude plot |G1|, G1 has the minimum phase lag at every ω. 2
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Using the principles developed so far, you should be able to sketch the approximation of the
Bode plot of

G(s) =
40s2(s− 2)

(s− 5)(s2 + 4s+ 100)

= 0.16
s2(1

2s− 1)
(1

5s− 1)[ 1
100(s2 + 4s+ 100)]

.

Now let’s see how to deduce feedback stability from Bode plots.

Example 4.6.4

Brief Article

The Author

February 2, 2008

C(s) P (s)
−

1

C(s) = 2, P (s) =
1

(s+ 1)2

The Nyquist plot is

Brief Article

The Author

February 2, 2008

!1!1 2

critical pt

this angle is
called the
phase margin

1

There are no encirclements of the critical point, so the feedback system is stable. The Bode plot of
PC is
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Brief Article

The Author

February 2, 2008

0.1 10

1

crossover frequency

this is called the gain

phase
margin

0

arg(PC)

0.1

-180

1

|PC|
1

2

10

ωgc

1

2
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Example 4.6.5

C(s) = 2, P (s) =
1

(s+ 1)2(0.1s+ 1)

Brief Article

The Author

February 2, 2008

(half shown)
2crit.pt.

-1

Nyquist :
−

1

12.1

1

Stable for C(s) = 2K and − 1
K

< − 1
12.1

. Thus max K = 12.1 = 21.67 dB. See how this appears
on the Bode plot. 2
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Frequency (rad/sec)

P
h
a
s
e
 (

d
e
g
)
; 
M

a
g
n
it
u
d
e
 (

d
B

)

Bode Diagrams

!100

!80

!60

!40

!20

0

20

Gm=21.656 dB (at 4.5826 rad/sec), Pm=84.6 deg. (at 0.99507 rad/sec)

10
!1

10
0

10
1

10
2

!300

!250

!200

!150

!100

!50

0

Figure 4.1: Example 4.6.5
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Example 4.6.6 C(s) = 2, P (s) =
s+ 1
s(s− 1)

The Nyquist plot of PC has the form

Brief Article

The Author

February 2, 2008

-2

1

The critical point is -1 and we need 1 CCW encirclement, so the feedback system is stable. The
phase margin on the Nyquist plot:

Brief Article

The Author

February 2, 2008

-1

36.9◦

1

If C(s) = 2K, K can be reduced until − 1
K

= −2, i.e., min K =
1
2

= 6 dB. The Bode plot is shown
on the next page. MATLAB says the gain margin is negative! So MATLAB is wrong. Conclusion:
We need the Nyquist plot for the correct interpretation of the stability margins.

2
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Frequency (rad/sec)

P
h
a
s
e
 (

d
e
g
)
; 
M

a
g
n
it
u
d
e
 (

d
B

)

Bode Diagrams

!20

!10

0

10

20

30

40

50

Gm=!6.0206 dB (at 1 rad/sec), Pm=36.87 deg. (at 2 rad/sec)

10
!2

10
!1

10
0

10
1

!300

!250

!200

!150

!100

Figure 4.2: Example 4.6.6
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Let’s recap: The phase margin is related to the distance from the critical point to the Nyquist
plot along the unit circle; the gain margin is related to the distance from the critical point to the
Nyquist plot along the real axis. More generally, it makes sense to define the stability margin to
be the distance from the critical point to the closest point on the Nyquist plot:

Brief Article

The Author

February 2, 2008

C(s) P (s)
−

r

S(s)

e

1

Define

S = TF from r to e

=
1

1 + PC
.

Assume feedback system is stable. Then

stability margin = dist (-1, Nyquist plot of PC)
= min

ω
| − 1− P (jω)C(jω)|

= min
ω
|1 + P (jω)C(jω)|

= [max
ω
|S(jω)|]−1

= reciprocal of peak magnitude on Bode plot of S

Example 4.6.6 (Cont’d)

Brief Article

The Author

February 2, 2008

1.7832

|S|
1

stability margin =
1

1.7832
= 0.56

1

2

4.7 Problems

1. Consider the block diagram in Example 4.1.4. Let d be a disturbance entering the summing
junction between P1 and P2. Find the transfer function from d to y.
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2. Consider the feedback control system

C(s) P (s)- j - - -

6

r e

−

where P (s) = 1/(s+ 1) and C(s) = K.

