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1. Introduction

• course mechanics
• topics & outline
• what are signals & systems?
• motivating engineering examples
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Course mechanics

▶ course website: Quercus

▶ course information sheet and course website are the authoritative
administrative references

▶ lectures: multiple sections, multiple instructors

▶ these are the course notes. There is no official textbook. Extensive
supplementary reading from standard textbooks is listed

▶ evaluation: labs, midterm(s), final
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Core prerequisites

▶ ECE 212: Circuit Analysis
• transient/steady-state response of a circuit
• Laplace transform analysis of circuits
• phasor analysis of circuits

▶ MAT290: Advanced Engineering Mathematics
• manipulating complex numbers
• solution of constant-coefficient linear ODEs, homogeneous and

particular solutions
• Laplace transforms

We are assuming that you are comfortable with the mechanics of
the above material, i.e., that you can perform the basic

computations. Please refer to your previous notes as needed.
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About these course notes

▶ the instructor for your section will let you know the precise manner in
which these notes will be used, if at all

▶ the notes are not an exhaustive textbook

• they give a succinct (but reasonably complete) presentation

• supplementary reading is listed at the end of each chapter of these
notes; see for additional exposition and extra problems

• blank space at end of each chapter for your personal notes and
additional examples from lecture

• all MATLAB code used in notes is on Quercus! Enjoy!
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Major topics & outline

▶ fundamentals of continuous-time (CT) and discrete-time (DT) signals

▶ analysis of signals in the frequency-domain
• Fourier series analysis of periodic signals
• Fourier transform analysis of signals

▶ fundamentals of CT systems: LTI systems, causality, convolution

▶ analysis of CT systems in the frequency domain
• Laplace transform analysis of CT systems
• Fourier transform analysis of CT systems

▶ fundamentals of DT systems: LTI systems, causality, convolution

▶ example applications: signal processing, communications, control
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Why study signals and systems?

▶ it is a foundational subject; methods used across all engineering
disciplines, and within many non-engineering disciplines

▶ it is a unifying subject; synthesis of ideas from engineering and math

▶ it can be broadly applied in wireless/digital communications,
audio/image/video processing, feedback control, automotive and
aerospace, medical imaging and diagnostics, energy systems,
economics and finance, spectroscopy, crystallography . . .

If you let it, this course will open your eyes to the interplay
between mathematics and engineering, and the common
math foundations of many disparate engineering topics
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Strategies for success

▶ if you need to, review complex numbers, ODEs, and Laplace
transforms; we are assuming you know this material

▶ attend lectures

▶ be competent in performing the calculations, but make sure you
understand the ideas

▶ attempt all homework problems

▶ take advantage of tutorials and instructor office hours
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What is a signal?

▶ a signal is any phenomenon carrying quantitative information

▶ could describe a physical quantity, or a variable within an engineering
algorithm; most often, we think of signals as changing over time

▶ note: the “signal” is the entire plot, i.e., the whole function
▶ x(t) or x[n] is the value of the signal at the time instant t or n
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Examples of signals

▶ AM or FM radio signals

▶ audio, video, images

▶ ethernet or wireless internet signals

▶ pressure, temperature,
concentration, volume

▶ position, velocity, force

▶ voltage, current, charge, flux

▶ quarterly revenue at a company

▶ the daily price of a stock

▶ hourly CAD/USD exchange rate
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Key questions about signals

(i) what are some important types and properties of signals?

(ii) can we analyze a complicated signal by decomposing it into simpler
“building block” signals?

(iii) conversely, can we combine “building block” signals and combine
them to synthesize more complicated signals?

(iv) what is the “spectrum” or “frequency-domain”, and how does it
help us understand, analyze, and design signals?
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What is a system?

▶ a system is some transformation — call it T — that turns one signal
x (the input) into another signal T{x} (the output)

Tx y = T{x}

▶ the value of the output signal at time t is y(t) = T{x}(t)

▶ the operation T could be
• very simple (e.g., multiplication by a constant)
• very complex (e.g., described by a long piece of computer code)

▶ important intermediate case: linear time-invariant systems
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Examples of systems

▶ electrical circuits

▶ biological circuits

▶ your cellphone

▶ robotics systems

▶ automotive/aerospace systems

▶ digital signal processors

▶ machine vision systems

▶ the economy

▶ the stock market
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Example: wireless audio communications

Microphone Radio
Transmitter

Atmosphere Radio
Receiver

Speakerp v x x̂ v̂ p̂

▶ p, p̂ are pressure signals, v, v̂ are voltages, and x, x̂ are EM waves

▶ if this communication system works well, then we should have p̂ ≈ p

▶ the overall system consists of a combination of subsystems; we
typically build a model for each subsystem (i.e., block) in the diagram

▶ from an engineering perspective, not all blocks are the same
• some blocks we get to design (e.g., the radio receiver)
• some blocks are determined by nature (e.g., the atmosphere)
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Example: recording and storing audio

Microphone Digital
Recorder

Disk
Drive

MP3
Player

Speakerp v x x̂ v̂ p̂

▶ p, p̂ are pressure signals, v, v̂ are voltages, and x, x̂ are bit sequences

The process of sampling converts a continuous-time
(analog) signal into a discrete-time (digital) signal
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Example: feedback control system

Controller Engine Car

Spedometer

vdes e v
−

▶ a cruise-control system attempts to maintain a car at a desired
velocity vdes despite changes in road conditions and wind

▶ to do this, the cruse controller measures the velocity v, computes the
velocity error e = vdes − v, and the controller decides how to adjust
the gas/brake in order to reduce the error

▶ you will be able to study control systems in detail in ECE311
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Example: control of power converters

▶ a DC/AC power converter with associated control loops

▶ feedback control is used extensively in renewable energy applications
▶ typically many interconnected subsystems, multiple feedback loops
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Key questions about systems

(i) what are the most important models of systems?

(ii) what do standard properties of systems mean, including
• linearity
• causality
• time-invariance
• stability

and how are these properties characterized?

(iii) why are linear time-invariant (LTI) systems so important?

(iv) how can we analyze, understand, and design LTI systems?
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Mathematics notation

▶ if X and Y are sets, then f : X → Y means that f is a function
which assigns to each x ∈ X a value f(x) ∈ Y

▶ X is the domain of f : the set of all allowable arguments x we can
give f . The set Y is the codomain of f , the set where f takes values

▶ in this course the sets X,Y are usually one of
(i) the set of all integers Z = {. . . , −2, −1, 0, 1, 2, . . .}
(ii) the set of all real numbers R
(iii) the set of all complex numbers C

▶ we sometimes consider Cartesian products of these sets. For
example, R3 = R × R × R is the set of all ordered triples (x, y, z) of
real numbers x, y, z ∈ R

▶ for two sets A and B, A ⊂ B means that A is a subset of B
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems.
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems.
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, 2nd Ed.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

Big Picture / Motivation 1.0, 2.0 1 1 1.1–1.3 1.1–1.3 V4 1.1, 2.1
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2. Fundamentals of Continuous and
Discrete-Time Signals

• continuous-time (CT) and discrete-time (DT) signals
• manipulating signals
• periodic signals
• support and finite-duration signals
• even and odd signals
• action, energy, and amplitude of signals
• special CT and DT signals
• sinusoidal signals, complex numbers
• CT complex exponential signals
• DT complex exponential signals
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Continuous-time (CT) signals

Definition 2.1. A continuous-time signal is a function of one (or more)
independent variables which range over the real numbers R.

Examples
▶ 1D real: x : R → R
▶ 1D complex: x : R → C
▶ 2D: a topographical map
x : R2 → R

▶ 3D: video x : R2 × R → R

▶ x is the signal, we write x(t) for the signal’s value at time t ∈ R
▶ the signal is usually defined for all arguments t ∈ R
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Discrete-time (DT) signals

Definition 2.2. A discrete-time signal is a function of one (or more)
independent variables which range over the integers Z.

Examples
▶ 1D real: x : Z → R
▶ 1D complex: x : Z → C
▶ Bit stream: x : Z → {0, 1}
▶ Grayscale image:
x : Z2 → [0, 1]

▶ x is the signal, we write x[n] for the signal’s value at time n ∈ Z
▶ the signal is defined only at integer times n, not “in-between”.
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Sampling: from CT signals to DT signals

▶ some signals are naturally modelled in discrete-time (e.g., text)
▶ DT signals also arise via regular sampling of a CT signal x
▶ this produces a sampled DT signal xs defined as

xs[n] = x(t)
∣∣∣
t=nTs

= x(nTs), Ts = sampling period.

▶ Examples: audio (44,100 samples/sec), video (30 samples/sec),
digital camera (5,000,000 RGB samples per image).

Section 2: Fundamentals of Continuous and Discrete-Time Signals 2-23



Interpolation: from DT signals to CT signals

▶ given a DT signal x and a sampling period Ts, we can construct a
corresponding CT signal xzoh via a zero-order hold

xzoh(t) = x[n] for nTs ≤ t < (n+ 1)Ts

▶ we hold the value x[n] until we reach sampling time n+ 1, and then
we change to the new value x[n+ 1] (other possibilities?)
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Pointwise operations on CT and DT signals

▶ pointwise addition: if we have two signals f, g we can build a new
signal h = f + g which takes the values

h(t) = f(t) + g(t), h[n] = f [n] + g[n]

▶ pointwise scaling: we can scale a signal f by any constant α to
build a new signal h = αf which takes the values

h(t) = αf(t), h[n] = αf [n]

▶ pointwise multiplication: if we have two signals f, g, we can build a
new signal h = f · g which takes the values

h(t) = f(t)g(t), h[n] = f [n]g[n]
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More operations: time-shifting a signal

▶ we can time-shift a CT signal x by t0 ∈ R to obtain x(t− t0)

▶ we can time-shift a DT signal x by n0 ∈ Z to obtain x[n− n0]

▶ t0, n0 > 0 means we delay in time; negative means we advance
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More operations: time-scaling a CT signal

▶ we can time-scale a CT signal x by α ∈ R to obtain x(αt)

▶ |α| > 1 compresses the time axis, |α| < 1 expands time
▶ if α < 0, time effectively flips (runs backward)
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More operations: time-scaling a DT signal

▶ you can time-scale a DT signal x by any α ∈ Z, yielding x[αn]

▶ this operation sub-samples the signal x; in the above example with
α = 2, we keep only every other sample

▶ α must be an integer! The expression x[n/3] makes no sense (why?)
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More operations: combine shifting and scaling

▶ you can time-shift and time-scale y(t) = x(αt− β) in two steps
(i) time shift x to obtain v(t) = x(t − β)
(ii) time scale v to obtain y(t) = v(αt)

Check: v(αt) = x(t− β)|t=αt

= x(αt− β) = y(t).

▶ note: the above is not the same as first time-scaling by α, then
time-shifting by β; you should try this for yourself and see.
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Periodic CT signals

Definition 2.3. A CT signal x is periodic if x(t) = x(t + T ) for some value
T > 0 and all t ∈ R. The smallest such value of T , denoted by T0, is called the
fundamental period of x.

Examples
▶ sin(t) has fundamental period

T0 = 2π

▶ sin(2πt/τ) has fundamental
period T0 = τ

▶ square waves, triangle waves, . . .

▶ the period is not uniquely defined, but the fundamental period is
▶ edge case: is a constant CT signal is periodic? Fund. period?
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Periodic CT signals

▶ the fundamental period T0

tells us how long a periodic
signal takes to repeat itself

▶ the inverse f0 = 1/T0 tells us how often or how fast the signal
repeats, and is called the fundamental frequency.

▶ the units of f0 are cycles/second, called Hertz (Hz)

▶ we often instead work with the fundamental angular frequency ω0

ω0 = 2πf0 = 2π
T0

, units = radians/second
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Periodic DT signals

Definition 2.4. A DT signal x is periodic if x[n] = x[n + N ] for some
integer N ≥ 1 and all n ∈ Z. The smallest such value of N , denoted by N0, is
called the fundamental period of x.

-1

0

1

-10 -5 0 5 10

Examples
▶ sin(2πn/8) has N0 = 8

▶ cos(2πn) has N0 = 1

▶ we often use the frequency and angular frequency

f0 = 1
N0

[cycles/sample] ω0 = 2πf0 = 2π
N0

[radians/sample]

▶ is a constant DT signal is periodic? Fund. period?
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Periodicity of sums of signals

Is the sum of two periodic signals always periodic? No.

▶ counter-example: consider sin(t) and sin(πt)

▶ sin(t) has T0 = 2π
1 = 2π

▶ sin(πt) has T0 = 2π
π = 2

Even if we wait forever, the
two periods will never “line up”

with each other, because
2π
2 = π is irrational . . .
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Periodicity of sums of signals

▶ the two periods will eventually line up with one another if one period
is a rational multiple of the other . . .

Theorem 2.1. Let x1, x2 be periodic CT signals with fundamental
periods T1 and T2. If T1/T2 is rational, i.e., if T1/T2 = k/l for some
positive integers k, l, then x1 + x2 is periodic with period T = lT1 = kT2.

