
ECE356 - LINEAR SYSTEMS AND CONTROL

MIDTERM SOLUTIONS

1. (i) Write the logic definition of “the equilibrium x = 0 is stable i.s.L.”.

(ii) Write the definition of asymptotic stability of an equilibrium point.

(iii) State necessary and sufficient conditions for an equilibrium point x = 0 of ẋ = Ax

to be asymptotically stable.

(iv) Consider the system
ẋ = Ax ,

where x ∈ Rn. Suppose that x = 0 and x = v 6= 0 are both equilibria. Using (iii),
prove that x = 0 is not asymptotically stable.

(i) (∀ǫ > 0)(∃δ > 0)(∀t ≥ 0)‖x0‖ < δ =⇒ ‖x(t)‖ < ǫ.

(ii) We are given a system ẋ = f(x) and a point x0 ∈ Rn such that f(x0) = 0. We
say x0 is asymptotically stable if it is stable i.s.L. and it is attractive.

(iii)

Theorem 1. The equilibrium x = 0 of ẋ = Ax is asymptotically stable if and

only if the eigenvalues of A lie in the open left-half complex plane.

(iv) Since v ∈ Rn is an equilibrium of ẋ = Ax, we have

Av = 0 = 0v .

Since v 6= 0, it must be an eigenvector of A, and 0 is an eigenvalue. By Theorem 1,
x = 0 is not asymptotically stable.
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2. Consider the system

+

−
C(s) P (s)

ER(s) Y (s)

Σ

Prove that if the closed-loop transfer function Y (s)
R(s)

has a pole-zero cancellation, then

P (s)C(s) has a pole-zero cancellation.

Proof. Let

P (s) =
N(s)

D(s)
, C(s) =

Nc(s)

Dc(s)

where we assume without loss of generality that {N(s), D(s)} are coprime (i.e. they
have no common factors) and {Nc(s), Dc(s)} are coprime. The closed-loop transfer
function is

Y (s)

R(s)
=

P (s)C(s)

1 + P (s)C(s)
=

Nc(s)N(s)

Nc(s)N(s) +Dc(s)D(s)
=: H(s) .

Suppose there is a pole-zero cancellation in H(s). That is H(s) has the form

H(s) =
N̂(s)(s+ a)

D̂(s)(s+ a)

for some polynomials N̂(s) and D̂(s) and for some a ∈ C. Comparing with the previous
formula for H(s) we get

H(s) =
N̂(s)(s+ a)

N̂(s)(s+ a) +Dc(s)D(s)
.

Comparing the denominators we get

Dc(s)D(s) = (D̂(s)− N̂(s))(s+ a) .

Since
Nc(s)N(s) = N̂(s)(s+ a)

it follows that P (s)C(s) has a pole-zero cancellation of the factor (s+ a).
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3. Consider the system

+

−
C(s) P (s)

R(s) E Y (s)

Σ

where

P (s) =
1

(s+ 7)(s+ 11)
, C(s) =

K

s
.

(i) Find the range of K such that the closed-loop system is stable.

(ii) Suppose you are given a reference signal r(t), t ≥ 0. What are the conditions
on K and on PC(s) in order that perfect asymptotic tracking, i.e. ess = 0, is
achieved?

(iii) Suppose r(t) = 1, t ≥ 0. Can the given system achieve ess = 0? Justify briefly
using part (ii).

(i) We use the Routh Criterion. The Routh table is

s3 1 77 0
s2 18 K 0
s1 1386−K

18
0

s0 K

In order to have no sign changes in the first column, we must have

0 < K < 1386 .

(ii) For ess = 0 is is necessary that

(a) No unstable pole of the exosystem R(s) is a zero of PC(s).

(b) PC(s) contains a copy of the unstable poles of R(s). This is the internal

model principle.

(c) The poles of sE(s) are in the OLHP. We achieve this requirement by designing
C(s) so that the closed-loop system is asymptotically stable.

(iii) Yes, the system can achieve perfect asymptotic tracking. Conditions (a) and (b)
and are met by inspection. Also we can use the data from part (i) to set the loop
gain so that the closed-loop system is asymptotically stable.
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4. Consider the system

+

−
C(s) P (s)

ER(s) Y (s)

Σ

where

P (s) =
1

s2 + 4
, C(s) = K .

Use the Nyquist criterion to find the range of K such that the closed-loop system is
stable.

The Nyquist contour is shown in Figure 1.
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Figure 1: Nyquist contour.

• AB, CD: Set s = jω, where ω : 0 → ∞. We have

PC(jω) =
1

4− ω2
.

Thus, we have

ℜ(PC(jω)) =
1

4− ω2

ℑ(PC(jω)) = 0 .

The plot of ℜ((PC(jω)) for positive values of ω is shown in Figure 2.

• DE: Set s = Rejθ where R → ∞ and θ : π
2
→ −π

2
. Since PC is strictly proper,

the semi-circle at ∞ will collapse to zero.

• EF , GH: Use rules about complex conjugate.
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Figure 2: ℜ(PC) v.s. ω.

• BC : Set s = 2j + ǫejθ where ǫ → 0 and θ : −π
2
→ π

2
. This gives

PC(s)|s=2j+ǫejθ ∼
1

2jǫ
e−jθ .

Now we can try a test point s = 2j + ǫ and we get

PC(ǫ) ∼
−j

ǫ
.

This is a negative complex number which tells us which way the infinite radius
semicircle turns after departing from point B.

Putting all this together, the Nyquist plot is shown in Figure 3.
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Figure 3: Nyquist plot for Problem 4

Now we have the following cases.
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• −∞ < − 1
K

< 0
The nyquist plot passes through − 1

K
, so the c.l.s. is not stable.

• 0 < − 1
K

< 1
4

n = −1, p = 0, z = p− n = 1. The c.l.s. is not stable.

• 1
4
< − 1

K
< ∞

The nyquist plot passes through − 1
K
, so the c.l.s. is not stable.

In sum, the closed-loop system is not stable for any value of K. Notice that you can
also write the closed-loop transfer function

Y (s)

R(s)
=

K

s2 + 4 +K
.

The poles are always on the jω-axis, and we conclude that this system cannot be
stabilized by a P controller.
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5. Sketch the Bode plot (magnitude and phase) for

G(s) =
1000

s(s+ 100)
.

We must put the transfer function in Bode form

G(s) =
10

s(0.01s+ 1)
.

The straightline approximations of the gain and phase plots are:
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