(a) Find the minimum K > 0 such that the steady-state absolute error |e(t)| is less than or
equal to 0.01 when r is the unit step.

(b) Find the minimum K > 0 such that the steady-state absolute error |e(t)| is less than or
equal to 0.01 for all inputs of the form

r(t) = cos(ωt), 0 ≤ ω ≤ 4.

3. Same block diagram but now with

P (s) =
1

s2 − 1
, C(s) =

s− 1
s+ 1

.

Is the feedback system internally stable?

4. Prove Theorem 4.1.2.

5. Consider the feedback control system

C(s) P (s)- j - - -

6

r e

−

with

P (s) =
5

s+ 1
, C(s) = K1 +

K2

s
.

It is desired to find constants K1 and K2 so that (i) the closed-loop poles (i.e., roots of the
characteristic polynomial) lie in the half-plane Re s < −4 (this is for a desired speed of
transient response), and (ii) when r(t) is the ramp of slope 1, the final value of the absolute
error |e(t)| is less than or equal to 0.05. Draw the region in the (K1,K2)-plane for which these
two specs are satisfied.

6. Same block diagram except also with a disturbance d(t) entering just before the plant. Suppose
P (s) = 5/(s+1), r(t) = 0, and d(t) = sin(10t)1+(t). Design a proper C(s) so that the feedback
system is stable and e(t) converges to 0.
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7. This problem introduces SIMULINK, a GUI running above MATLAB. An introduction to
SIMULINK is appended.

Build a SIMULINK model of the setup in Problem 5. Select K1,K2 as computed to achieve
the desired specs. Simulate for r(t) the unit ramp and display e(t). Feel free to play with
K1,K2 to see their effect.

To be handed in: A printout of your SIMULINK diagram; A printout of your plot of e(t).

8. Consider the feedback system

KC(s) P (s)j- - - -

6−

with

P (s) =
s+ 2
s2 + 2

, C(s) =
1
s
.

Sketch the Nyquist plot of PC. How many encirclements are required of the critical point for
feedback stability? Determine the range of real gains K for stability of the feedback system.

9. Repeat with

P (s) =
4s2 + 1
s(s− 1)2

, C(s) = 1.

10. Repeat with

P (s) =
s2 + 1

(s+ 1)(s2 + s+ 1)
, C(s) = 1.

11. Sketch the Nyquist plot of

G(s) =
s(4s2 + 5s+ 4)

(s2 + 1)2
.

How many times does it encircle the point (1, 0)? What does this say about the transfer
function G(s)− 1?

12. Consider the transfer function

P (s) =
−0.1s+ 1

(s+ 1)(s− 1)(s2 + s+ 4)
.

Draw the piecewise-linear approximation of the Bode phase plot of P

13. Consider the standard feedback system with C(s) = K. The Bode plot of P (s) is given below
(magnitude in absolute units, not dB; phase in degrees). The phase starts at −180◦ and ends
at −270◦. You are also given that P (s) has exactly one pole in the right half-plane. For what
range of gains K is the feedback system stable?
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14. Consider the standard feedback system with

C(s) = 16, P (s) =
1

(s+ 1)(30s+ 1)(s2/9 + s/3 + 1)
e−s.

This plant has a time delay, making the transfer function irrational. It is common to use a
Padé approximation of the time delay. The second order Padé approximation is

e−s =
s2 − 6s+ 12
s2 + 6s+ 12

,

which is a rational allpass function. Using this approximation in P (s), graph using MATLAB
the Bode plot of P (s)C(s). Can you tell from the Bode plot that the feedback system is
stable? Use MATLAB to get the gain and phase margins. Finally, what is the stability
margin (distance from the critical point to the Nyquist plot)?

15. Consider

P (s) =
10

s2 + 0.3s+ 1
, C(s) = 5.