Proof: Let z(t) = x1(t) + x2(t). We calculate for any t ∈ R that

z(t + lT1) = x1(t + lT1) + x2(t + lT1)

= x1(t) + x2(t + kT2) (periodicity of x1)

= x1(t) + x2(t) (periodicity of x2)

= z(t)

so z is periodic with period lT1. Similar calculation shows that z(t + kT2) = z(t).
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Periodicity of products of signals

▶ the same idea works for products of signals!

Theorem 2.2. Let x1, x2 be periodic CT signals with fundamental
periods T1 and T2. If T1/T2 is rational, i.e., if T1/T2 = k/l for some
positive integers k, l, then x1 ⊙ x2 is periodic with period T = lT1 = kT2.
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Signal support

Definition 2.5. The support supp(x) of a signal x is
▶ CT case: the smallest closed set containing {t ∈ R | x(t) ̸= 0}
▶ DT case: the set {n ∈ Z | x[n] ̸= 0}.

Basic Idea: The support tells you where the signal is non-zero.

supp(x) = R supp(x) = {t ∈ R | t ≥ 0}
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Right-sided signals

▶ in many applications signals “begin” at some time, then continue

Definition 2.6. A CT signal x is
▶ right-sided from time T if x(t) = 0 for all t < T

▶ right-sided if it is right-sided from time T , for some T .

A DT signal x is
▶ right-sided from time N if x[n] = 0 for all n < N

▶ right-sided if it is right-sided from time N , for some N .
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Finite-duration signals

▶ while our signals are defined for all t ∈ R or all n ∈ Z, in practice, we
often measure a signal over a finite duration . . .

Definition 2.7. A signal x is of finite duration if it equals zero outside
some bounded time interval. Otherwise, the signal is of infinite duration.

▶ put differently, supp(x) is contained in a bounded interval

Finite-duration signals ⇐⇒ periodic signals
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Periodic signals =⇒ finite-duration signals (CT)

▶ let xper be a periodic signal with fund. period T0. Then we can
define a finite-duration signal

xfin(t) =

{
xper(t) if 0 ≤ t < T0

0 otherwise

Nothing fancy; we just cut the periodic signal off after one period.
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Periodic signals ⇐= finite-duration signals (CT)

▶ now let xfin be a finite-duration signal with supp(xfin) ⊆ (0, T0] for
some T0 > 0, and define

xper(t) =
∞∑

k=−∞

xfin(t− kT0)

▶ claim: xper is periodic with period T0.
▶ to see this, we can calculate that

xper(t+ T0) =
∑∞

k=−∞
xfin(t+ T0 − kT0)

=
∑∞

k=−∞
xfin(t− (k − 1)︸ ︷︷ ︸

m

T0)

=
∑∞

m=−∞
xfin(t−mT0)

= xper(t)!
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Even and odd signals

Definition 2.8. A CT signal x is even if x(t) = x(−t) for all t ∈ R, and
is odd if x(t) = −x(−t) for all t ∈ R.

▶ the corresponding definition for DT signals is obvious

▶ we can decompose any signal x as x = xeven + xodd, where

xeven(t) = x(t) + x(−t)
2 , xodd(t) = x(t) − x(−t)

2
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The size of a signal: action, energy, amplitude

▶ question: how “big” is a given signal? There are many completely
distinct ways to answer this question, all useful in different contexts.

Definition 2.9. The action ∥x∥1 of a signal x is defined as

∥x∥1 =
∫ ∞

−∞
|x(t)| dt, ∥x∥1 =

∞∑
n=−∞

|x[n]|.

If the action is finite, then we write x ∈ L1 (CT case) or x ∈ ℓ1 (DT case).
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The size of a signal: action, energy, amplitude

Definition 2.10. The energy ∥x∥2
2 of a signal x is defined as

∥x∥2
2 =

∫ ∞

−∞
|x(t)|2 dt, ∥x∥2

2 =
∞∑

n=−∞
|x[n]|2.

If the energy is finite, then we write x ∈ L2 (CT case) or x ∈ ℓ2 (DT case).

▶ intuition: if x represents electrical current, then |x(t)|2 is
proportional to power, and we integrate to obtain energy
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The size of a signal: action, energy, amplitude

Definition 2.11. The amplitude ∥x∥∞ of a signal x is defined as

∥x∥∞ = max
t∈R

|x(t)| ∥x∥∞ = max
n∈Z

|x[n]|.

If the amplitude is finite, then we write x ∈ L∞ (CT) or x ∈ ℓ∞ (DT).

▶ finite amplitude signals are also called bounded signals

▶ note: we should write “sup” instead of max, but we won’t worry about it.
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Example: action, energy, amplitude in a circuit

I0

I0

R1

i1

R2

i2
The current i1 through R1 is

i1(t) = R2

R1 +R2
I0(t)

Suppose that I0(t) = e−2t for t ≥ 0
and I0(t) = 0 for t < 0

∥i1∥1 = R2
R1+R2

∫ ∞

0
e−2t dt = 1

2
R2

R1+R2

∥i1∥2
2 =

(
R2

R1+R2

)2 ∫ ∞

0
e−4t dt = 1

4

(
R2

R1+R2

)2

∥i1∥∞ = max
t≥0

R2
R1+R2

e−2t = R2
R1+R2
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What’s with the “L” notation?

▶ the sets L1, L2, L∞ are actually vector spaces of signals

L1 = {f : R → C | ∥f∥1 is finite}, L2 = · · · , etc.

▶ you can find a bit more on the vector space perspective in the
appendix, and in the supplementary textbooks

▶ this provides a powerful and far-reaching viewpoint for signal analysis,
but is a bit beyond our overall scope in ECE216

▶ FYI: the “L” stands for Lebesgue, the French mathematician who
formalized these ideas
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Relationships between action, energy, amplitude

Do these sets of signals “overlap”? Yes, but only partially, and
the relationships between them are a bit complicated.

L2 L∞

L1

ℓ1 ℓ2 ℓ∞

▶ curious minds can find more information in the handout on Quercus
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Action, energy, amplitude for periodic signals

▶ our definitions so far are for non-periodic signals

▶ if x is periodic, simply restrict the sums and integrals to one period

∥x∥1 =
∫ T0

0
|x(t)| dt

∥x∥1 =
N0−1∑
n=0

|x[n]|

∥x∥2
2 =

∫ T0

0
|x(t)|2 dt

∥x∥2
2 =

N0−1∑
n=0

|x[n]|2

∥x∥∞ = max
t∈R

|x(t)|

∥x∥∞ = max
n∈Z

|x[n]|

▶ to distinguish the periodic and non-periodic cases, we use the notation

Lper
1 , Lper

2 , Lper
∞ ℓper

1 , ℓper
2 , ℓper

∞

for periodic signals with finite action, energy, and amplitude
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Action, energy, amplitude for periodic signals

The inclusion relationships between the sets of signals is a bit
simpler for periodic signals.

Lper
∞ Lper

2 Lper
1 ℓper

1 = ℓper
2 = ℓper

∞
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Special signals: the CT and DT unit steps

▶ the CT unit step u(t) and DT unit step u[n]

u(t) =

1 if t ≥ 0

0 if t < 0
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u[n] =

1 if n ≥ 0

0 if n < 0
-0.5

0
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1

1.5
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▶ also known as the Heaviside function
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Special signals: the CT and DT unit steps

▶ multiplying by the step creates a signal that is right-sided

▶ the unit step is useful for building more complex signals, e.g.,

x(t) =
∑∞

k=−∞
(−1)k(u(t− k) − u(t− 1 − k))
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Special signals: the DT unit impulse

▶ the DT unit impulse δ[n] is the signal

δ[n] =

0 if n ̸= 0

1 if n = 0

▶ shifted signal δ[n− k] places the impulse at time k ∈ Z

▶ useful for building new signals, e.g.,

x[n] = δ[n] + 2δ[n− 1] + 10δ[n− 3] + · · ·

▶ exercise: convince yourself that the following relationships hold:

u[n] =
n∑

k=−∞

δ[k], δ[n] = u[n] − u[n− 1].
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Special signals: the DT unit impulse

▶ for any DT signal x, we have the so-called sifting formula:

for any time n0 ∈ Z :
∞∑

n=−∞
x[n]δ[n− n0] = x[n0].

▶ the proof is by direct calculation:

∞∑
n=−∞

δ[n − n0]x[n] = · · · + (0)x[n0 − 1] + (1)x[n0] + (0)x[n0 + 1] + · · ·

= x[n0]

Multiplying any DT signal by a DT impulse and summing over all time
“picks out” the value of the signal at the location of the impulse.
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Special signals: the CT unit pulse

▶ the CT symmetric unit pulse of duration ∆ > 0 is the signal

p∆(t) =

 1
∆ if − ∆

2 ≤ t < ∆
2

0 otherwise

▶ note: the area under the unit pulse is always equal to one, since∫ ∞

−∞
p∆(t) dt =

∫ ∆/2

−∆/2

1
∆ dt = 1

Fun to think about: what would happen if
we made this pulse shorter and shorter?
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Special signals: the CT unit impulse

▶ the CT unit impulse δ(t) is defined as δ(t) = lim∆→0 p∆(t)

Main Idea: δ(t) is an
idealized pulse at t = 0

which is very fast and very
large in size.

▶ Note: δ(t) has unit area, since∫ ∞

−∞
δ(t) dt =

∫ ∞

−∞
lim

∆→0
p∆(t) dt = lim

∆→0

∫ ∞

−∞
p∆(t) dt = 1

▶ shifting by t0, i.e., δ(t− t0), places the impulse at time t0
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Sifting property of the CT unit impulse

Fact: x(t)δ(t) = x(0)δ(t) for any signal x that is continuous at t = 0.

Proof: By definition, we have

x(t)δ(t) = lim
∆→0

p∆(t)x(t) =

{
lim∆→0

1
∆ x(t) if − ∆

2 ≤ t ≤ ∆
2

0 otherwise.

As ∆ → 0, x(t) over − ∆
2 ≤ t ≤ ∆

2 will get closer and closer to x(0), so

x(t)δ(t) = x(0) lim
∆→0

p∆(t) = x(0)δ(t).

▶ extension: we have x(t)δ(t− t0) = x(t0)δ(t− t0), which leads to

“Sifting formula”: for any time t0 ∈ R :
∫ ∞

−∞
x(t)δ(t− t0) dt = x(t0).
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Plotting the CT unit impulse

▶ we can’t plot the CT impulse like a normal signal

▶ nonetheless, it’s useful to plot impulses by drawing vertical arrows

▶ for example, for a constant Ts > 0, we can plot

s(t) =
∑∞

n=−∞
δ(t− nTs)

as
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Rules for working with the CT impulse

▶ question: if x is a continuous CT signal, should∫ ∞

0
x(t)δ(t) dt equal 0? equal x(0)?

▶ answer: The expression is ambiguous; we must avoid it!

▶ to fix this, we let 0− and 0+ be values infinitesimally to the left and
to the right of 0, i.e., 0− < 0 < 0+. Then, formally, we write∫ ∞

0−
x(t)δ(t) dt = x(0−)

= lim
t↑0

x(t)

∫ 0+

−∞
x(t)δ(t) dt = x(0+)

= lim
t↓0

x(t)

▶ we will consider these formulas valid even if x(0) has a jump at t = 0,
as long as the appropriate left or right limit exists.
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Final comments on the CT unit impulse

▶ the CT impulse is not a “normal” signal, like the ones you are used to
from studying calculus; it is known as a generalized signal

▶ the sifting property can be thought of as the defining property of the
CT impulse; we understand δ(t) via how it acts under an integral,
rather than by the values it takes at any particular t ∈ R

▶ we (sadly) can’t do some rather elementary things with δ(t). For
instance, the expression δ(t)2 is meaningless, as is asking “What is
the value of δ(t) at t = 0?”

▶ remarkably, we can still do calculus with δ(t), and in fact

u(t) =
∫ t

−∞
δ(τ) dτ, δ(t) = d

dtu(t).
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Special signals: sinusoidal signals

▶ recall: some basic trigonometry on the unit circle

cos θ = adj.
hyp. = adj. = x coord.

sin θ = opp.
hyp. = opp. = y coord.

(x, y) = (cos θ, sin θ)

x-axis

y-axis

1

1

cos θ

sin θ (cos θ, sin θ)

θ

▶ sinusoidal signals are obtained by making θ a linear function of time

θ(t) = ω0t, x(t) = cos(ω0t), y(t) = sin(ω0t)
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Special signals: sinusoidal signals

x− coordinate : x(t) = cos(θ(t)) = cos(ω0t) = cos(2πf0t)

y − coordinate : y(t) = sin(θ(t)) = sin(ω0t) = sin(2πf0t)

▶ larger ω0 leads to faster revolution around the circle

▶ both signals are periodic with fundamental period T0 = 2π
ω0

= 1
f0

sin(ω0(t+ T0)) = sin(ω0t+ ω0T0) = sin(ω0t+ 2π) = sin(ω0t).

