University of Toronto
Department of Electrical and Computer Engineering
ECE410F Control Systems
Problem Set #1

1. Find a state space model of the following system.
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2. Find a linearized model about the equilibrium x = 0 of the following system:
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where a; > 0 are constant parameters. Next, assume x(0) = 0 and let u(t) = e 37(t) be
applied at ¢t = 0, where @ is a unit step function. Find an approximate solution to the system
above.

3. Find a state space model of the system
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4. The following model approximately describes the interaction of HIV and the CD4+ T cells
in the immune system:
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where z7 is the concentration of uninfected CD4+ T cells, xo is the concentration of free
infectious HIV virus particles, u; represents drug treatment one, and uo represents drug
treatment two. Find a linearized model of the system about the equilibrium point obtained
when w1 = 0 and us = 0. Asssume ¢; = 1, for ¢« = 1,...,7. Find the eigenvalues of the
resultant system. Is the system stable?



5. (a) Determine the transfer function from w to y for the linear system
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(b) Repeat for the linear system
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and verify that the 2 transfer functions are the same.

(¢) The above results show that the choice of state variables is not unique. Indeed, both
state representations describe the second order scalar differential equation

J4ay+by =u+ cu
Determine how the state variables from parts 1 and 2 are defined in terms of y and wu.

6. Consider the linear system
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(a) Determine its transfer function from u to y, and verify that it is stable.

(b) Show that in general, the total response, which includes the initial condition response,
results in the output y increasing exponentially without bound even when the input u is
bounded. This shows one must be careful in interpreting results based on input-output
transfer functions.

7. Find the Jordan canonical form of
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8. Consider the autonomous system & = Azx.
(a) Suppose that eigs(A) = {—1,-3,-3,—1 + j2,—1 — j2}. Also, suppose the rank of
(A — A))x=—_3 is 4. Determine A, the (complex) Jordan form of A.
(b) Suppose that eigs(A) = {—1,—2,—2,—2}. Also, suppose the rank of (A — ) —_o is 3.
Determine A, the Jordan form of A.

(¢) Suppose that eigs(A) = {—1,—2,—2,—2,—3}. Also, suppose the rank of (A — A\I) —_»
is 3. Determine A, the Jordan form of A.