The magnitude Bode plot (in dB vs rad/s) of the sensitivity function, S, is shown below.

(a) Show that the feedback system is stable by looking at the closed-loop characteristic
polynomial.

(b) What is the distance from the critical point to the Nyquist plot of PC?

(c) If r(t) = cos(t), what is the steady-state amplitude of the tracking error e(t)?
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SIMULINK Primer

The following is a basic primer on using SIMULINK. To start, you can launch SIMULINK by
typing

>> simulink

Once you complete the SIMULINK block diagram and save it to a file (say Myfile.mdl), you
can automatically launch your SIMULINK file by typing Myfile at the MATLAB prompt.

When you start SIMULINK, two windows will pop up, a window where you can design your
block diagram, and a library window that contains all the elementary blocks (it is shown below).

The SIMULINK library is divided into six sections. They are listed below with a brief description
of their content.
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Chapter 5

Introduction to Control Design

5.1 Loopshaping

In this chpater we look at the basic technique of controller design in the frequency domain. We
start with the unity feedback loop:

Brief Article

The Author

February 2, 2008

−

r e
C P y

1

The design problem is this: Given P , the nominal plant transfer function, maybe some uncertainty
bounds, and some performance specs, design an implementable C. The performance specs would
include, as a bare minimum, stability of the feedback system. The simplest situation is where the
performance can be specified in terms of the transfer function

S :=
1

1 + PC
,

which is called the sensitivity function.
Aside: Here’s the reason for this name. Denote by T the transfer function from r to y, namely,

T =
PC

1 + PC
.

Of relevance is the relative perturbation in T due to a relative perturbation in P :

lim
∆P→0

∆T/T
∆P/P

= lim
∆P→0

∆T
∆P

P

T

=
dT

dP
· P
T

=
d

dP

(
PC

1 + PC

)
· P · 1 + PC

PC

= S.

So S is a measure of the sensitivity of the closed-loop transfer function to variations in the plant
transfer function.

95
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For us, S is important for two reasons: 1) S is the transfer function from r to e. Thus we want
|S(jω)| to be small over the range of frequencies of r. 2) The peak magnitude of S is the reciprocal
of the stability margin. Thus a typical desired magnitude plot of S is

Brief Article

The Author

February 2, 2008

1

M

|S(jω)|
ω1

ω

ε

1

Here ω1 is the maximum frequency of r, ε is the maximum permitted relative tracking error, ε < 1,
and M is the maximum peak magnitude of |S|, M > 1. If |S| has this shape and the feedback
system is stable, then for the input r(t) = cosωt, ω ≤ ω1 we have |e(t)| ≤ ε in steady state, and
the stability margin 1/M . A typical value for M is 2 or 3. In these terms, the design problem can
be stated as follows: Given P, M, ε, ω1; Design C so that the feedback system is stable and |S|
satisfies |S(jω)| ≤ ε for ω ≤ ω1 and |S(jω)| ≤M for all ω.

Example 5.1.1

P (s) =
10

0.2s+ 1

This is a typical transfer function of a DC motor. Let’s take a PI controller:

C(s) = K1 +
K2

s
.

Then any M, ε, ω1 are achievable by suitable K1, K2. To see this,

S(s) =
1

1 + 10(K1s+K2)
S(0.2s+1)

=
s(0.2s+ 1)

0.2s2 + (1 + 10K1)s+ 10K2

=
5s(0.2s+ 1)
(s+K3)2

for suitable K1, K2, where K3 is now freely designable. Sketch the Bode plot S and confirm that
any M > 1, ε < 1, ω1 can be achieved. 2

In practice it is common to combine interactively the shaping of S with a time-domain simulation.
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Now, S is a nonlinear function of C. So in fact it is easier to design the loop transfer function

L := PC instead of S =
1

1 + L
. Notice that

|L| >> 1⇒ |S| ≈ 1
|L|

.

A typical desired plot is

Brief Article

The Author

February 2, 2008

ω1

1

ε |PC| = |L|

ω1

|P |

1

In shaping |L|, we don’t have a direct handle on the stability margin, unfortunately. However, we
do have control over the gain and phase margins, as we’ll see.