▶ if the circle instead has radius r, we simply change things to

x(t) = r cos(ω0t), y(t) = r sin(ω0t)

Section 2: Fundamentals of Continuous and Discrete-Time Signals 2-61



Special signals: sinusoidal signals

x(t) = r cos(ω0t)

y(t) = r sin(ω0t)
x

y

r

r

(r cos(ω0t), r sin(ω0t))

▶ at t = 0, (x, y) = (r, 0) ⇒ initial angle with the x-axis is zero.

▶ for an initial angle equal to ϕ, we can add a ϕ as a phase shift

x(t) = r cos(ω0t+ ϕ), y(t) = r sin(ω0t+ ϕ)

▶ note: if ϕ < 0, this delays the sinusoid by τ = −ϕ/ω0 seconds

▶ therefore, phase shifting is just another word for time shifting of
sinusoidal signals
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Complex numbers

▶ a complex number z ∈ C is typically written as z = x+ jy where
• x = Re{z} ∈ R is the real part of z

• y = Im{z} ∈ R is the imaginary part of z

• j =
√

−1, i.e., j2 = −1
▶ this is called the Cartesian representation of a complex number,

because we think of this as defining a point (x, y) in the plane.
▶ the distance from the point (x, y) to the origin is the magnitude

r ≜ |z| =
√

Re{z}2 + Im{z}2 =
√
x2 + y2

▶ the angle (in radians) made with the positive x-axis is the phase

θ ≜ ∠z =

arctan Im{z}
Re{z} if Re{z} ≥ 0

arctan Im{z}
Re{z} + π if Re{z} < 0
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Complex numbers: polar representation

▶ magnitude and phase give us the polar representation of z:

z = x+ jy = r cos(θ) + jr sin(θ) = r(cos θ + j sin θ).

▶ Euler’s Relation: cos(θ) + j sin(θ) = ejθ

▶ therefore, we can write any z as z = rejθ (polar representation)

Re{z}

Im{z}

1

1

z

θ

r Some useful special values:

ej0 = 1

ej π
2 = j

ejπ = e−jπ = −1

ej 3π
2 = e−j π

2 = −j
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Common angles on the unit circle

x

y

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

360◦

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

(√
3

2 , 1
2

)
(√

2
2 ,

√
2

2

)
(

1
2 ,

√
3

2

)

(
−

√
3

2 , 1
2

)
(

−
√

2
2 ,

√
2

2

)
(

− 1
2 ,

√
3

2

)

(
−

√
3

2 , − 1
2

)
(

−
√

2
2 , −

√
2

2

)
(

− 1
2 , −

√
3

2

)

(√
3

2 , − 1
2

)
(√

2
2 , −

√
2

2

)
(

1
2 , −

√
3

2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)
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Complex numbers: Cartesian vs. polar representation

▶ the Cartesian representation makes addition easy. If we have
z1 = x1 + jy1 and z2 = x2 + jy2 then

z1 + z2 = (x1 + x2) + j(y1 + y2)

“the real and imaginary parts add”

▶ the polar representation makes multiplication easy. If we have
z1 = r1e

jθ1 and z2 = r2e
jθ2 , then

z1z2 = r1r2e
jθ1ejθ2 = r1r2e

j(θ1+θ2)

“the magnitudes multiply and the phases add”
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Complex numbers: Cartesian vs. polar representation

▶ like multiplication, the polar representation makes division easy. If we
have z1 = r1e

jθ1 and z2 = r2e
jθ2 , then

z1

z2
= r1

r2

ejθ1

ejθ2
= r1

r2
ejθ1e−jθ2 = r1

r2
ej(θ1−θ2)

▶ therefore we have that∣∣∣∣z1

z2

∣∣∣∣ = r1

r2
= |z1|

|z2|
, ∠

z1

z2
= θ1 − θ2 = ∠z1 − ∠z2

“the magnitudes divide and the phases subtract”
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Complex numbers: the complex conjugate

▶ the complex conjugate z∗ of z = x+ jy is z∗ = x− jy
▶ useful for expressing the magnitude:

zz∗ = (x+ jy)(x− jy)

= x2 + j(xy − yx) − j2y2

= x2 + y2

= |z|2

▶ in the polar representation z = rejθ = r cos(θ) + jr sin(θ), we have

z∗ = r cos(θ) − rj sin(θ) = r cos(−θ) + rj sin(−θ) = re−jθ

since cos is even and sin is odd. Therefore (again)

zz∗ = rejθre−jθ = r2ej(θ−θ) = r2 = |z|2.
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Complex numbers: the complex conjugate

▶ note: we can write z and z∗ as

z = Re{z} + jIm{z}, z∗ = Re{z} − jIm{z}

▶ adding and subtracting the two equations leads to

Re{z} = z + z∗

2 , Im{z} = z − z∗

2j

▶ thus, we can express the real and imaginary parts of z using z and z∗
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CT complex exponential signals

▶ to generate a signal, we can take our complex number rejθ and now
let θ(t) = ω0t be a linear function of time with angular freq. ω0

▶ this defines a complex exponential signal z : R → C taking values

z(t) = ejω0t = cos(ω0t) + j sin(ω0t)

with real and imaginary parts

Re{z(t)} = cos(ω0t)

Im{z(t)} = sin(ω0t)

▶ note: we can equivalently write the real and imaginary parts as

Re{z(t)} = ejω0t + e−jω0t

2 , Im{z(t)} = ejω0t − e−jω0t

2j .

Section 2: Fundamentals of Continuous and Discrete-Time Signals 2-70



CT complex exponential signals

z(t) = ejω0t = cos(ω0t) + j sin(ω0t), T0 = 2π
ω0

-1 0 1

-1

0

1
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Why do we care about complex exponential signals?

1. they are fundamental building blocks for more general signals

2. they are mathematically easy to manipulate; differentiation and
integration again yield complex exp. signals

3. they simplify many formulas vs. using sin and cos

4. the “frequency spectrum” of such a signal is very simple; all energy is
concentrated at frequency ω0

Key relationships

ejω0t = cos(ω0t) + j sin(ω0t)

cos(ω0t) = ejω0t + e−jω0t

2 sin(ω0t) = ejω0t − e−jω0t

2j .
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DT complex exponential signals

▶ DT complex exponential signals are superficially similar to their CT
cousins, but now the time index takes only integer values

▶ this produces very important differences with the CT case

▶ recall: our definition of the CT complex exponential signal:

ejωt = cos(ωt) + j sin(ωt)

▶ let’s now sample this signal with sampling period Ts = 1

x[n] = ejω(n·1) = cos(ωn) + j sin(ωn)

▶ while x(t) = ejωt rotates smoothly around the unit circle,
x[n] = ejωn jumps from point to point around the circle.
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Complex exponential DT signals x[n] = ejωn

▶ example: suppose that ω = π/2. Then x[n] = ej π
2 n, which has the values

{1, j, −1, −j, 1} for n ∈ {0, 1, 2, 3, 4}. We are hopping in steps of 90◦ around the
circle, the signal is periodic, and the fundamental period is N0 = 4.

▶ example: suppose that ω = 5π/6. The values of this for n ∈ {0, 1, 2, . . .} are

plotted below. When n = 12, we get ej10π = 1, so we come back to the initial

point. The signal is periodic with fundamental period N0 = 12.
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Complex exponential DT signals x[n] = ejωn

▶ example: suppose that ω = 1. Then x[n] = ejn, so we are hopping by one radian
each time we increase n. However, if we hop by one radian, we will never again
hop back to an integer multiple of 2π, because π is irrational. Therefore this
complex exponential is not periodic.

x[n] = ejωn can be periodic or aperiodic depending on ω!
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Time-periodicity of complex exponential DT signals

So . . . for what choices of ω is x[n] = ejωn periodic?

▶ periodicity with period N ∈ Z≥1 requires that

ejωn = ejω(n+N) for all n ∈ Z.

▶ dividing both sides by ejωn ≠ 0 we find that 1 = ejωN or equivalently

ej2πk = ejωN for any integer k.

▶ it follows that we must have

2πk = ωN ⇐⇒ ω = k
2π
N
.

Conclusion: ejωn is periodic with period N if the frequency ω is an
integer multiple of 2π/N
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Frequency-periodicity of DT complex exponentials ejωn

▶ DT complex exponentials have another completely different
periodicity property

▶ for any time n, note that

ej(ω+2π)n = ejωnej2πn = ejωn.

conclusion: ejωn is always a periodic function of ω, with period 2π.
We say that DT complex exponentials are “periodic in frequency”.

▶ example: ej 5
6 πn and ej 17

6 πn = ej( 5
6 π+2π)n are the exact same signal

A “larger” frequency does not necessarily mean faster oscillations!
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Frequency-periodicity of DT complex exponentials ejωn

▶ let’s plot out cos(ωn) = Re{ejωn} as ω increases from 0 to 2π

When ω is between 0 and π, increasing ω increases the rate of
oscillation of the signal ejωn = cos(ωn) + j sin(ωn)
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Frequency-periodicity of DT complex exponentials ejωn

When ω = π, we obtain ejπn = (−1)n, so the signal jumps back and forth between
+1 and -1; this is the fastest that a signal can oscillate in discrete-time.
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Frequency-periodicity of DT complex exponentials ejωn

As ω increases beyond
π, the oscillations
become slower and

slower as the frequency
approaches ω = 2π,

since ej(2π)n = 1 (no
oscillation at all).

Conclusion: a DT complex exponential will oscillate slowly when ω is near an even
multiple of π, and quickly when ω is near an odd multiple of π.
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Key consequence of frequency-periodicity: aliasing

Different continuous-time signals, when sampled, can produce the exact same
discrete-time signal; this phenomenon is called aliasing.
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Family of distinct DT complex exponential signals

▶ Summary:
(i) ejωn is periodic in n with period N iff ω = k 2π

N
for some k ∈ Z

(ii) ejωn is always periodic in ω with period 2π

Theorem 2.3. Let N0 ∈ Z≥1 be a desired period. Then there are
exactly N0 distinct DT complex exponential signals of period N0, given by

ϕk[n] = ejkω0n, k ∈ {0, 1, . . . , N0 − 1}

where ω0 = 2π/N0.

Therefore, when working with DT exponentials of period N0, there is
only a finite set of “building blocks”
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Proof of Theorem 2.3

First, we know from point (i) that if a DT complex exponential ejνn has
period N0, we must have that νN0 = 2πk for some integer k ∈ Z.
Therefore

ν = 2π k

N0
= 2π
N0

k = ω0k

We conclude that
ϕk[n] = ejω0kn, k ∈ Z.

are the only DT complex exponentials which are periodic with period N0.
From point (ii), we know that ejω0kn is 2π periodic in the argument ω0k,
so these signals {ϕk}k∈Z are not all distinct. We have that ϕ0[n] = 1 and
ϕN0 [n] = ejω0N0n = ej2πn = 1. So ϕ0, ϕ1, . . . , ϕN0−1 are distinct, and the
rest can be discarded. •
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Relevant MATLAB commands

▶ define and plot signals

1 %Define a "CT" signal

2 T_max = 6; h=0.001;

3 t = -T_max:h:T_max;

4 x = cos(3*t).*exp(-0.2*t) + ...

heaviside(t+5)-heaviside(t-1);

5

6 %Sample the signal with period T_s

7 T_s = 0.5;

8 t_s = t(1:T_s/h:end);

9 x_s = x(1:T_s/h:end);

10

11 %Plot both signals

12 plot(t,x); hold on; stem(t_s,x_s); hold off;
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems.
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems.
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, 2nd Ed.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

Signal basics 1.1–1.4 1 1.1–, 8.1– 2.1–2.3 1.1, 2.2, 7.4 V4 1.1
Impulse signal 1.4, 2.5 1 1.4 2.5, App. C 9.1 V4 3.1
Signal size 1.1 1 1.1 2.4 V4 1.2, 1.3
Complex numbers 1.3 App B. B.1 App. A App. B V2 3.1
Complex exp. 1.3 1 B.4 2.2 App. B V4 1.2, 1.3
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Personal Notes

Section 2: Fundamentals of Continuous and Discrete-Time Signals 2-86



Personal Notes
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Personal Notes
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3. The Fourier Series

• approximating and representing signals
• the cosine Fourier series
• the sine Fourier series
• the continuous-time Fourier series (CTFS)
• CTFS coefficients and signal manipulation
• existence of the CTFS coefficients
• convergence of the CTFS and Gibbs phenomenon
• the discrete-time Fourier series (DTFS)
• application: analysis of an audio signal
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Approximating and representing signals

▶ suppose that we want to analyze (i.e., study, understand, interpret,
. . . ) the following finite-duration signal x

While x might be complicated, maybe we can express x — either
approximately or exactly — as a weighted sum of many simple

basis (building block) signals {ϕ0, ϕ1, ϕ2, ϕ3, . . .}

Doing so may make analyzing x easier; this is the idea of Fourier analysis
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Approximating and representing signals

▶ given some building block signals {ϕ0, ϕ1, . . .}, we can construct a
new signal x̂ via a linear combination

x̂ = α0ϕ0 + α1ϕ1 + α2ϕ2 + · · · =
∑

k

αkϕk

where αk ∈ C are constant weighting coefficients

Signal approximation problem: Given a signal x and a set of basis
signals {ϕ0, ϕ1, . . .}, find the choice of coefficients {α0, α1, . . .} such

that x̂ =
∑

k αkϕk is the best approximation of x.

