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1. (a) The one-dimensional exosystem is ẇ = 0. The plant with exosystem is

ẋ =

[

0 1
2 1

]

x+

[

0
1

]

u

ẇ = 0

e = r − y = w − x1,

where the reference signal is r(t) = w(t). The pair (A,B) is clearly controllable.
The problem requests that the poles of the closed-loop system (A + BK) be placed
at {−1,−2}. This gives K = [−4 − 4].

The regulator equations are:

0 =

[

0 1
2 1

]

Π+

[

0
1

]

Γ

[

1 0
]

Π = 1 .

The solution is

Π =

[

1
0

]

, Γ = −2.

The full information output regulator is

u = Γw +K(x−Πw) = −2w +
[

−4 −4
]

(

x−

[

1
0

]

w

)

= −4x1 − 4x2 + 2w .

(b) The observability matrix of the augmented system above

Q0 =





−1 0 1
0 −1 0
−2 −1 0





is full rank, so the system is observable. Placing the poles of (A−GC) at {−10,−20,−30}
is the same as placing the poles of (Â⊤ + Ĉ⊤(−G⊤)) at {−10,−20,−30}, so we look at
the pair

A
⊤
=





0 2 0
1 1 0
0 0 0



 , C
⊤
=





−1
0
1



 .

We get G =





−3061
−1163
−3000



. The robust regulator is

ξ̇ =





−3061 1 3061
−1165 −3 1165
−3000 0 3000



 ξ +





−3061
−1163
−3000



 e

u =
[

−4 −4 2
]

ξ
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(c) The transfer function of the controller from e to u is

C(s) = −
10896s2 + 22896s + 12000

s(s2 + 64 + 1348)
.

Note that it has a pole at zero, as one would expect.

2. We can easily verify that (A,B) is stabilizable. Therefore we can first design the asymptotic
part of the controller. We want σ(A+BK) = { − 1,−2 }. Using pole placement we obtain

K = [ − 2 − 2 ] .

Then we obtain

A+BK =

[

0 1
−2 −3

]

.

Now we design the feedforward or exact matching part of the controller. That is, we must
find a pair (Π,Γ) satisfying the FBI equations

ΠS = AΠ+BΓ (1)

CΠ = Cr . (2)

To that end, we must find a state space model for the exosystem. We take p(t) = t2 and
differentiate three times to obtain the ODE p(3) = 0. Now we put this ODE in state space
form. Letting w1 = p, w2 = ṗ, and w3 = p̈, the exosystem model is

ẇ =





0 1 0
0 0 1
0 0 0



w , yr = [ 2 0 0]w := Crw ,

where the initial condition of the exosystem is w(0) = [ 0 0 1 ]T . Then for Π : R3 → R
2 and

Γ : R3 → R, (1) gives

[

π1 π2 π3
π4 π5 π6

]





0 1 0
0 0 1
0 0 0



 =

[

0 1
0 −1

] [

π1 π2 π3
π4 π5 π6

]

+

[

0
1

]

[

γ1 γ2 γ3
]

.

We obtain the following solutions:

π1 = π5 = 2

π2 = π3 = π4 = π6 = 0

γ1 = 0

γ2 = 2

γ3 = 2 .

The tracking controller is then of the form:

u = Γw +K(x−Πw)

= −2x1 − 2x2 + 4w1 + 6w2 + 2w3 .
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3. We must design a tracking controller so that x2 tracks a constant value of 20m/s. The velocity
dynamics are

ẋ2 = −x2 + u , y = x2 .

The exosystem is
ẇ = 0 , w(0) = 20 , yr = w .

The regulator equations are

ΠS = AΠ+BΓ

CΠ = Cr .

This yields the constraints
−Π+ Γ = 0 , Π = 1 .

Thus, Γ = 1. We can design K by pole placement. Since this is a scalar system, we obtain
immediately that K = −4. The final tracking controller is

u = Γw +K(x2 −Πw)

= 5w − 4x2 .

4. (a) The reference trajectory r(t) satisifies r̈(t) = 0. The desired distance d satisfies ḋ = 0.
Therefore, the exosystem is

ẇ1 = w2

ẇ2 = 0

ẇ3 = 0.

If we set r + d = −(w1 + w3), we get an output regulation problem for the system

ẋ = u

ẇ1 = w2

ẇ2 = 0

ẇ3 = 0

, e = x+ w1 + w3.

(b) The regulator equations take the form

Π





0 1 0
0 0 0
0 0 0



 = Γ

Π+
[

1 0 1
]

= 0.

Their solution is
Π =

[

−1 0 −1
]

, Γ =
[

0 −1 0
]

.

Being a pure integrator, the plant is obviously controllable. In order to make the tracking
error e converge to zero with rate exp(−5t), we choose K = −5. The full information
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output regulator is

u = Γw +K(x−Πw) =
[

0 −1 0
]

w − 5
(

x−
[

−1 0 −1
]

w
)

=
[

−5 −5 −1 −5
]









x
w1

w2

w3.









