UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, April 26, 2010 ECE356 - LINEAR SYSTEMS AND CONTROL Exam Type: C Calculator Type: 4 Examiner: M. Broucke

FAMILY NAME _____

GIVEN NAME(S)

STUDENT NUMBER

Instructions

No Calculators. Write your solutions clearly in the spaces provided below the problem statements. Use the back sides of the pages for rough work.

Problem	Mark
1	/40
2	/20
3	/20
4	/10
5	/20
Total	/110

1. Consider a hanging crane system depicted below.

The equations of motion, with normalized parameters, are

$$\ddot{\theta} + \sin \theta = -\ddot{z} \cos \theta$$
$$2\ddot{z} + \dot{z} + \ddot{\theta} \cos \theta - \dot{\theta}^2 \sin \theta = u .$$

Variable z is the position of the top of the crane, u is the force input, and θ is the angle of the load m_2 . The control objective is to maintain the load in the downward position $\overline{\theta} = 0$ without swinging.

- (a) Assume the state vector is $x = (z, \dot{z}, \theta, \dot{\theta})$ and the output is $y = \theta$. Find a nonlinear state model $\dot{x} = f(x, u), y = h(x, u)$.
- (b) Find all equilibrium pairs $(\overline{x}, \overline{u})$ appropriate for the control objective.
- (c) Assume $\overline{u} = 0$. Linearize the system in part (a) about the equilibrium \overline{x} in part (b).
- (d) Suppose the crane is carrying a heavy load so that the dynamics of the mass m_1 are negligible and $u = \ddot{z}$ is the new input to the system. The equations of motion of the load are:

$$\hat{\theta} + \sin \theta = -u \cos \theta \,.$$

Assume the state vector is $x = (\theta, \dot{\theta})$. Find a nonlinear state model $\dot{x} = f(x, u), y = h(x, u)$ for the reduced system.

- (e) Using the model of part (d), find all equilibrium pairs $(\overline{x}, \overline{u})$ appropriate for the control objective.
- (f) Linearize the system in part (d) about the equilibrium in part (e).
- (g) Using the model in part (f), design a linear state feedback $\tilde{u} = K\tilde{x}$ to stabilize the equilibrium pair (\bar{x}, \bar{u}) such that errors decay according to poles at $\{-1, -1\}$.
- (h) Sketch a block diagram of the closed-loop system, assuming the nonlinear model in part (d). Identify in your sketch: the plant, the controller, the sensor, the actuator, and the feedback loop. Also indicate the boundary between processes in the physical world and those on a computer.

2. Consider the feedback system

- (a) Show that if $C(s) = \widehat{C}(s)\frac{1}{s-1}$ and $\widehat{C}(s)$ is selected so that the CLS is stable, then $e_{ss} = \lim_{t\to\infty} e(t) = 0.$
- (b) Show that if C(s) is selected so that the CLS is stable and C(s) has no poles at s = 1, then $e_{ss} \neq 0$.

3. Consider the unity feedback system

(a) Draw the Nyquist plot for

$$PC(s) = \frac{1}{s}.$$

- (b) Use the Nyquist criterion to find the range of K such that the CLS is stable.
- (c) Verify your result in part (b) using the Routh Criterion.

4. A stable system G(s) has the following Bode plot

Find a controller C(s) such that:

- (i) The closed loop system is asymptotically stable.
- (ii) The phase margin of the closed-loop system satisfies $PM > 45^{\circ}$.

5. Consider the speed dynamics of a motor

$$\dot{x} = -3x + u \,,$$

where x is the state and u is the torque input. The motor speed y is subject to a constant bias whose amplitude is unknown. That is,

$$y = x + c,$$

where c represents the constant bias. The control objective is for the motor to track a desired reference speed $y_d(t) = 0$.

- (a) Propose an exosystem $\dot{w} = Sw$, $y_d = C_d w$ which models both the disturbance in the output y and the desired reference y_d .
- (b) Design an open-loop exact tracking controller u(t) and give plant initial conditions x(0) such that $e(t) = 0, t \ge 0$.
- (c) Design an asymptotic tracking controller such that $e(t) \rightarrow 0$ and error transients decay according to a pole at -10.
- (d) Design a robust regulator such that $e(t) \rightarrow 0$ and estimator error transients decay according to poles at $\{-30, -30\}$. Your final answer should be in the form of a state equation for the regulator.