▶ if we can find {α0, α1, . . .} such that x̂ = x, then we say that
x̂ = x =

∑
k αkϕk is a representation of x in the basis {ϕ0, ϕ1, . . .}.
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Introductory example: an even periodic signal

▶ we start with a simplified case, then generalize. Assume that

x is real-valued, even, and periodic with fundamental period T0

f0 = 1
T0

ω0 = 2π
T0

▶ since x is real, even, and T0-periodic, it makes sense for our building
blocks to also be real, even, and T0-periodic! Let’s use

ϕ0(t) = 1
2 , ϕ1(t) = cos(ω0t), ϕ2(t) = cos(2ω0t), . . .
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Introductory example: an even periodic signal

▶ we therefore try to approximate x as

x̂(t) = a0

2 +
∞∑

ℓ=1
aℓ cos(ℓω0t), a0, a1, . . . are real constants

note: all the cosines of
different frequencies

ω0, 2ω0, 3ω0, . . .

fit perfectly within our
fundamental period T0 of x
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Introductory example: an even periodic signal

▶ naively, let’s just set x̂(t) = x(t), and try to solve for {a0, a1, . . .}:

x(t) = a0

2 +
∞∑

ℓ=1
aℓ cos(ℓω0t)

▶ the trick to solving is to use integration

▶ to solve for a0, just integrate both sides over one period:

2
T0

∫ T0
2

− T0
2

x(t) dt =
2

T0

∫ T0
2

− T0
2

a0

2
dt +

2
T0

∫ T0
2

− T0
2

∞∑
ℓ=1

aℓ cos(ℓω0t) dt

= a0 +
2

T0

∞∑
ℓ=1

aℓ

∫ T0
2

− T0
2

cos(ℓω0t) dt︸ ︷︷ ︸
=0

▶ therefore, a0 = 2
T0

∫ T0
2

− T0
2
x(t) dt

Section 3: The Fourier Series 3-94



Introductory example: an even periodic signal

▶ to solve for ak for k ≥ 1, first multiply both sides by cos(kω0t)

cos(kω0t)x(t) = cos(kω0t)
a0

2
+ cos(kω0t)

∞∑
ℓ=1

aℓ cos(ℓω0t)

▶ next, integrate both sides like before

2
T0

∫ T0
2

− T0
2

cos(kω0t)x(t) dt =
2

T0

∫ T0
2

− T0
2

cos(kω0t)

[
a0

2
+

∞∑
ℓ=1

aℓ cos(ℓω0t)

]
dt

= 0 +
∞∑

ℓ=1

aℓ
2

T0

∫ T0
2

− T0
2

cos(kω0t) cos(ℓω0t) dt︸ ︷︷ ︸
=?

▶ let’s evaluate this integral separately
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Introductory example: an even periodic signal

▶ recall: 2 cos(A) cos(B) = cos(A−B) + cos(A+B)

2
T0

∫ T0
2

− T0
2

cos(kω0t) cos(ℓω0t) =
1

T0

∫ T0
2

− T0
2

[cos((k − ℓ)ω0t) + cos((k + ℓ)ω0t)] dt

▶ if k ̸= ℓ, then both integrals evaluate to zero over one cycle
▶ if k = ℓ, then

2
T0

∫ T0
2

− T0
2

cos(kω0t) cos(ℓω0t) =
1

T0

∫ T0
2

− T0
2

[1 + cos((k + ℓ)ω0t)] dt = 1 + 0 = 1

“Orthogonality”: 2
T0

∫ T0
2

− T0
2

cos(kω0t) cos(ℓω0t) dt =

1 if k = ℓ

0 if k ̸= ℓ
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Introductory example: an even periodic signal

▶ completing our calculation then, we find that

2
T0

∫ T0
2

− T0
2

x(t) cos(kω0t) dt =
∞∑

ℓ=1

aℓ
2

T0

∫ T0
2

− T0
2

cos(kω0t) cos(ℓω0t) dt︸ ︷︷ ︸
=1 if and only if ℓ=k

= ak

Theorem 3.1. If x is a real-valued, even, and periodic CT signal with
fund. period T0, then we can represent x via the cosine Fourier series

x(t) =
a0

2
+
∑∞

k=1
ak cos(kω0t), ω0 =

2π

T0

ak =
2

T0

∫ T0
2

− T0
2

x(t) cos(kω0t) dt, k ∈ {0, 1, 2, . . .}.

▶ note: The integrals can be taken over any interval of length T0
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Example: a square wave

For T0 > 0 and 0 < τ ≤ T0 consider

xfin(t) =

1 if − τ
2 ≤ t ≤ τ

2

0 otherwise

▶ we T0-periodize xfin to generate the signal x in the figure above
▶ to compute the cosine Fourier series, we first compute a0

a0 = 2
T0

∫ T0
2

− T0
2

x(t) dt = 2
T0

∫ τ/2

−τ/2
(1) dt = 2τ

T0
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Example: a square wave

▶ for k ≥ 1 we compute that

ak =
2

T0

∫ T0
2

− T0
2

x(t) cos(kω0t) dt =
2

T0

∫ τ/2

−τ/2
cos(kω0t) dt

=
2

T0kω0
[sin(kω0τ/2) − sin(−kω0τ/2)]

=
2

πk
sin(kω0τ/2)

where we used that ω0T0 = 2π

▶ therefore, we find that x can be represented as

x(t) =
τ

T0
+

∞∑
k=1

2 sin(kω0τ/2)
πk

cos(kω0t)

▶ if we keep only K terms in the sum, we instead get the approximation

x̂K(t) =
τ

T0
+

K∑
k=1

2 sin(kω0τ/2)
πk

cos(kω0t)

Section 3: The Fourier Series 3-99



Example: a square wave – approximation quality

More terms = closer approximation of original signal
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Example: a square wave – the frequency domain

▶ the coefficient ak = 2
πk sin(kω0τ/2) multiplies cos(kω0t)

▶ ak tells us how much the harmonic kω0 contributes to the overall
signal x(t)

▶ we can think of {ak}∞
k=0 as equivalently representing x(t) in the

frequency domain – the domain consisting of multiples of the
fundamental frequency. We call {ak}∞

k=0 the spectrum of x.
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Fourier series for odd periodic signals

What if the signal x of interest is periodic and odd?

▶ as you might guess, we could instead express x as

x(t) =
∑∞

k=1
bk sin(kω0t), b1, b2, . . . are constants

and follow the exact same procedure!

Theorem 3.2. If x is a real, odd, and periodic CT signal with fund.
period T0, then we can represent x via the sine Fourier series

x(t) =
∑∞

k=1
bk sin(kω0t), bk =

2
T0

∫ T0
2

− T0
2

x(t) sin(kω0t) dt.

▶ note: The integral can be taken over any interval of length T0
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Fourier series for periodic signals

What if the signal x of interest is periodic, but not even or odd?

▶ we can just combine the two methods, and write

x(t) = a0

2 +
∑∞

k=1
ak cos(kω0t)︸ ︷︷ ︸

even part of x

+
∑∞

k=1
bk sin(kω0t)︸ ︷︷ ︸

odd part of x

▶ this is called a sine/cosine Fourier series of x

▶ it turns out that working with these formulas is a pain . . . instead,
using complex exponential signals will

(i) make our notation shorter and easier to read
(ii) allow us to work easily with complex-valued periodic signals

Section 3: The Fourier Series 3-103



The complex exponential Fourier series

starting point: remember that

ejkω0t = cos(kω0t) + j sin(kω0t)

is periodic with period T0

Re{z}

Im{z}

1

1
ejkω0t

▶ we now take ϕk(t) = ejkω0t as our building blocks, and try to
represent x as a weighted sum of these signals

x̂(t) =
∞∑

k=−∞

αke
jkω0t, αk ∈ C.

▶ note: the sum runs from −∞ to ∞, so both ejkω0t and e−jkω0t are
part of the sum; this will allow us to pair up ejkω0t and e−jkω0t to
form sine or cosine
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Continuous-time Fourier series (CTFS)

Theorem 3.3 (CTFS). Let x be a periodic CT signal with fundamental
period T0 and angular frequency ω0 = 2π/T0. Then

x̂(t) =
∞∑

k=−∞

αke
jkω0t

is called the continuous-time Fourier series (CTFS) of the signal x,
where the Fourier series coefficients αk are given by

αk = 1
T0

∫ T0

0
x(t)e−jkω0t dt.

▶ note: The integral can be taken over any interval of length T0
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Derivation of the CTFS via approximation

▶ we will take an alternative path to arrive at the formula for αk

▶ simultaneously, we will find an interpretation of what it means if we
only consider a finite number of terms in the Fourier series expansion

▶ for some positive integer K, consider the order K approximation

x̂K(t) =
∑K

k=−K
αke

jkω0t (note: x̂ = lim
K→∞

x̂K)

▶ how can we quantify how close the approximation x̂K is to the
original signal x? Let’s look at the energy of the error

J(α−K , . . . , αK) = 1
T0

∫ T0

0
|x(t) − x̂K(t)|2 dt, (mean-square error)

Our goal: find the choice of constants {αk}K
k=−K which minimizes J .
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Derivation of the CTFS via approximation

Theorem 3.4. The selection of coefficients {αk}K
k=−K which minimizes

the mean-squared error J is

αk = 1
T0

∫ T0

0
x(t)e−jkω0t dt

(which are exactly the CTFS coefficients!).

▶ if we choose the coefficients as above, then the finite approximation

x̂K(t) =
∑K

k=−K
αke

jkω0t

is the best∗ possible approximation to x that one can build using
2K + 1 complex exponential signals

∗Where “best” means “the error has the smallest possible energy”
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Orthogonality of complex exponentials

▶ for the cosine Fourier series, we used an “orthogonality result”;
something similar holds for exponentials. For any m, ℓ ∈ Z:

“Orthogonality”: 1
T0

∫ T0

0
ejmω0te−jℓω0t dt =

1 if m = ℓ

0 if m ̸= ℓ

The calculation for m = ℓ gives 1
T0

∫ T0
0 (1) dt = 1. If m ̸= ℓ, then we have

1
T0

∫ T0

0
ej(m−ℓ)ω0t dt =

1
T0

1
j(m − ℓ)ω0

[
ej(m−ℓ)ω0t

]T0

t=0

=
1

T0

1
j(m − ℓ)ω0

[
ej(m−ℓ)ω0T0 − 1

]
=

1
T0

1
j(m − ℓ)ω0

[
ej(m−ℓ)2π − 1

]
= 0

where we used that ω0 = 2π/T0 and that ej2πn = 1 for all integers n.
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Proof of Theorem 3.4

The function of interest is

J =
1

T0

∫ T0

0
|x(t) − x̂K(t)|2 dt =

1
T0

∫ T0

0
(x(t) − x̂K(t))∗(x(t) − x̂K(t)) dt

where we used that |z|2 = z∗z. Expanding out, we have

J =
1

T0

∫ T0

0
|x(t)|2 − x(t)∗x̂K(t) − x̂K(t)∗x(t) + |x̂K(t)|2 dt

The last term can be written as

|x̂K(t)|2 =
(∑K

ℓ=−K
αℓejω0ℓt

)∗ (∑K

m=−K
αmejω0mt

)
=

K∑
ℓ=−K

K∑
m=−K

α∗
ℓ αme−jℓω0tejmω0t.
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Optimal selection of coefficients

Substituting into J , we can write things out as

J =
1

T0

∫ T0

0

|x(t)|2 dt −
1

T0

∫ T0

0

x(t)∗

[
K∑

m=−K

αme
jω0mt dt

]

−
1

T0

∫ T0

0

[
K∑

m=−K

α
∗
me

−jω0mt

]
x(t) dt +

1
T0

∫ T0

0

K∑
ℓ=−K

K∑
m=−K

α
∗
ℓ αme

−jℓω0t
e

jmω0t dt

If we define βm = 1
T0

∫ T0
0

x(t)e−jω0mt dt, then we can more simply write this as

J =
1

T0

∫ T0

0

|x(t)|2 dt−
K∑

m=−K

(αmβ
∗
m+α

∗
mβm)+

K∑
ℓ=−K

K∑
m=−K

α
∗
ℓ αm

1
T0

∫ T0

0

e
jω0(m−ℓ)t dt
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Optimal selection of coefficients

The third term in J therefore simplifies to
K∑

ℓ=−K

K∑
m=−K

α∗
ℓ αm

1
T0

∫ T0

0
ejω0(m−ℓ)t dt =

K∑
m=−K

α∗
mαm =

K∑
m=−K

|αm|2

We therefore have that

J =
1

T0

∫ T0

0
|x(t)|2 dt −

K∑
m=−K

(αmβ∗
m + α∗

mβm) +
K∑

m=−K

|αm|2

=
1

T0

∫ T0

0
|x(t)|2 dt +

K∑
m=−K

(−αmβ∗
m − α∗

mβm + |αm|2)
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Optimal selection of coefficients

Our expression is now

J =
1

T0

∫ T0

0
|x(t)|2 dt +

K∑
m=−K

(−αmβ∗
m − α∗

mβm + |αm|2)

If we add and subtract |βm|2 inside the sum, we can complete the square:

J =
1

T0

∫ T0

0
|x(t)|2 dt +

K∑
m=−K

(|βm|2 − αmβ∗
m − α∗

mβm + |αm|2) −
K∑

m=−K

|βm|2

=
1

T0

∫ T0

0
|x(t)|2 dt +

K∑
m=−K

(βm − αm)∗(βm − αm) −
K∑

m=−K

|βm|2

The first and third terms do not depend at all on α! Therefore, the best thing we can

do to minimize J is to make the middle term zero. We therefore find that αk = βk,

which completes the proof. •

Section 3: The Fourier Series 3-112



Summary of CTFS results

order K approximation of x: x̂K(t) =
∑K

k=−K
αke

jkω0t

coefficients: αk = 1
T0

∫ T0

0
x(t)e−jkω0t dt, ω0 = 2π

T0
.

