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2. Solve det(λI −A) = 0, we get two eigenvalues

λ1 = σ − iω, λ2 = σ + iω.

The eigenvectors are given by (up to scalar multiplication)

v1 =

[

i

1

]

, v2 =

[

−i

1

]

by solving the equations (λiI −A)vi = 0, i = 1, 2.

Let T =

[

i −i

1 1

]

. We have T−1 =

[

− i
2

1
2

i
2

1
2

]

.

Since

eT−1ATt = T−1eAtT = eΛt =

[

e(σ−iω)t 0

0 e(σ+iω)t

]

,

we have

eAt = TeΛtT−1 = eσt

[

cos ωt sinωt

− sinωt cos ωt

]

.

which is the same result as that given in the course notes.

3. (a) Let

A =

[

−1 −4
1 −1

]

The eigenvalues are given by −1±2i. The eigenvector corresponding to −1+2i satisfies
the equation

[

−1 −4
1 −1

] [

v1

v2

]

= −1 + 2i

[

v1

v2

]

From the 2nd equation, we see that v1 = 2iv2 so that the eigenvector is given by

v =

[

2i
1

]

=

[

0
1

]

+ i

[

2
0

]

(b) Let

P =

[

0 2
1 0

]

Then

P−1 =

[

0 1
1
2 0

]
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with

D = P−1AP =

[

0 1
1
2 0

] [

−1 −4
1 −1

] [

0 2
1 0

]

=

[

−1 2
−2 −1

]

From problem 1, we see that

eDt = e−t

[

cos 2t sin 2t
− sin 2t cos 2t

]

Hence

eAt = PeDtP−1 = e−t

[

cos 2t −2 sin 2t
1
2 sin 2t cos 2t

]

(c)

(sI −A)−1 =

[

s + 1 4
−1 s + 1

]

−1

=

[

s + 1 −4
1 s + 1

]

s2 + 2s + 5

=

[ s+1
s2+2s+5

−4
s2+2s+5

1
s2+2s+5

s+1
s2+2s+5

]

From Laplace transform table, we have the following transform pairs:

s + a

(s + a)2 + b2
←→ e−at cos bt

1

(s + a)2 + b2
←→

1

b
e−at sin bt

Noting that s2 + 2s + 5 = (s + 1)2 + 22, we obtain, by inverting the various entries

eAt = e−t

[

cos 2t −2 sin 2t
1
2 sin 2t cos 2t

]

4. The eigenvalues are
λ1 = 4, λ2 = 1.

Their corresponding eigenvectors are

v1 =

[

1
1

]

, v2 =

[

1
−2

]

.

Then solving the equation
[

3
2

]

= c1

[

1
1

]

+ c2

[

1
−2

]

,

we have

c1 =
8

3
, c2 =

1

3
.

Thus the modal decomposition is given by

x(t) =
8

3
e4t

[

1
1

]

+
1

3
et

[

1
−2

]

.
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5. We must determine the transfer function H(s) = c(sI −A)−1b.

a)

H(s) =
[

0 1
]

[

s b

−1 s + a

]

−1 [

1
c

]

=
[

0 1
] 1

s2 + as + b

[

s + a −b

1 s

] [

1
c

]

=
1

s2 + as + b

[

1 s
]

[

1
c

]

=
cs + 1

s2 + as + b

b)

H(s) =
[

1 0
]

[

s −1
b s + a

]

−1 [

c

1− ac

]

=
[

1 0
] 1

s2 + as + b

[

s + a 1
−b s

] [

c

1− ac

]

=
1

s2 + as + b

[

s + a 1
]

[

c

1− ac

]

=
cs + 1

s2 + as + b

So (a) and (b) describe the same input/output behavior.

c)

Part (a): By the output equation, y = x2. Take the derivatives to get:

ẏ = ẋ2 = x1 − ax2 + cu = x1 − ay + cu

Thus,
[

x1

x2

]

=

[

ẏ + ay − cu

y

]

Part (b): By the output equation, y = x1. Take the derivatives to get:

ẏ = ẋ1 = x2 + cu

Thus,
[

x1

x2

]

=

[

y

ẏ − cu

]
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6. a)

H(s) =
[

0 1
]

[

s −1
−1 s

]

−1 [

−1
1

]

=
[

0 1
] 1

s2 − 1

[

s 1
1 s

] [

−1
1

]

=
1

s2 − 1

[

1 s
]

[

−1
1

]

=
s− 1

s2 − 1
=

1

s + 1

Observe that s = −1 is the only pole of H(s) and hence it is stable.

b) Take u = 0, which is obviously bounded. We have x(t) = eAtx0.

eAt = L−1

[ s
s2

−1
1

s2
−1

1
s2

−1
s

s2
−1

]

=
1

2

[

L−1( 1
s−1 + 1

s+1) L−1( 1
s−1 −

1
s+1)

L−1( 1
s−1 −

1
s+1) L−1( 1

s−1 + 1
s+1)

]

=
1

2

[

et + e−t et − e−t

et − e−t et + e−t

]

Choosing x0 =

[

0
1

]

will give us

y(t) = ceAtx0 =
1

2
(et + e−t)

which grows exponentially without bound as t→∞.

7. Let ẋ = f(x, u). Suppose this system can be linearized to

4ẋ = A4x + B4u,

4y = C4x.

An equilibrium point x0 =

[

x10

x20

]

, u0 satisfies f(x0, u0) = 0, i.e.,

0 = x10(−α1 + sinx20) + x20 sinx20 + u0,

0 = x10 sinx10 + x20(−α2 + sinx20) + u0.