In the next two sections we present two simple loopshaping controllers.

5.2 Lag Compensation

We separate the controller into two parts, K and C1, the latter having unity DC gain:

Brief Article

The Author

February 2, 2008

αTs + 1

Ts + 1
K

r
P (s)

−

C(s)

e

C1(s)

y

1

The parameters in C are α (0 < α < 1), T > 0, K > 0. The approximate Bode plot of C1 is
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Brief Article

The Author

February 2, 2008

0

arg(C1)

-90

|C1|

1

benefit = gain reduction

1

T

ω

ω

10

αT

α

1

αT

without phase lag

1

An example design using this type of compensator follows next.

Example 5.2.1 The plant transfer function is P (s) =
1

s(s+ 2)
. Let there be two specs:

1. When r(t) is the unit ramp, the steady-state tracking error ≈ 5 %.

2. PM ≈ 45◦ for adequate damping in transient response.

Step 1 Choose K to get spec 1:

E =
1

1 + PC
R

E(s) =
1

1 + K
s(s+2)

αTs+1
Ts+1

1
s2

=
(s+ 2)(Ts+ 1)

s(s+ 2)(Ts+ 1) +K(αTs+ 1)
1
s

e(∞) =
2
K

So spec 1 ⇔ 2
K = 0.05⇔ K = 40. Then

KP (s) =
40

s(s+ 2)
.

Step 2 For KP we have ωgc = 6, PM = 18◦. To increase the PM (while preserving spec
1), we’ll use a lag compensator C1(s). The design is shown on the Bode plots. We
want PM ≈ 45◦.

Add 4.6◦ for safety: 49.6◦

argKP = −180 + 49.6 = −130.4 when ω = 1.7
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Set new ωgc = 1.7.

|KP | = 19 dB = 8.96 at new ωgc

∴ set α = 1/8.96 = 0.111

Set 10
αT = 1.7⇒ T = 52.7

Final exact PM = 180-135.4 = 44.6◦

Final controller

C(s) = K
αTs+ 1
Ts+ 1

, K = 40, α = 0.111, T = 52.7
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Figure 5.3: Example 5.3.1
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Step responses are shown on the next plot. The step response of KP/(1 +KP ), that is, the plant
compensated only by the gain for spec 1, is fast but oscillatory. The step response of PC/(1 +PC)
is slower but less oscillatory, which was the goal of spec 2.
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Figure 5.4: Example 5.3.1
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5.3 Lead Compensation

Brief Article

The Author

February 2, 2008

αTs + 1

Ts + 1
K

r
P (s)

−

C(s)

e

C1(s)

y

1

The parameters in C are α (α > 1), T > 0, K > 0. The approximate Bode plot of C1 is

Brief Article

The Author

February 2, 2008

1
ωmax

α
|C1|

90

arg(C1)

benefit = phase lead

0

ϕmax

1

αT
1

T

1

The angle ϕmax is defined as the maximum of arg(C1(jω)), and ωmax is defined as the frequency at
which it occurs.

We’ll need three formulas:

1. ωmax : This is the midpoint between 1
αT and 1

T on the logarithmically scaled frequency axis.
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Thus

logωmax =
1
2

(
log

1
αT

+ log
1
T

)
=

1
2

log
1
αT 2

= log
1

T
√
α

⇒ ωmax =
1

T
√
α
.

2. The magnitude of C1 at ωmax : This is the midpoint between 1 and α on the logarithmically
scaled |C1| axis. Thus

log |C1(jωmax)| = 1
2

(log 1 + logα)

= log
√
α

⇒ |C1(jωmax)| =
√
α.

3. ϕmax : This is the angle of C1(jωmax). Thus

ϕmax = argC1(jωmax)

= arg
1 +
√
αj

1 + 1√
α
j
.