Comments:
▶ roughly speaking, the magnitude |αk| of αk tells us how strongly the

frequency harmonic kω0 appears in the overall signal x

▶ the k = 0 term in x̂K(t) is constant; this is called the “dc” term

▶ you can do the integral over any interval of length T0 and obtain the same
result, e.g., from −T0/2 to T0/2 instead of 0 to T0
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Example: sum of harmonic signals

x(t) = cos(4πt) + 2 sin(6πt)
▶ cos(4πt) = cos(2 · 2πt) has period 1/2
▶ sin(6πt) = sin(3 · 2πt) has period 1/3

▶ fundamental period T0 is the least

common multiple of the two periods,

which is 1; this does indeed match up with

the plot. So ω0 = 2π/(1) = 2π.

▶ using Euler’s relation, we can rewrite x(t) as

x(t) = ej4πt + e−j4πt

2 + 2e
j6πt − e−j6πt

2j
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Example: sum of harmonic signals

Recall our useful formula

1
T0

∫ T0

0
ejω0(k−ℓ)t dt =

{
1 if k = ℓ

0 otherwise

With T0 = 1 and ω0 = 2π, we now compute αk to be

αk =
1
1

∫ 1

0

(
ej4πt + e−j4πt

2
+ 2

ej6πt − e−j6πt

2j

)
e−j2πkt dt

=
∫ 1

0

1
2
[
ej2π(2−k)t + ej2π(−2−k)t

]
+

1
j

[
ej2π(3−k)t − ej2π(−3−k)t

]
dt

=


1
2 if k = ±2
1
j = −j if k = 3
−1

j = +j if k = −3

0 otherwise

Therefore, α2 = α−2 =
1
2

, α3 = −j, α−3 = +j.
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Example: sum of harmonic signals
▶ let’s write out x̂K(t) =

∑K

k=−K
αkejkω0t

▶ for K = 1 we have x̂1(t) = 0 + 0ej2πt + 0e−j2πt = 0
▶ for K = 2 we have

x̂2(t) =
1
2

ej4πt +
1
2

e−j4πt = cos(4πt)

so our approximation captures the lowest frequency component of the signal.
▶ for K ≥ 3 we have

x̂3(t) =
1
2

ej4πt +
1
2

e−j4πt +
1
j

ej6πt −
1
j

e−j6πt

= cos(2πt) + 2
1
2j

(ej6πt − e−j6πt) = cos(4πt) + 2 sin(6πt)

so our approximation captures both frequencies present in the signal x
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Example: a square wave (revisited)

For T0 > 0 and 0 < τ ≤ T0 consider

x(t) =

1 if − τ
2 ≤ t ≤ τ

2

0 if τ
2 < |t| ≤ T0

2

▶ we copy this pattern every T0 seconds to make things periodic
▶ first we compute the dc coefficient α0

α0 =
1

T0

∫ T0
2

− T0
2

x(t) dt =
1

T0

∫ τ/2

−τ/2
dt =

τ

T0

Note that the dc coefficient α0 is just the average value of x(t) over one period.
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Example: a square wave (revisited)

For k ̸= 0, recall that ω0T0 = 2π and now compute that

αk =
1

T0

∫ T0/2

−T0/2
x(t)e−jkω0t =

1
T0

∫ τ/2

−τ/2
e−jkω0t

=
1

T0

1
−jkω0

[
e−jkω0t

]t=τ/2
t=−τ/2

=
−1

2jπk
(e−jkω0τ/2 − ejω0τ/2) =

1
πk

sin(kω0τ/2)

Therefore,

x̂K(t) =
τ

T0
+

−1∑
k=−K

sin(kω0τ/2)
πk

ejkω0t +
K∑

k=1

sin(kω0τ/2)
πk

ejkω0t.

Since the coefficients are even functions of k, this simplifies nicely to

x̂K(t) =
τ

T0
+

K∑
k=1

sin(kω0τ/2)
πk

(
ejkω0t + e−jkω0t

)
=

τ

T0
+

K∑
k=1

2 sin(kω0τ/2)
πk

cos(kω0t) (success! same formula as before)
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Example: a square wave (revisited)

More terms = closer approximation of original signal
“It takes high frequencies to make sharp corners”
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The CTFS and signal manipulations

▶ suppose we have the CTFS coefficients {αk}∞
k=−∞ of some signal x

▶ how can we find the CTFS coefficients of signals obtained by simple
manipulations, e.g., 3x(t) + 2, x(t− 5), Re{x}, dx

dt (t) . . . ?

There are many useful properties of the CTFS that you can use as
shortcuts to find the CTFS coefficients for these transformed signals

▶ for example, if x(t) =
∑∞

k=−∞ αke
jkω0t, note that

x(t− t0) =
∞∑

k=−∞

αke
jkω0(t−t0) =

∞∑
k=−∞

(
αke

−jkω0t0
)
ejkω0t

so the CTFS coefficients of x(t− t0) must be βk = αke
−jkω0t0
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Table of CTFS properties

We let x be an T0-periodic CT signal with CTFS coefficients αk, and ω0 = 2π/T0.

Name x(t) αk = 1
T0

∫ T0
0 x(t)e−jkω0t dt

Time-shift by t0 x(t − t0) e−jkω0t0 αk

Frequency-shift by k0 ejk0ω0tx(t) αk−k0

Conjugation x∗(t) α∗
−k

Time-reversal x(−t) α−k

Differentiation ẋ(t) (jkω0)αk

Convolution 1
T0

∫ T0
0 x(τ)y(t − τ) dτ αkβk

Multiplication x(t)y(t)
∑∞

ℓ=−∞ αℓβk−ℓ

Real Part Re{x(t)} 1
2 (αk + α∗

−k)

Imag Part Im{x(t)} 1
2j (αk − α∗

−k)
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Conjugate-symmetry for real signals

▶ suppose that x is a real-valued T0-periodic signal

▶ the CTFS coefficients are given by

αk = 1
T0

∫ T0

0
x(t)e−jkω0t dt, ω0 = 2π

T0
, k ∈ Z.

▶ from this it follows that

α∗
k = 1

T0

∫ T0

0
x(t)∗(e−jkω0t)∗ dt

= 1
T0

∫ T0

0
x(t)e−j(−k)ω0t dt = α−k.

So α−k = α∗
k, and in particular then, |α−k| = |αk|. The

magnitude of the CTFS coefficients is an even function of k.
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Summary

▶ we have now seen that
(i) we can “approximate/represent” a periodic CT signal with an infinite

sum of CT complex exp. signals

(ii) the coefficients {αk}∞
k=−∞ provide a frequency-domain representation

of the signal, and give us insight into the important harmonics

(iii) properties of the signal are transferred into properties of the
coefficients (e.g., a real-valued signal leads to conjugate-symmetric
coefficients)

▶ some things we still need to understand are
(i) for what kinds of signals does Fourier series “work”?

(ii) in what sense does the approximation x̂K “converge” to x?

(iii) what can we do for DT signals?
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Does every periodic signal have a Fourier series? No.

▶ consider the periodization of the signal

xfin(t) =

 1
t , if 0 < t ≤ 1

0, else

▶ compute the 0th Fourier coefficient to be

α0 = 1
1

∫ 1

0

1
t

dt = ln(1) − ln(0) = +∞

So unfortunately, some periodic signals simply cannot be represented using
Fourier series. Under what assumptions do things work as expected?
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Existence of the CTFS

Theorem 3.5. If x has finite action, i.e., x ∈ Lper
1 , then the Fourier

coefficients αk = 1
T0

∫ T0
0 x(t)e−jkω0t dt are well-defined and satisfy

lim
k→±∞

|αk| = 0.

Proof: Since x has finite action, we can bound the Fourier coefficients as

|αk| =
1

T0

∣∣∣∣∫ T0

0
x(t)e−jkω0t dt

∣∣∣∣ ≤
1

T0

∫ T0

0
|x(t)| · |e−jkω0t| dt

=
1

T0

∫ T0

0
|x(t)| dt =

∥x∥1

T0
< ∞

so all coefficients are well-defined. The proof of the second statement is outside our

scope, but can be found by searching for “Riemann-Lebesgue Lemma”.

Section 3: The Fourier Series 3-125



Convergence of the CTFS

▶ if x ∈ Lper
1 , it at least makes sense to form the approximation

x̂K(t) =
∑K

k=−K
αke

jkω0t

▶ how do we capture the idea that x̂K converges to x?

Definition 3.1. Let eK = x̂K − x denote the error between the
approximation and the signal x. We say x̂K converges to x

(i) pointwise at time t0 ∈ R if limK→∞ eK(t0) = 0;

(ii) uniformly if limK→∞ ∥eK∥∞ = 0;

(iii) in energy if limK→∞ ∥eK∥2 = 0.

▶ uniformly = amplitude of error goes to zero
▶ in energy = energy of error goes to zero
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Pointwise convergence of the CTFS

Theorem 3.6. Suppose that x has finite action, i.e., x ∈ Lper
1 .

(i) If x has a continuous derivative at time t0 ∈ R, then x̂K converges to
x pointwise at t0.

(ii) If the left-side limits x(t−0 ), dx
dt (t−0 ) and the right-side limits

x(t+0 ), dx
dt (t+0 ) all exist at time t0 ∈ R, then

lim
K→∞

x̂K(t0) = 1
2 (x(t−0 ) + x(t+0 )).

▶ point (i): over time intervals where the signal is smooth, the
approximation converges pointwise

▶ point (ii): at a finite jump discontinuity, the approximation converges
to the mid-point of the discontinuity
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Example: a square wave (τ = 1, T0 = 2)

▶ approximation converges pointwise at all t ̸= ±0.5
▶ approximation converges to discontinuity midpoint at t = ±0.5
▶ the ripple near t = ±0.5 is called the Gibb’s phenomenon; it never

goes away, it just becomes more concentrated around t = ±0.5.
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Uniform convergence of the CTFS

▶ uniform convergence requires stronger assumptions; one assumption
that works is that the signal has a continuous derivative everywhere

Theorem 3.7. Suppose that x ∈ Lper
1 . If x has a derivative which is

continuous everywhere, then x̂K converges to x uniformly.

▶ in this example we do not have uniform convergence
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Convergence in energy of the CTFS

▶ signals with finite energy are often the nicest case to consider

Theorem 3.8. If x has finite energy, i.e., x ∈ Lper
2 , then

(i) x̂K converges to x in energy;

(ii) the CTFS coefficients {αk}∞
k=−∞ have finite energy, i.e., α ∈ ℓ2;

(iii) the signal and the coefficients satisfy Parseval’s relation

1
T0

∫ T0

0
|x(t)|2 dt =

∞∑
k=−∞

|αk|2 or 1
T0

∥x∥2
2 = ∥α∥2

2.

A beautiful and surprising relationship between the energy of
the signal and the energy of the CTFS coefficients.
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Proof of Part (iii) of Theorem 3.8
Proof: Begin by computing that

|x(t)|2 = x(t)x(t)∗ =

[
∞∑

k=−∞

αkejkω0t

][
∞∑

ℓ=−∞

αℓejℓω0t

]∗

=
∞∑

k=−∞

∞∑
ℓ=−∞

αkα∗
ℓ ejω0(k−ℓ)t

Recall that
1

T0

∫ T0

0
ej(k−ℓ)ω0t =

{
1 if k = ℓ

0 otherwise

Therefore we have

1
T0

∫ T0

0
|x(t)|2 dt =

∞∑
k=−∞

∞∑
ℓ=−∞

αkα∗
ℓ

1
T0

∫ T0

0
ej(k−ℓ)ω0t dt

=
∞∑

k=−∞

|αk|2.
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The discrete-time Fourier series (DTFS)

Everything we just did also holds (with some minor
changes) for discrete-time signals!

