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CONTROL OF AN INVERTED PENDULUM ON A CART

1 Purpose

The purpose of this experiment is to familiarize you with modelling nonlinear systems using
Simulink, performing linearization, designing and evaluating different control laws based on pole
placement and optimal control, designing observers, and finally verifying your design.

2 Introduction

An inverted pendulum on a cart is often used as an illustrative model for control system design.
The following figure provides an illustration of the physical system.
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The differential equations governing the dynamics of the inverted pendulum can be shown to
be given by

ÿ =
u−mlθ̇2 sin θ +mg cos θ sin θ

M +m sin2 θ

θ̈ =
(M +m)g sin θ + u cos θ −mlθ̇2 sin θ cos θ

l(M +m sin2 θ)
.

It is well-known from one’s common experience with trying to balance a broom that the inverted
pendulum on a cart is a difficult system to control. The design specifications are:

(a) The inverted pendulum is balanced at its vertical position;

(b) The cart is asymptotically moved back to the origin and remains there.

(c) Good transient response is obtained. This is deliberately vague, and better transient response
is often obtained by tuning control parameters.
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3 Preparation

3.1 Building the Simulink Model

We shall first build a Simulink model of the nonlinear system, and then linearize it to get a linear
approximation.

1. Take the state vector x = [y ẏ θ θ̇]. Write down the nonlinear differential equation for x. You
should have 2 nonlinear functions on the right hand side of the differential equation.

2. Linearize the equations of motion at the equilibrium point x = 0, u = 0 analytically (by
hand) in terms of the parameters M , m, l, and g.

3. Set up a Simulink model in the form described by the following figure:

x


2

theta


1

y


y_dot


theta_dot


u
 x


Cart Model


1

u


where the input u to the nonlinear state equation is a force input to the cart, and the outputs
y and θ are the position of the cart and the angle of the pendulum with respect to the vertical,
respectively. ion. The block “Cart Model” corresponds to the nonlinear state equation and is
a subsystem of the Simulink model. The cart model block can be built in the form described
by the following figure:
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The Fcn blocks are used to specify the nonlinear functions in the system. Based on these
suggestions, set up the complete Simulink model corresponding to the inverted pendulum
on a cart system. Save your model in Simulink as, say, invertpen.slx.

4. For one of the real inverted pendulums in the lab, we have the following physical parameters:

• M = 1.0731 Kg

• m = 0.2300 Kg

• l = 0.3302 m

• g = 9.8 m/s2

Before you carry out linearization, it is useful to check what Simulink interprets as the state
vector. This can be done using the command

[sizes, x0, states] = invertpen([], [], [], 0)

Note that Simulink’s state vector may be different from the state vector at the outport.
Use the Simulink command linmod to linearize your system at the equilibrium point x =
[0 0 0 0]T , u = 0. This yields the system matrices A, B, C, with D = 0.

5. Plug in the real parameter values of the previous step in the linear model you derived in Step
2. Compare your model to the model obtained using Simulink. You should get the same
result, up to order of the state variables.
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6. Consider the second nonlinear differential equation for θ̈. Take the output as θ and the input
as u. Linearize this new model analytically at the equilibrium point θ = θ̇ = 0 and u = 0
in terms of the parameters of the system. Next, derive the open-loop transfer function and
determine its poles and zeros. Using these results, explain why the inverted pendulum on a
cart is difficult to control, especially if you use classical design methods such as root locus.

3.2 Control Design

We now use the linearized model to design the controller. We shall use both pole placement and
optimal control as our design methodology. All steps should be done using Matlab or Simulink.

1. Assume that the entire state of the cart-pendulum system is observed. Design a state feedback
law u = −Kx so that the closed loop poles are located at {−1,−2,−3−4}. Call this controller
SF-controller I.

WARNING: The Matlab command place(A,B,poles) places the poles of the matrix A−
BK, not A+BK as we did in class. So while in class we use the state feedback u = Kx, here
you’ll use u = −Kx. Note that Matlab’s sign convention in place will affect your observer
design as well. To make sure you don’t have a sign problem in your observer gain, check the
poles of the observer error matrix and verify that they have negative real part.

2. Repeat the design but with the closed loop poles at {−0.8,−1.2± i,−2}. Call this controller
SF-controller II.

3. Now assume that only the cart position y and the pendulum angle θ are measured. We use
a full-order observer to estimate the state. Determine the full-order observer gain L so that
observer poles are located at {−8,−9± i,−10}.

4. Next you will design an optimal controller and explore the effect of the cost function param-
eters Q and R on the closed-loop response. See the Appendix for background on optimal
control design. Let

Q =









q1 0 0 0
0 0 0 0
0 0 q2 0
0 0 0 0









.

The parameters q1 and q2 influence the speed of response of the cart position and the pendu-
lum position, respectively. Using the Matlab command lqr, design nine different optimal
controllers for the following parameter values:

• q2 = 5; R = 0.5; q1 = 0.005, 0.05, 0.1.