By the sine law

sinϕmax√
α− 1√

α

=
sin θ√
1 + 1

α

:

Brief Article

The Author

February 2, 2008

√

α
θ

1
√

α

1

ϕmax

1
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But sin θ = 1√
1+α

. Thus

sinϕmax =
(√

α− 1√
α

)
1

√
1 + α

√
1 + 1

α

=
α− 1
α+ 1

,

and hence

ϕmax = sin−1 α− 1
α+ 1

.

Example 5.3.1

Let’s do the same example as we did for lag compensation. Again, we choose K = 40 to achieve
spec 1. The phase margin is then only 18◦ at a gain crossover frequency of 6 rad/s. We design a
lead compensator C1 to bump up the phase margin as follows. The problem is a little complicated
because we can only guess what the new gain crossover frequency will be.

Step 1 We need at least 45− 18 = 27◦ phase lead. Increase by 10% (a guess). Say 30◦. We have

sin 30◦ =
α− 1
α+ 1

⇒ α = 3.

Step 2 We want to make ωmax the new gain crossover frequency. Thus at this frequency we will

be increasing the gain by
√
α = 1.732 = 4.77 dB. Now |KP | = 1

1.732
= −4.77 dB at ω = 8.4 rad/s.

Thus we set

ωmax = 8.4 ⇒ 1
T
√
α

= 8.4 ⇒ T = 0.0687.

The PM achieved is 44◦. See the Bode plots. The controller is

C(s) = K
αTs+ 1
Ts+ 1

, K = 40, α = 3, T = 0.0687.



5.3. LEAD COMPENSATION 105

5.2. LAG COMPENSATION 103

!50

0

50

100

150

10
!4

10
!3

10
!2

10
!1

10
0

10
1

!180

!160

!140

!120

!100

!80

dB 

deg 

Bode plots 

|KP| 

|PC| 

arg(KP) 

arg(PC) 

rad/s 

Figure 5.1: Example 5.2.1

Finally, see the closed-loop step responses.
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Figure 5.2: Example 5.2.1

You can compare the results of lag compensation versus lead compensation. They both increased
the phase margin to the desired value, but the lead compensator produces a faster response.

5.4 Loopshaping Theory

In this section we look at some theoretical facts that we have to keep in mind while designing
controllers via loopshaping.

5.4.1 Bode’s phase formula

It is a fundamental fact that if L = PC is stable and minimum phase and normalized so that
L(0) > 0 (positive DC gain), then the magnitude Bode plot uniquely determines the phase Bode
plot. The exact formula is rather complicated, and is derived using Cauchy’s integral theorem. Let
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ω0 = any frequency

u = normalized frequency = ln
ω

ω0
, i.e., eu = ω

ω0

M(u) = normalized log magnitude = ln |L(jω0e
u)|.

W (u) = weighting function = ln coth
|u|
2

.

Recall that

cothx =
coshx
sinhx

=
ex + e−x

ex − e−x
.

The phase formula is

arg(L(jω0)) =
1
Π

∞∫
−∞

dM(u)
du

W (u)du in radians. (5.1)

This shows that arg(L(jω0)) can be expressed as an integral involving |L(jω)|.

It turns out we may approximate the weighting function as W (u) ≈ π2

2
δ(u). Then the phase

formula (5.1) gives

arg(L(jω0)) ≈ π

2
dM(u)
du

∣∣∣∣
u=0

(5.2)

As an example, consider the situation where

L(jω) =
c

ωn
near ω = ω0.

Thus −n is the slope of the magnitude Bode plot near ω = ω0. Then

|L(jω0e
u)| = c

ωn0 e
nu

⇒M(u) = ln |L(jω0e
u)| = ln

c

ωn0
− nu

⇒ dM(u)
du

= −n

⇒ arg(L(jω0)) = −nπ
2

from (5.2).