▶ let x be a DT periodic signal with fundamental period N0

▶ we want to express x as x[n] =
∑

k αkϕk[n]
▶ as building blocks ϕk[n] we use the DT exponential signals

ϕk[n] = ejkω0n, ω0 = 2π/N0
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The discrete-time Fourier series (DTFS)

▶ we therefore look for a representation of x of the form

x[n] =
∑N0

k=0
αke

jkω0n, ω0 = 2π
N0

note: all the exponentials of
different frequencies

0, ω0, 2ω0, . . . , (N0 − 1)ω0

are periodic and fit nicely
within our fundamental
period N0 of x. Moreover,

ej(N0ω0)n = ej(2π)n = ej(0)n
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Orthogonality of complex exponentials

▶ DT exponentials satisfy the following orthogonality relationship

1
N0

N0−1∑
n=0

ejmω0ne−jℓω0n =

1 if m = ℓ+ kN0, k ∈ Z

0 otherwise

For m = ℓ + kN0, we have 1
N0

∑N0−1
n=0 ej(m−ℓ)ω0n = 1

N0

∑N0−1
n=0 e

jkN0
2π
N0

n = 1.
For the other case, we have

1
N0

N0−1∑
n=0

ej(m−ℓ)ω0n =
1

N0

N0−1∑
n=0

(ej(m−ℓ)ω0 )n

=
1

N0

1 − ej(m−ℓ)ω0N0

1 − ej(m−ℓ)ω0

=
1

N0

1 − ej(m−ℓ)2π

1 − ej(m−ℓ)ω0
=

1
N0

1 − 1
1 − ej(m−ℓ)ω0

= 0

where we used the geometric series formula and ej2πn = 1 for all integers n.
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The discrete-time Fourier series (DTFS)

Theorem 3.9. If x is a periodic DT signal with fundamental period N0,
with ω0 = 2π/N0, then the discrete-time Fourier series of x is the sum

x[n] =
N0−1∑
k=0

αke
jkω0n

where the Fourier coefficients αk are given by

αk = 1
N0

N0−1∑
l=0

x[l]e−jkω0l.

▶ note: both sums are finite!
▶ note: the sums can be taken over any window of length N0
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Example: the repeated unit impulse

Let N0 ∈ Z≥2 be a desired period.
Consider (the periodization of)

x[n] = δ[n] for 0 ≤ n ≤ N0 − 1

▶ the DTFS coefficients are

αk =
1

N0

N0−1∑
n=0

δ[n]e−jkω0n =
1

N0
(e−jkω0·0 + 0 + · · · + 0) =

1
N0

▶ we say the spectrum is flat or “white”, since all the Fourier coefficients are equal
to a constant; an impulse contains equal contributions from all frequencies.

▶ the Fourier series is therefore

x[n] =
1

N0

∑N0−1

k=0
ejkω0n
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Example: a growing signal

Let N0 = 4 be the period, and
consider the periodic extension of

x[n] = 2n for 0 ≤ n ≤ 3

▶ note that ω0 = 2π/4 = π/2. we can compute the DTFS coefficients as

αk =
1
4

3∑
n=0

2ne−jkω0n =
1
4

3∑
n=0

(2e−jk π
2 )n

=
1
4

1 − (2e−jk π
2 )4

1 − (2e−jk π
2 )

=
1
4

1 − 16
1 − 2(−j)k

= −
15
4

1
1 − 2(−j)k
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Example: the windowing signal

Let N0 ∈ Z≥3 be odd, and let
W ∈ Z satisfy 0 ≤ W ≤ N0−1

2 .
Consider the periodization of

x[n] =

1 if |n| ≤ W

0 if W < |n| ≤ N0−1
2

▶ to compute the coefficients in this example, it’s convenient to take the sum as
running over the window of length N0 running from −(N0 − 1)/2 to +(N0 − 1)/2.

▶ for the dc coefficient α0 we have

α0 =
1

N0

(N0−1)/2∑
n=−(N0−1)/2

x[n] =
1

N0

W∑
n=−W

1 =
2W + 1

N0
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Example: the windowing signal

▶ for k ̸= 0 we can compute that

αk =
1

N0

(N0−1)/2∑
n=−(N0−1)/2

x[n]e−jkω0n =
1

N0

W∑
n=−W

e−jkω0n

▶ making the change of variable m = n + W , we can rewrite this as

αk =
1

N0

2W∑
m=0

e−jkω0(m−W ) =
ejkω0W

N0

2W∑
m=0

e−jkω0m

=
ejkω0W

N0

1 − e−jω0k(2W +1)

1 − e−jkω0

=
1

N0

ejkω0W − e−jω0k(W +1)

1 − e−jkω0

=
1

N0

e−jω0 1
2 k

e−jω0 1
2 k

ejω0(W + 1
2 )k − e−jω0(W + 1

2 )k

ejω0 1
2 k − e−jω0 1

2 k

=
1

N0

sin(ω0(W + 1
2 )k)

sin(ω0
1
2 k)
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Example: the windowing signal (N0 = 21, W = 2)

approximations: x̂K [n] =
∑K

k=−K
αke

jkω0n
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Periodicity of DTFS coefficients

▶ interesting observation: the coefficients αk are themselves periodic
with period N0! That is, αk+N0 = αk for all k.

▶ Proof: we compute directly that

αk+N0 = 1
N0

∑N0−1

n=0
x[n]e−j(k+N0)ω0n

= 1
N0

∑N0−1

n=0
x[n]e−jkω0ne−jN0ω0n

= 1
N0

∑N0−1

n=0
x[n]e−jkω0ne

−jN0
2π
N0

n

= 1
N0

∑N0−1

n=0
x[n]e−jkω0n

= αk

Section 3: The Fourier Series 3-141



Comparison of CTFS vs. DTFS

CTFS: x(t) =
∞∑

k=−∞

αke
jkω0t, αk = 1

T0

∫ T0

0
x(t)e−jkω0t dt.

▶ represents periodic x(t) as infinite discrete sum of CT complex exp.
▶ αk captures the “amount” of harmonic kω0 contained in x
▶ in general, the sequence {αk}∞

k=−∞ is aperiodic

DTFS: x[n] =
N0−1∑
k=0

αke
jkω0n, αk = 1

N0

N0−1∑
n=0

x[n]e−jkω0n.

▶ represents periodic x[n] as a finite discrete sum of DT complex exp.
▶ αk captures the “amount” of harmonic kω0 contained in x
▶ the sequence {αk}∞

k=−∞ is always N0-periodic
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More on DTFS

▶ in the appendix of these slides, you will find

1. a derivation of the DTFS

2. convergence of the approximations

3. matrix-vector formulas for computing the DTFS

4. a derivation showing that you can use the DTFS coefficients to
numerically approximate the CTFS coefficients

If you take ECE431H1: Digital Signal Processing, you will
spend much more time on the DTFS and the closely-related

idea of the Fast Fourier Transform.
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Application: analysis of a real signal

▶ remember the complicated CT signal from the start of this section:

▶ sample at fs = 48, 000 samples/sec to obtain a DT signal x[n]

▶ take the interval between 4 and 6 seconds, and repeat it over and
over; this yields a periodic signal of period N0 = 96, 001

▶ compute the DTFS coefficients {αk}96,000
k=0 and plot them!
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Application: analysis of a real signal

▶ note: the plot is symmetric about the mid-point (why?)

▶ The horizontal axis is k, which is the multiple of ω0 = 2π/N0. Since
N0 is number of samples per period, ω0 has units rad/sample

▶ To convert horiz. axis units to Hz, we plot k ω0
2πfs = k fs

N0
instead of k

▶ we will plot the vertical axis in decibels, i.e., 20 log10 |αk|
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Application: analysis of a real signal

▶ we have strong spikes at
(i) ≈ 207Hz = G#

3

(ii) ≈ 415Hz = G#
4

(iii) ≈ 622Hz = D#
5

(iv) ≈ 830Hz = G#
5

This signal is a recording of a
G#

3 note played on an acoustic
guitar! The DTFS analysis

reveals the frequency content.
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Table of DTFS properties

We let x be an N0-periodic DT signal with DTFS coefficients αk, and ω0 = 2π/N0.

Name x[n] αk = 1
N0

∑N0−1
n=0 x[n]e−jkω0n

Time-shift by n0 x[n − n0] e−jω0n0kαk

Frequency-shift by k0 ejk0ω0nx[n] αk−k0

Conjugation x∗[n] α∗
−k

Time-reversal x[−n] α−k

First-difference x[n] − x[n − 1] (1 − e−jω0k)αk

Convolution 1
N0

∑N0−1
m=0 x[m]y[n − m] αkβk

Multiplication x[n]y[n]
∑N0−1

ℓ=0 αℓβk−ℓ

Real Part Re{x[n]} 1
2 (αk + α∗

−k)

Imag Part Im{x[n]} 1
2j (αk − α∗

−k)
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Relevant MATLAB commands

▶ compute the DTFS coefficients of a DT signal x

1 %% Define one period of the signal

2 N_0 = 50;

3 x = randn(N_0,1);

4

5 %% Compute DTFS coefficients

6 alpha = fft(x,N_0);

7

8 %% Plot magnitude of coefficients

9 stem(0:N_0-1, abs(alpha));
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems.
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems.
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, 2nd Ed.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

The CTFS 3.3 4 3.4, 3.5 6.1, 6.4 7.5, 10.2 V4 5.1–5.3
CTFS properties 3.5 4 3.4, 3.5 6.4 7.5 V4 5.1–5.3
Convergence results 3.4 4 3.4, 3.5 6.4 7.5 V4 5.2
The DFTS 3.6 12 10.1 6.4, 7.3 7.6, 10.3 V4 7.2
DTFS properties 3.7 12 10.3 6.4, 7.3 7.6 V4 7.2
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4. The Fourier Transform

• extending the CTFS to aperiodic signals
• the continuous-time Fourier transform (CTFT)
• examples
• existence of the CTFT
• the CTFT of a complex exponential
• properties of the CTFT
• the discrete-time Fourier transform (DTFT)
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Introduction

▶ we now know how to use the Fourier series to analyze periodic signals

(i) we represent a periodic signal as a sum of complex exponential signals
(ii) we analyze the frequency content of a periodic signal by examining αk

▶ what if our signal of interest is aperiodic? What can we do . . .

The Fourier transform is the extension of the Fourier series to aperiodic
signals, and is one of the most powerful tools in all of engineering!
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Derivation of the CT Fourier Transform

▶ suppose we have a general CT signal x, e.g.,

Key idea: an aperiodic signal is a periodic signal with infinite period . . .

Steps we will take:

(i) window the signal to [−T, T ), then periodize it

(ii) compute the CTFS of the periodized signal

(iii) take the limit as T → ∞
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Derivation of the CT Fourier Transform

▶ we begin by windowing x to obtain a finite-duration signal

xfin,T (t) = x(t) · [u(t+ T ) − u(t− T )]

▶ we can now periodize xfin,T to obtain the 2T -periodic signal

xper,T (t) =
∑∞

m=−∞
xfin,T (t−m(2T ))
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Derivation of the CT Fourier Transform

▶ since xper,T is 2T -periodic, we can represent it via the CTFS

xper,T (t) =
∑∞

k=−∞
αke

jkω0t

where ω0 = (2π)/(2T ) = π/T is the fundamental ang. frequency

▶ as always, the CTFS coefficients αk are given by

αk = 1
2T

∫ T

−T

xper,T (t)e−jkω0t dt

▶ however, over the interval [−T, T ), we have xper,T (t) = x(t), so

αk = 1
2T

∫ T

−T

x(t)e−jkω0t dt
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Derivation of the CT Fourier Transform

▶ as some simplifying notation, if we define the function

XT : R → C, XT (jω) =
∫ T

−T

x(t)e−jωt dt

then the CTFS coefficients are simply samples of XT

αk = 1
2T XT (jkω0), k ∈ {−∞, . . . ,∞}

▶ plugging this back into the CTFS, we find that

xper,T (t) =
∞∑

k=−∞

1
2T XT (jkω0)ejkω0t = 1

2π

∞∑
k=−∞

XT (jkω0)ejkω0tω0

since T = π/ω0.
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Derivation of the CT Fourier Transform

Our Fourier Series: xper,T (t) = 1
2π

∞∑
k=−∞

XT (jkω0)ejkω0tω0

▶ The sum here is a Riemann sum: XT (jkω0)ejkω0t are samples of
the function ω 7→ XT (jω)ejωt, spaced by a width of ω0

ω

XT (jω)ejωt

kω0

XT (jkω0)ejkω0t
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Derivation of the CT Fourier Transform

Our Fourier Series: xper,T (t) = 1
2π

∞∑
k=−∞

XT (jkω0)ejkω0tω0

▶ as T → ∞, ω0 = 2π
T → 0, and the sum becomes the integral

lim
T →∞

xper,T (t) = x(t) = 1
2π

∫ ∞

−∞
X(jω)ejωt dω

where
X(jω) = lim

T →∞
XT (jω) =

∫ ∞

−∞
x(t)e−jωt dt

These last two formulas extend the CTFS to aperiodic signals!
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The CT Fourier Transform (CTFT)

Definition 4.1. The continuous-time Fourier transform (CTFT) of a
CT signal x is the complex-valued signal X : R → C defined pointwise by

X(jω) =
∫ ∞

−∞
x(t)e−jωt dt.

We call X the Fourier transform or spectrum of x.