Taking one equation minus the other, we get

−α1x10 + α2x20 + x10 sinx20 − x10 sinx10 = 0
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Now let’s take x10 = x20 = 0, which means u0 = 0. Then we compute the Jacobian matrices:

A =
∂f

∂x

∣

∣

∣

∣

(x0,u0)

=

[

−α1 + sinx20 x10 cos x20 + sinx20 + x20 cos x20

sinx10 + x10 cos x10 −α2 + sinx20 + x20 cosx20

]

(x0,u0)

=

[

−α1 0
0 −α2

]

,

B =
∂f

∂u

∣

∣

∣

∣

(x0,u0)

=

[

1
1

]

,

C =
[

1 0
]

.

The next part is to determine the response to a step input e−3u(t). First, we calculate the
state transition matrix:

(sI −A)−1 =

[ 1
s+α1

0

0 1
s+α2

]

,

eAt =

[

e−α1t 0
0 e−α2t

]

, t ≥ 0

Since the initial state is zero and D = 0, an approximate solution corresponding to the
linearized model can be expressed as

y(t) =

∫ t

0
CeA(t−τ)Bu(τ)dτ

=

∫ t

0

[

1 0
]

[

e−α1(t−τ) 0

0 e−α2(t−τ)

] [

1
1

]

e−3dτ

=
1

α1
e−3(1− e−α1t).

8. Consider the autonomous system ẋ = Ax. In these problems we are asked to find the
Jordan form of A. Generally this would require computing the eigenvectors and generalized
eigenvectors of A. You have not been taught about generalized eigenvectors, but you are
provided with extra data about A that enables you to solve these problems.

(a) Suppose that eigs(A) = {−1,−3,−3,−1 + j2,−1 − j2}. Also, suppose the rank of
(A − λI)λ=−3 is 4. Now we know that the Jordan form must look like one of the
following two cases. Either

Λ =













−1 0 0 0 0
0 −3 0 0 0
0 0 −3 0 0
0 0 0 −1 + 2j 0
0 0 0 0 −1− 2j












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or

Λ =













−1 0 0 0 0
0 −3 1 0 0
0 0 −3 0 0
0 0 0 −1 + 2j 0
0 0 0 0 −1− 2j













.

Basically you need to determine how many 1’s are on the upper diagonal corresponding
to the Jordan block for eigenvalue −3, which is the only eigenvalue that is repeated.
This can be determined directly from the rank information provided. We are told that
the rank of (A − λI)λ=−3 is 4. Now the relationship between A and Λ is by way of
a similarity transformation A = PΛP−1 and this does not change the rank. In other
words rank(A− λI)λ=−3 = rank(Λ− λI)λ=−3. Knowing that rank(Λ− λI)λ=−3 = rules
out the first choice for Λ above since we would get two columns zeroed out, resulting in
a rank of 3. Therefore, we obtain the solution

Λ =













−1 0 0 0 0
0 −3 1 0 0
0 0 −3 0 0
0 0 0 −1 + 2j 0
0 0 0 0 −1− 2j













.

(b) Suppose that eigs(A) = {−1,−2,−2,−2}. Also, suppose the rank of (A− λI)λ=−2 is 3.
Following the same procedure as described above,

Λ =









−1 0 0 0
0 −2 1 0
0 0 −2 1
0 0 0 −2









.

(c) Suppose that eigs(A) = {−1,−2,−2,−2,−3}. Also, suppose the rank of (A − λI)λ=−2

is 3. Then,

Λ =













−1 0 0 0 0
0 −3 0 0 0
0 0 −2 1 0
0 0 0 −2 0
0 0 0 0 −2













.

1. We have:

(sI −A)(sI −A)−1 = I

(sI −A)
adj(sI −A)

det(sI −A)
= I

(sI −A)adj(sI −A) = det(sI −A)I
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Write adj(sI −A) =
∑n

k=1 Bks
n−k and det(sI −A) = sn +

∑n
k=1 aks

n−k to get:

(sI −A)
n

∑

k=1

Bks
n−k = Isn + I

n
∑

k=1

aks
n−k

n
∑

k=1

Bks
n−k+1 −

n
∑

k=1

ABks
n−k = Isn +

n
∑

k=1

(akI)sn−k

n−1
∑

k=0

Bk+1s
n−k −

n
∑

k=1

ABks
n−k = Isn +

n
∑

k=1

(akI)sn−k

B1s
n +

n−1
∑

k=1

(Bk+1 −ABk)s
n−k −ABn = Isn +

n−1
∑

k=1

(akI)sn−k + anI

Equating powers of s, we will obtain:

∣

∣

∣

∣

∣

∣

B1 = I

Bk+1 = ABk + akI ; 1 ≤ k ≤ n− 1
ABn + anI = 0

The first two equations can be solved recursively to determine Bk, k = 1, . . . , n. The matrix
Bn thus obtained will satisfy the third equation by Cayley-Hamilton theorem:

An +

n
∑

k=1

akA
n−k = 0

For the given matrix A =

[

4 2
3 3

]

we have:

det(sI −A) = det

[

s− 4 −2
−3 s− 3

]

= s2 − 7s + 6

Therefore a1 = −7 and a2 = 6.

∣

∣

∣

∣

∣

∣

B1 = I

B2 = AB1 + a1I =

[

4 2
3 3

]

− 7I =

[

−3 2
3 −4

]

Thus,

adj(sI −A) = B1s + B2 = Is +

[

−3 2
3 −4

]

=

[

s− 3 2
3 s− 4

]

(sI −A)−1 =
1

s2 − 7s + 6

[

s− 3 2
3 s− 4

]
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