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1. This is a standard LQR problem, with @ = Isx2 and R = ¢ > 0. The pair (4, B) is
controllable, hence stabilizable, which guarantees this problem to be solvable. The optimal
control is K* = —R™!BT P, where P is the positive definite solution of (ARE):

ATP+PA—-PBR'B"P+Q=0,
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Solving the above equation, we obtain
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Therefore, the associated control law is
v = K'zx
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The magnitude of u at t = 0, ||u(0)]], is

w(©0) = [[K"z(0)]
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In Figure 1, we observe that as ¢ — 0, the control effort at the initial time goes to oo, as
expected.

2. The state-space model of the system is
T = Ax+u
y = x.
Stabilizability and detectability are easily verified so the problem is solvable. We solve
ATP+PA—-PBR'BTP+CTQC =0

to obtain 2A\P — P; 4+ 1 = 0. Solving for P and keeping in mind that P > 0, we get

P=e\+ V)22 +e.
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Figure 1: u(0)

u* = <—)\—\/)\2+1>x.
€

Next we consider the closed-loop poles of the system

1
eig(A+ BK™) = =/ 2+ —.
€

We see that regardless of whether A < 0 or A > 0, if ¢ — 0 then the closed-loop poles approach
—00, whereas if € — oo then the poles approach —|\|.

and

.LetA:[g jl},B:[(l)],G:[(l)}andC:[l 0]. It is easily verified that

(C, A, G) is stabilizable and detectable. Therefore, the Kalman filter can be computed as
t=(A-KC)i+ Ky+ Bu.
The optimal Kalman gain K is obtained by
K =pPctv—1,
where P is the symmetric, positive definite solution of
0= AP+ PA" + GWGT — PC"V'CP.
Solving the above equation, we obtain

P—V[ -1+ VI+28 1+ﬂ—\/_1+_25]
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and the optimal Kalman gain is
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The poles of the Kalman filter are

eig(A — KC) = % (—\/1 T25+ /1 25) .

When W =1 and V — 0, then 8 — o0, and

%(—\/1 +28+£+/1-28) — \/g(—l +7)-

In other words, as § — oo the filter acts faster.