Definition 4.2. The inverse continuous-time Fourier transform
(inverse CTFT) of a CT spectrum X is the CT signal x : R → C defined
pointwise by

x(t) = 1
2π

∫ ∞

−∞
X(jω)ejωt dω.
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CTFT Example: right-sided decaying exponential

for a > 0 consider the signal

x(t) = e−atu(t)

▶ we can compute the spectrum to be

X(jω) =
∫ ∞

−∞
e−atu(t)e−jωt dt =

∫ ∞

0
e−(a+jω)t dt

= − 1
a + jω e−(a+jω)t

∣∣∣∣∣
∞

0

= 1
a + jω

▶ the magnitude and phase of X(jω) are

|X(jω)| = 1√
ω2 + a2

, ∠X(jω) = − tan−1(ω/a)
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CTFT Example: right-sided decaying exponential

▶ let’s plot |X(jω)| and ∠X(jω)

Notes:

(i) magnitude of X is larger at
small values of |ω|; the signal
x contains lots of
“low-frequency content”

(ii) the plots have a nice

symmetry; this is actually a

general property for any

real-valued signal x; we will

show this soon
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CTFT Example: two-sided decaying exponential

for a > 0 consider the signal

x(t) = e−a|t|

▶ we can compute the spectrum to be

X(jω) =
∫ ∞

−∞
e−a|t|e−jωt dt =

∫ 0

−∞
eate−jωt dt +

∫ ∞

0
e−ate−jωt dt

= 1
a − jω + 1

a + jω

= a + jω − jω + a

(−a + jω)(a + jω)

= 2a

a2 + ω2

Section 4: The Fourier Transform 4-164



CTFT Example: two-sided windowing signal

For τ > 0 consider the signal

x(t) = u(t+ τ
2 ) − u(t− τ

2 )

=

1 if − τ/2 ≤ t < τ/2

0 otherwise

▶ we compute the CTFT of x to be

X(jω) =
∫ ∞

−∞

[
u(t + τ

2 ) − u(t − τ
2 )
]

e−jωt dt =
∫ τ/2

−τ/2
e−jωt dt

= −
1
jω

e−jωt

∣∣∣τ/2

−τ/2
=

2
2jω

(ejωτ/2 − e−jωτ/2)

=
sin(ωτ/2)

ω/2
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CTFT Example: two-sided windowing signal

x(t) = u(t+ τ
2 ) − u(t− τ

2 ) CTFT⇐⇒ X(jω) = sin(ωτ/2)
ω/2

Signals of the form sin(x)/x
are called “sinc” signal, and
occurs frequently in signal

processing theory.

Note: The window size in the time-domain was τ , but the
spectrum is concentrated in an interval proportional to 1/τ .
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CTFT Example: two-sided windowing signal

▶ how could we compute the CTFT of the signal shown below?

▶ we can express x as

x(t) =
[
u(t+ τ

2 ) − u(t− τ
2 )
]

+
[
u(t+ τ

4 ) − u(t− τ
4 )
]

▶ we can combine the CTFTs of the two pieces to obtain

X(jω) = sin(ωτ/2)
ω/2 + sin(ωτ/4)

ω/2
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CTFT Example: shifted impulse

▶ for τ ∈ R consider the delayed-by-τ impulse x(t) = δ(t − τ).

▶ the CTFT of this signal is

X(jω) =
∫ ∞

−∞
δ(t − τ)e−jωt dt = e−jωτ

and therefore |X(jω)| = 1 and ∠X(jω) = −ωτ

General principle: If x is very concentrated in the time domain,
the spectrum X will be very spread out the in frequency domain.
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i-CTFT Example: band limited spectrum

For ωb > 0 consider the spectrum

X(jω) = u(ω + ωb) − u(ω − ωb)

=

1 if − ωb ≤ ω < ωb

0 otherwise

x(t) =
1

2π

∫ ∞

−∞
X(jω)ejωt dω

=
1

2π

∫ ωb

−ωb

ejωt dω

=
1

2π

1
jt

ejωt

∣∣∣∣ωb

−ωb

=
sin(ωbt)

πt
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i-CTFT Example: partial fraction expansion

Partial fraction expansion is a useful technique for doing i-CTFT
calculations when you are dealing with rational functions of ω.

▶ suppose that some CT signal x has spectrum given by

X(jω) = jω
(1 + jω)(2 + jω)

▶ we rewrite this as

X(jω) = A

1 + jω + B

2 + jω = (2A+B) + jω(A+B)
(1 + jω)(2 + jω)

▶ comparing, we find that A = −1 and B = 2, so

X(jω) = −1
1 + jω + 2

2 + jω =⇒ x(t) = −e−tu(t) + 2e−2tu(t).
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i-CTFT Example: partial fraction expansion

When the numerator degree is equal to (or greater than) the
denominator degree, this procedure needs to be modified a bit.

▶ consider the spectrum

X(jω) = 1 − ω2 + jω
2 − ω2 + 3jω

▶ the easiest way to proceed is to first note that

lim
ω→∞

X(jω) = 1

and to express X as X(jω) = 1 + X̃(jω) where

X̃(jω) = X(jω) − 1 = 1 − ω2 + jω
2 − ω2 + 3jω − 1 = −1 − 2jω

2 − ω2 + 3jω
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i-CTFT Example: partial fraction expansion

▶ we therefore have that

X(jω) = 1 − 1 + 2jω
2 − ω2 + 3jω = 1 − 1 + 2jω

(jω + 1)(jω + 2)
▶ note that the second term has numerator degree strictly less than

denominator degree; we can therefore apply partial fractions

1 + 2jω
(jω + 1)(jω + 2) = A

jω + 2 + B

jω + 1

and quickly find that A = 3 and B = −1, therefore

X(jω) = 1 + 1
jω + 1 − 3

jω + 2
▶ based on our previous calculations, we finally obtain

x(t) = δ(t) + e−tu(t) − 3e−2tu(t)
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Does every CT signal have a CTFT? No.

for a > 0 consider the signal

x(t) = eatu(t)

▶ let’s try to compute the spectrum . . .

X(jω) =
∫ ∞

−∞
eatu(t)e−jωt dt =

∫ ∞

0
e(a−jω)t dt

= 1
a − jω e(a−jω)t

∣∣∣∣∣
∞

0

= ∞

So unfortunately, some CT signals simply do not have a spectrum. Under
what assumptions do things work as expected?

Section 4: The Fourier Transform 4-173



Existence of the CTFT for finite action signals

Theorem 4.1. If x has finite action, i.e., x ∈ L1, then the CTFT X(jω)
is well-defined and satisfies limω→±∞ |X(jω)| = 0.

Proof: Since x has finite action, we can bound the spectrum as

|X(jω)| =

∣∣∣∣∫ ∞

−∞
x(t)e−jωt dt

∣∣∣∣ ≤
∫ ∞

−∞
|x(t)| · |e−jωt| dt

=
∫ ∞

−∞
|x(t)| dt = ∥x∥1 < ∞

so X(jω) is well-defined for all ω ∈ R. The proof of the second statement is outside our

scope, but can be found by searching for “Riemann-Lebesgue Lemma”.

This condition is not necessary; signals such as ejω0t do not
satisfy this, but nonetheless have well-defined CTFTs!
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Existence of the CTFT for finite-energy signals

▶ it turns out that finite-energy signals are also CTFT-able
▶ as for finite-action signals, this condition is sufficient for existence,

but not necessary

Theorem 4.2. If x has finite energy, i.e., x ∈ L2, then

(i) X exists and has finite energy, i.e., X ∈ L2, and

(ii) the signal and its spectrum satisfy Parseval’s relation∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X(jω)|2 dω

A beautiful and surprising relationship between the energy of
the signal and the energy of its spectrum.
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CTFT Example: the complex exponential

▶ the complex exponential x(t) = ejω0t does not have finite action nor
finite energy, but is nonetheless CTFT-able

▶ consider the spectrum X(jω) = 2πδ(ω − ω0); an impulse placed at
the frequency ω0 ∈ R

▶ we compute the inverse CTFT of X to be

x(t) = 1
2π

∫ ∞

−∞
2πδ(ω − ω0)ejωt dω = ejω0t

so ejω0t and 2πδ(ω − ω0) must be CTFT pairs!

x(t) = ejω0t︸︷︷︸
spread out in time

CTFT⇐⇒ X(jω) = 2πδ(ω − ω0)︸ ︷︷ ︸
concentrated in frequency
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CTFT Example: a periodic signal

We can also apply the CTFT to periodic signals

▶ let x be a periodic CT signal with fundamental period T0, and let
ω0 = 2π/T0 be the fundamental angular frequency

▶ we represent x using the continuous-time Fourier series

x(t) =
∑∞

k=−∞
αke

jkω0t.

▶ going term by term, the CTFT spectrum must be

X(jω) = 2π
∑∞

k=−∞
αkδ(ω − kω0)

The CTFT of a periodic signal is a sum of impulse functions
located at multiples of the fundamental frequency ω0!
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Example: the CTFT of a periodic signal
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Relationships between CTFT and CTFS
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The CTFT and signal manipulations

▶ suppose we have calculated the spectrum X of some signal x

▶ how can we find the spectra of signals obtained by simple
manipulations, e.g., x(t− 1), x(2t), Re{x}, dx

dt (t), . . . ?

There are many useful properties of the CTFT that you can use as
shortcuts to find the spectra for these related signals

▶ example: since x(t) = 1
2π

∫∞
−∞ X(jω)ejω0t, note that

x(t−t0) = 1
2π

∫ ∞

−∞
X(jω)ejω0(t−t0) = 1

2π

∫ ∞

−∞

(
X(jω)e−jω0t0

)
ejω0t

so the spectrum of x(t− t0) is X(jω)e−jωt0
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Table of CTFT properties
We let x be a CT signal with CTFT spectrum X.

Name x(t) X(jω)

Time-shift by t0 x(t − t0) e−jωt0 X(jω)

Frequency-shift by ω0 ejω0tx(t) X(j(ω − ω0))

Conjugation x(t)∗ X(−jω)∗

Time-scaling x(at) 1
|a| X(jω/a)

Differentiation ẋ(t) (jω)X(jω)

Time Multiplication tx(t) j dX(jω)
dω

Convolution
∫∞

−∞ x(τ)y(t − τ) dτ X(jω)Y (jω)

Multiplication x(t)y(t) 1
2π

∫∞
−∞ X(jν)Y (j(ω − ν)) dν

Real Part Re{x(t)} 1
2 (X(jω) + X(−jω)∗)

Imag Part Im{x(t)} 1
2j (X(jω) − X(−jω)∗)
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CTFT Example: Importance of Magnitude vs. Phase

Conjugation x(t)∗ X(−jω)∗

Time-scaling x(at) 1
|a| X(jω/a)

▶ suppose that s(t) represents your favourite (real-valued) song
▶ if we play it backwards b(t) = s(−t), what happens to the spectrum?

B(jω) = S(−jω) = S(jω)∗ =⇒ |B(jω)| = |S(jω)|

▶ the songs s(t) and b(t) would sound completely different to your
ear, but their spectra have equal magnitudes at all frequencies . . .

While we focus in ECE216 mostly on magnitude, because it’s
simpler, much of the important information is actually in the phase!
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CTFT Example: Gaussian distribution

For σ > 0 consider the signal

x(t) = 1
σ

√
2π
e− 1

2 (t/σ)2

▶ Fact:
∫∞

−∞ x(t) dt = 1 (unit area)

▶ first, note that x(t) satisfies the ordinary differential equation

ẋ(t) = 1
σ

√
2π

(− t
σ2 )e− 1

2 (t/σ)2
= − t

σ2 x(t)

▶ from our table, we know that

CTFT of ẋ(t) = (jω)X(jω), CTFT of tx(t) = j d
dω

X(jω)

▶ equating both sides, the CTFT X(jω) satisfies the ODE

ωX(jω) = − 1
σ2

dX(jω)
dω

⇐⇒ dX(jω)
dω

= −σ2ωX(jω)
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CTFT Example: Gaussian distribution

▶ this is the same ODE, just with the replacement σ → 1/σ

▶ the solution therefore has the form

X(jω) = ce− 1
2 (σω)2

, c = unknown constant

▶ however, since we know that

X(0) =
∫ ∞

−∞
x(t)e−j(0)t dt =

∫ ∞

−∞
x(t) dt = 1

it must be that c = 1

x(t) = 1
σ

√
2π
e− 1

2 (t/σ)2 CTFT⇐⇒ X(jω) = e− 1
2 (σω)2
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CTFT Example: Gaussian distribution

The CTFT of a Gaussian of width σ is a Gaussian of width 1/σ!

General principle: If x is very concentrated in the time domain,
the spectrum X will be very spread out the in frequency domain.
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CTFT Properties: conjugate symmetry

If x is a real signal, meaning x(t) ∈ R for all t ∈ R, then the spectrum
X(jω) is conjugate symmetric, meaning X(jω)∗ = X(−jω) for all ω ∈ R.

Proof: From the definition X(jω) =
∫∞

−∞ x(t)e−jωt dt we have

X(jω)∗ =
∫ ∞

−∞
x(t)∗(e−jωt)∗ =

∫ ∞

−∞
x(t)e−(−1)jωt = X(−jω).