Thus we arrive at the observation: If the slope of |L(jω)| near crossover is −n, then arg(L(jω)) at
crossover is approximately −nπ

2
. Warning This derivation required L(s) to be stable, minimum

phase, positive DC gain.
What we learn from this observation is that in transforming |P | to |PC| via, say, lag or lead

compensation, we should not attempt to roll off |PC| too sharply near gain crossover. If we do,
arg(PC) will be too large near crossover, resulting in a negative phase margin and hence instability.
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5.4.2 The waterbed effect

This concerns the ability to achieve the following spec on the sensitivity function S:

Brief Article

The Author

February 2, 2008
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ε

|S(jω)|

ω

M

ω1

1

Let us suppose M > 1 and ω1 > 0 are fixed. Can we make ε arbitrarily small? That is, can we get
arbitrarily good tracking over a finite frequency range, while maintaining a given stability margin
(1/M) ? Or is there a positive lower bound for ε? The answer is that arbitrarily good performance
in this sense is achievable if and only if P (s) is minimum phase. Thus, non-minimum phase plants
have bounds on achievable performance: As |S(jω)| is pushed down on one frequency range, it pops
up somewhere else, like a waterbed. Here’s the result:

Theorem 5.4.1 Suppose P (s) has a zero at s = z with Re z > 0. Let A(s) denote the allpass
factor of S(s). Then there are positive constants c1, c2, depending only on ω1 and z, such that

c1 log ε+ c2 logM ≥ log |A(z)−1| ≥ 0.

Example 5.4.1 P (s) =
1− s

(s+ 1)(s− p)
, p > 0, p 6= 1

Let C(s) be a stabilizing controller. Then

S =
1

1 + PC
⇒ S(p) = 0.

Thus
s− p
s+ p

is an allpass factor of S. There may be other allpass factors, so what we can say is that

A(s) has the form

A(s) =
s− p
s+ p

A1(s),

where A1(s) is some allpass TF (may be 1). In this example, the RHP zero of P (s) is s = 1. Thus

|A(1)| =
∣∣∣∣1− p1 + p

∣∣∣∣ |A1(1)|.
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Now |A1(1)| ≤ 1 (why?), so

|A(1)| ≤
∣∣∣∣1− p1 + p

∣∣∣∣
and hence

|A(1)−1| ≥
∣∣∣∣1 + p

1− p

∣∣∣∣ .
The theorem gives

c1 log ε+ c2 logM ≥ log
∣∣∣∣1 + p

1− p

∣∣∣∣ .
Thus, if M > 1 is fixed, log ε cannot be arbitrarily negative, and hence ε cannot be arbitrarily small.
In fact the situation is much worse if p ≈ 1, that is, if the RHP plant pole and zero are close. 2

5.5 Problems

1. Take P (s) = 0.1/(s2 + 0.7s+ 1). Design a lag compensator C(s) for the following two specs:

• The DC gain from r to e is 0.05.

• Phase margin of 30◦.

Include all Bode plots, together with closed-loop step responses.

2. For the plant P (s) = 1/s2 design a lead compensator to get a phase margin of 45◦ and a
gain crossover frequency of 10 rad/s. Include all Bode plots, together with closed-loop step
responses.

3. For the plant P (s) = 1/s(s+ 1) design a lead compensator to get a phase margin of 50◦ and
a gain crossover frequency of 2 rad/s. Include all Bode plots, together with closed-loop step
responses.

4. Consider

P (s) = 4
s− 2

(s+ 1)2
.

Suppose C(s) is a (proper) controller that stabilizes the feedback system and for which the
sensitivity function satisfies |S(jω)| ≤ 1.5 for all ω. Thus the stability margin (distance from
the critical point −1 to the Nyquist plot) equals 1/1.5. Suppose the operating frequency range
is from 0 to 0.1 rad/s. Then we would like the error magnitude |S(jω)| to be small over this
range. Since P (s) is non-minimum phase, this error magnitude cannot be arbitrarily small.
Give a positive lower bound for

max
0≤ω≤0.1

|S(jω)|.
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Epilogue

Here’s what I hope you learned:

• How to model simple mechanical systems.

• What it means for a system to be linear.

• The value of graphical simulation tools like Scicos and SIMULINK.

• Why we use transfer functions and the frequency domain.

• What stability means.

• What feedback is and why it’s important.

• What makes a system easy or hard to control.

• How to design a simple feedback loop.
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