• q1 = 0.05; R = 0.5; q2 = 0.001, 0.1, 100.

• q1 = 0.05; q2 = 5; R = 0.1, 1, 10.

Warning: the values of Q and R given here correspond to our convention for the order of the
state vector. You may have to rearrange these according to the state vector you got with
Matlab.
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Write a Matlab script which carries out all of the design steps above automatically. The script
should include the definition of the parameters of the Simulink model at the top. Bring to the
lab your hand calculations, your Matlab script, and the files for the nonlinear Simulink model
to show to the TA. You will also need these files to complete the experiment.

4 Experiment

4.1 Linear Verification of Control Design

In this section you will first verify the response of the closed-loop system using the linear model.
All steps should be done using Matlab or Simulink.

1. Suppose the initial cart position y(0) = 0.5, the initial pendulum angle θ(0) = 0.175 (cor-
responding to approximately 10◦), and the initial velocities ẏ(0) = 0.1, θ̇(0) = 0. Call this
set of initital conditions IC. Simulate the response of the system under SF-controller I using
Matlab, and plot the response of the various state components. Repeat the simulation for
SF-controller II.

2. Combine SF-controller I and the observer to give the output feedback control law u = −Kx̂.
Call this OF-controller I. Simulate the response of the pendulum under the same initial
conditions IC as before. You may set the initial conditions of the observer to zero. Plot your
results on 4 plots, each containing one state component and its observer estimate.

3. Repeat for OF-controller II, which is the combination of SF-controller II and the observer.

4. Simulate the response of the system starting from initial conditions IC for each of the nine
optimal controllers and observe the effect of varying each of the three parameters. Produce
four plots for each of the state components, with each plot containing the response for the
following three optimal controllers:

• q1 = 0.1, q2 = 5, R = 0.5.

• q1 = 0.05, q2 = 100, R = 0.5.

• q1 = 0.05, q2 = 5, R = 10.

5. Repeat the previous step, but now combine the optimal controller with the full-state observer.

4.2 Nonlinear Verification of Control Design

Having carried out a design using a linear approximation of the nonlinear system, you must verify
that the design is satisfactory for the nonlinear system.

1. Add SF-controller II to your Simulink diagram. Simulate the response of true nonlinear
continuous time system under initial conditions IC using Simulink and view the state re-
sponse on the Simulink scope. Is the response satisfactory? Is it different from the linear
approximation?

2. Add also the observer to your Simulink diagram and implement OF-controller II. Repeat
the simulation. Again record the system state response.
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3. Now increase the initial pendulum angle to 30◦, still using OF-controller II. Are the design
specs still achieved? Is is different from the linear approximation? If the design specs are still
achieved, can you increase the initial angle even further?

4. Add the optimal controller for the cost function parameters q1 = 0.05, q2 = 100, R = 0.5
to your Simulink diagram. Simulate the response of the true nonlinear system with initial
conditions IC using Simulink and view the state response on the Simulink scope. Is the
response satisfactory? Is it different from the linear approximation?

5 Report

For the report, follow the instructions in the ”report template” which will be announced during
the lab.

A Optimal Control Design

The purpose of this appendix is to give you an introduction to optimal control design. The steps
of the procedure will be derived and further explained in lecture.

You have learned that if a linear system is controllable, then the poles of the closed-loop system
can be arbitrarily assigned. But we have not discussed where to place the poles for good performance
of the closed-loop system. In a third year control course, you would have learned about techniques
for placing the poles of a second-order system for good transient response. If the system is of higher
order, then this method will not work. Optimal control gives a way to assign the poles based on two
performance criteria: speed of response v.s. control effort. These performance criteria are specified
using a cost function.

We are given the LTI system
ẋ = Ax+Bu ,

and we are given a cost function

J =

∫

∞

0

(

xTQx+ uTRu
)

dt ,

where R ∈ R
m×m is a symmetric positive definite matrix and Q ∈ R

n×n is a symmetric, positive
semidefinite matrix. For the purposes of this lab, these are diagonal matrices with positive constants
on the diagonal. The matrix Q penalizes the state x. By adjusting the size of the diagonal elements
of Q we can penalize the different components of x. The matrix R penalizes the control u in the
same way. Thus, a Q matrix with large terms on the diagonal means a high penality on x, which
means the poles will be placed so that the state goes to zero quickly. Conversely, an R matrix
with large terms on the diagonal means a high penality on u, which means the poles will be placed
so that the input remains small. Notice you may not chose R = 0 otherwise the control could be
infinite. Finally, the absolute values of the elements of R and Q are less important that the relative
values between them.

The procedure to solve for the optimal control u which minimizes the cost function J while
stabilizing the system begins with solving the algebraic Riccati equation

ATP + PA− PBR−1BTP +Q = 0 ,
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for the unknown symmetric, positive semi-definite matrix P ∈ R
n×n. Once this equation is solved

for P the optimal control is the feedback

u = −R−1BTPx .

All of this can be done with the single Matlab command lqr, which computes the state feedback
gain K = R−1BTP .
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