(c) While the car model is observable, the augmented system

ẋ =









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









x+









1
0
0
0









u

e =
[

1 1 0 1
]

x

is undetectable because A has all evalues at 0, and the PBH test at this evalue gives

rank

[

A

C

]

= 2 < 4.

(d) The observability matrix for the augmented system is

Qo =









1 1 0 1
0 0 1 0
0 0 0 0
0 0 0 0









, ker(Qo) = sp























−2
1
0
1









,









0
−1
0
1























.

Define

P =









−2 0 1 0
1 −1 0 0
0 0 0 1
1 1 0 0









.

Note that the first two columns span the kernel of Qo. The third column has the form
[

In
0q×n

]

, where n = 1, q = 3, and the fourth column is chosen to complete the basis.

Using z = P−1x we get

ż =









0 0 0 1/2
0 0 0 −1/2

0 0 0 1
0 0 0 0









z +









0
0

1
0









u

e =
[

0 0 1 0
]

z.

After pruning the unobservable subsystem, we are left with the second-order system

ż3 = u+ z4 new plant

ż4 = 0 new exosystem

e = z3.

4



The regulator equations for this reduced system are guaranteed to be solvable. The reg.
equations are

Π · 0 = 1 · Γ + 1

1 · Π = 0,

where Π and Γ are scalars. The solution is Π = 0, Γ = −1, so a full information output
regulator for the pruned system is given by u = −z4 − 2z3, where we have placed the
pole of the closed-loop system at −2. Note that we could have directly defined a full
information output regulator by observing that e is equal to the state of the “new plant,”
and so the controller should simply stabilize z3. The way to do that is to cancel out the
term +z4 in the equation of the “new plant,” and assign the pole somewhere in OLHP.
The controller above does precisely that. We now design the observer gain G to place
the poles of the matrix

[

0 1
0 0

]

−G
[

1 0
]

.

at −10. Doing so, we obtain G =

[

20
100

]

. In conclusion, the error feedback output

regulator is

ξ̇ =

([

0 1
0 0

]

+

[

1
0

]

[

−2 −1
]

−

[

20
100

]

[

1 0
]

)

ξ +

[

20
100

]

e =

[

−22 0
−100 0

]

ξ +

[

20
100

]

e

u =
[

−2 −1
]

ξ

(e) The transfer function of the controller is

U(s)/E(s) = −
140s + 200

s(s+ 22)
.

Note this transfer function has just one pole at zero. This is consistent with the fact, from
classical feedback control theory, that since the plant has already one pole at zero, in
order to make it asymptotically track a reference signal of the type c0t+c1 the controller
should have one pole at zero.

5. (a) We would like the state x to asymptotically track the signal (r1(t), r2(t)) = (cos t,− sin t).
Notice that ṙ1(t) = r2(t), and that r̈1(t) = −r1(t). Let w1 = −r1, w2 = −r2. We obtain
the exosystem

ẇ1 = w2

ẇ2 = −w1.

Note that this equation has the canonical form of an LTI system with eigenvalues at ±i.

We can now formulate the output regulation problem as

ẋ =

[

0 1
0 0

]

x+

[

0
1

]

u

ẇ =

[

0 −1
1 0

]

w

e =

[

e1
e2

]

=

[

x1 + w1

x2 + w2

]

= I2x+ I2w.

5



(I2 denotes the 2× 2 identity matrix). The regulator equations are

Π

[

0 −1
1 0

]

=

[

0 1
0 0

]

Π+

[

0
1

]

Γ

I2Π+ I2 = 0.

Their solution is easily computed as

Π = −I2, Γ =
[

1 0
]

.

Since the regulation equations are solvable and the plant is controllable, the problem is
solvable. A full information output regulator solving it is

u =
[

1 0
]

w +K(x+ w),

where K =
[

−1 −2
]

places the poles of the closed-loop system at −1.

(b) We need to add one equation to the exosystem as follows

ẇ3 = 0,

and the plant becomes

ẋ =

[

0 1
0 0

]

x+

[

0
1

]

u+

[

0 0 1
0 0 0

]

w,

with output

e = I2x+

[

1 0 0
0 1 0

]

w.

The regulator equations in this case are

Π





0 1 0
−1 0 0
0 0 0



 =

[

0 1
0 0

]

Π+

[

0
1

]

Γ +

[

0 0 1
0 0 0

]

I2Π+

[

1 0 0
0 1 0

]

= 0,

with Π ∈ ℜ2×3 and Γ ∈ ℜ1×3. The second equation gives

Π =

[

−1 0 0
0 −1 0

]

.

Replacing Π into the first equation, we see that there is no matrix Γ solving it, so the
problem is unsolvable!!
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