In polar form: X(jω) = |X(jω)|ej∠X(jω), so we have

X(jω)∗ = |X(jω)|e−j∠X(jω)

X(−jω) = |X(−jω)|ej∠X(−jω)

so the magnitude |X(jω)| is an even function of ω ∈ R and the phase
∠X(jω) is an odd function of ω ∈ R.
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CTFT Example: right-sided decaying exponential

x(t) = e−atu(t) CTFT⇐⇒ X(jω) = 1
jω + a
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CTFT Properties: multiplication

▶ suppose we multiply two CT signals x, x̃ and set y(t) = x(t)x̃(t)

▶ we can calculate the CTFT of y

Y (jω) =
∫ ∞

−∞
x(t)x̃(t)e−jωt dt =

∫ ∞

−∞
x(t)

(
1

2π

∫ ∞

−∞
X̃(jν)ejνt dν

)
e−jωt dt

=
1

2π

∫ ∞

−∞
X̃(jν)

(∫ ∞

−∞
x(t)e−j(ω−ν)t dt

)
dν

=
1

2π

∫ ∞

−∞
X̃(jν)X(j(ω − ν)) dν

▶ this kind of integral is called a convolution between X and X̃

Multiplication in time-domain ⇔ convolution in frequency-domain.
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Example: amplitude modulation

▶ in communication systems one often modulates a signal by
multiplying it by a harmonic signal:

y(t) = cos(ωct)︸ ︷︷ ︸
“carrier”

· x(t)︸︷︷︸
“baseband”

= 1
2
(
ejωct + e−jωct

)
x(t)

▶ the spectrum of cosine is C(jω) = 2π δ(ω−ωc)+δ(ω+ωc)
2

▶ the spectrum of y is therefore given by

Y (jω) =
1

2π

∫ ∞

−∞
C(jν)X(j(ω − ν)) dν =

1
2

(X(j(ω − ωc) + X(j(ω + ωc)))

▶ modulation shifts the entire frequency spectrum of X!

▶ in practice, this can allow for easier signal transmission and
simultaneous transmission of multiple signals
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Example: amplitude modulation

▶ x(t) = 2 + cos(2πt) + 1
2 cos(4πt), ωc = 60π ≈ 188
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CTFT Properties: convolution

▶ the convolution of two CT signals x and x̃ is defined to be

y(t) =
∫ ∞

−∞
x(τ)x̃(t− τ) dτ.

▶ let’s compute the CTFT of y

Y (jω) =

∫ ∞

−∞

[∫ ∞

−∞

x(τ)x̃(t − τ) dτ

]
e

−jωt dt

=

∫ ∞

−∞

x(τ)

[∫ ∞

−∞

x̃(t − τ)e
−jωt dt

]
dτ

=

∫ ∞

−∞

x(τ)

[∫ ∞

−∞

x̃(σ)e
−jω(σ+τ) dσ

]
dτ

=

[∫ ∞

−∞

x(τ)e
−jωτ dτ

][∫ ∞

−∞

x̃(σ)e
−jωσ dσ

]
= X(jω)X̃(jω)

Convolution in time-domain ⇔ multiplication in frequency-domain.
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The discrete-time Fourier transform (DTFT)

Everything we just did also works (with some minor changes)
for aperiodic discrete-time signals!

▶ let x be an aperiodic DT signal

▶ you can directly mirror all the arguments we did for CT signals

▶ Steps: (i) window the signal to a duration of 2N + 1, (ii) periodize,
(iii) compute the DTFS, and (iv) take the limit as N → ∞ . . .
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The DT Fourier Transform (DTFT)

Definition 4.3. The discrete-time Fourier transform (DTFT) of a DT
signal x is the function X : R → C defined pointwise by

X(ejω) =
∞∑

n=−∞
x[n]e−jωn.

We call X the Fourier transform or spectrum of x.

Definition 4.4. The inverse discrete-time Fourier transform (inverse
DTFT) of a DT spectrum X is the DT signal x : Z → C defined
pointwise by

x[n] = 1
2π

∫ π

−π

X(ejω)ejωn dω.
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DTFT Example: a sum of impulses

Consider the signal

x[n] = 1
4δ[n] + 1

2δ[n− 1]

+ 1
4δ[n− 2]

▶ we compute the DTFT to be

X(ejω) =
∞∑

n=−∞

x[n]e−jωn =
∞∑

n=−∞

( 1
4 δ[n] + 1

2 δ[n − 1] + 1
4 δ[n − 2])e−jωn

= 1
4 e−jω(0) + 1

2 e−jω(1) + 1
4 e−jω(2)

= 1
4

(
1 + 2e−jω + e−j2ω

)
= 1

4 e−jω(ejω + 2 + e−jω)

= 1
4 e−jω(2 + 2 cos(ω))
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DTFT Example: a sum of impulses

▶ magnitude is |X(ejω)| = 1
4 (2 + 2 cos(ω)), phase is ∠X(ejω) = −ω

▶ the magnitude plot is 2π-periodic
▶ the phase plot is linear, but since phase is an angle, it is always

2π-periodic; in the plot above, the phase is “wrapped”
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Example: Right-sided decaying exponential

For 0 < a < 1, consider the signal

x[n] = anu[n]

▶ we compute the DTFT to be

X(ejω) =
∞∑

n=−∞

anu[n]e−jωn =
∞∑

n=0

ane−jωn

=
∞∑

n=0

(ae−jω)n

=
1

1 − ae−jω
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Example: Right-sided decaying exponential

▶ The spectrum has magnitude

|X(ejω)| =
∣∣∣∣ 1
1 − a cos(ω) + ja sin(ω)

∣∣∣∣ = 1√
(1 − a cos(ω))2 + a2 sin(ω)2
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The DTFT spectrum is always 2π-periodic

The spectrum X(ejω) of a DT signal x is a 2π-periodic function of ω.

Proof: Using X(ejω) =
∑∞

n=−∞ x[n]e−jωn, we compute that

X(ej(ω+2π)) =
∞∑

n=−∞

x[n]e−j(ω+2π)n =
∞∑

n=−∞

x[n]e−jωne−j(2π)n

=
∞∑

n=−∞

x[n]e−jωn(e−j(2π))n

=
∞∑

n=−∞

x[n]e−jωn(1)n

= X(ejω).
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Comparison of CTFT vs. DTFT

CTFT: x(t) = 1
2π

∫ ∞

−∞
X(jω)ejωt, X(jω) =

∫ ∞

−∞
x(t)e−jωt dt.

▶ represents aperiodic x(t) as continuous sum of CT complex exp.
▶ spectrum X(jω) captures “amount” of frequency ω contained in x
▶ in general, the spectrum X(jω) is aperiodic

DTFT: x[n] = 1
2π

∫ π

−π

X(ejω)ejωn dω, X(ejω) =
∞∑

n=−∞
x[n]e−jωn.

▶ represents aperiodic x[n] as continuous sum of DT complex exp.
▶ spectrum X(ejω) captures “amount” of frequency ω contained in x
▶ the spectrum X(ejω) is always 2π-periodic
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Table of DTFT properties

We let x be a DT signal with 2π-periodic DTFT spectrum X.

Name x[n] X(ejω)

Time-shift by n0 x[n − n0] e−jωn0 X(ejω)

Frequency-shift by ω0 ejω0nx[n] X(ej(ω−ω0))

Conjugation x[n]∗ X(e−jω)∗

Time-reversal x[−n] X(e−jω)

Differencing x[n] − x[n − 1] (1 − e−jω)X(ejω)

Convolution
∑∞

m=−∞ x[m]y[n − m] X(ejω)Y (ejω)

Multiplication x[n]y[n] 1
2π

∫ π

−π
X(ejν)Y (ej(ω−ν)) dν

Real Part Re{x[n]} 1
2 (X(ejω) + X(e−jω)∗)

Imag Part Im{x[n]} 1
2j (X(ejω) − X(e−jω)∗)
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Relationships between DTFT and DTFS
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Extra: proof of inverse CTFT relationship

Proposition 4.1. If x is a CT signal with CTFT X, then the i-CTFT of
X recovers the original signal x.

Proof: The i-CTFT of X is

1
2π

∫ ∞

−∞
X(jω)ejωt dω =

1
2π

∫ ∞

−∞

[∫ ∞

−∞
x(τ)e−jωτ dτ

]
ejωt dω

=
∫ ∞

−∞
x(τ)

[
1

2π

∫ ∞

−∞
ejωte−jωτ dω

]
dτ.

By our previous results, we know the term in brackets is

1
2π

∫ ∞

−∞
ejωte−jωτ dω = δ(t − τ)

so we find that

1
2π

∫ ∞

−∞
X(jω)ejωt dω =

∫ ∞

−∞
x(τ)δ(t − τ) dτ = x(t).
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Relevant MATLAB commands

▶ MATLAB has some symbolic tools for FT computations

1 %% Define symbolic variables

2 syms t w

3

4 %% Define signal

5 x = [heaviside(t+1)-heaviside(t-1)]*exp(-abs(t));

6

7 %% Compute CTFT

8 X = fourier(x,t,w);

9

10 %% Compute inverse CTFT

11 x_recovered = ifourier(X,w,t);
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems.
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems.
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, 2nd Ed.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

The CTFT 4.1 5 4.1 7.1, 7.2, 7.4 10.5 V4 6.1–6.3
CTFT properties 4.3 5 4.2, 4.3, 4.6 7.4 10.7 V4 6.1–6.3
The DTFT 5.1 12 10.2 7.4 10.4 V4 7.1
DTFT properties 5.3 12 10.3, 10.4 7.4 10.7 V4 7.1
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Personal Notes
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Personal Notes
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5. Sampling, Aliasing, and Interpolation

• introduction
• the sampling function
• sampling theorem for band-limited signals
• reconstruction and interpolation
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Introduction to sampling

▶ to sample some quantity of interest means to collect a measurement

▶ from “very few” samples, there is likely little we can learn

▶ if we collect “enough” samples, we may be able to conclude more

▶ we will study the sampling of CT signals, and try to formulate these
ideas mathematically
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The sampling function

The sampling function is defined as

s(t) =
∞∑

n=−∞
δ(t− nTs)

where Ts > 0 is the sampling period

▶ this is an infinite “train” of CT impulses, spaced by Ts seconds
▶ multiplication by s “samples” the values of x

s(t)x(t) =
∞∑

n=−∞
δ(t− nTs)x(t) =

∞∑
n=−∞

δ(t− nTs)x(nTs)

resulting in a weighted sum of impulses
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The sampling function

s(t)x(t) =
∞∑

n=−∞
δ(t− nTs)x(t) =

∞∑
n=−∞

δ(t− nTs)x(nTs)
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The CT Fourier Series of the sampling function

▶ with fund. frequency ωs = 2π
Ts

, the CTFS coefficients αk of s are given by

αk = 1
Ts

∫ Ts/2

−Ts/2
s(t)e−jkωst dt = 1

Ts

∫ Ts/2

−Ts/2

[
∞∑

n=−∞

δ(t − nTs)

]
e−jkωst dt

=
∞∑

n=−∞

1
Ts

[∫ Ts/2

−Ts/2
δ(t − nTs)e−jkωst dt

]
▶ the impulse δ(t − nTs) is only in the interval [− Ts

2 , Ts
2 ] if n = 0:∫ Ts/2

−Ts/2
δ(t − nTs)e−jkωst dt =

{
e−jkωs(0) = 1 if n = 0

0 otherwise

▶ the CTFS coefficients are therefore αk = 1
Ts

, so we find that

s(t) = 1
Ts

∑∞

k=−∞
ejkωst (note: wow!)
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The CT Fourier Transform of the sampling function

▶ we previously studied how to take the CTFT of a periodic signal:

x(t) =
∞∑

k=−∞

αke
jkω0t =⇒ X(jω) = 2π

∞∑
k=−∞

αkδ(ω − kω0)

▶ therefore

s(t) = 1
Ts

∑∞

k=−∞
ejkωst =⇒ S(jω) = 2π

Ts

∞∑
k=−∞

δ(ω − kωs)

The CTFT of the sampling function is a sampling function!

▶ the impulses are spaced in the frequency domain by ωs rad/s
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The “picket fence miracle”

The CTFT of the sampling function is a sampling function!

s(t) =
∞∑

n=−∞
δ(t− nTs) S(jω) = 2π

Ts

∞∑
k=−∞

δ(ω − kωs)
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Band-limited signals

Definition 5.1. A CT signal x is bandlimited with bandwidth B > 0 if
its CTFT spectrum X satisfies X(jω) = 0 for all | ω

2π | ≥ B.

▶ the spectrum is zero outside the interval [−2πB, 2πB]

▶ bandlimited signals are an important model; many signals in practice
are bandlimited, or are filtered such that they become bandlimited

▶ for bandlimited x, suppose we sample with sampling period Ts
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Sampling of band-limited signals

▶ what is the spectrum of the sampled signal xs(t) = x(t)s(t)?

Multiplication in time-domain ⇔ convolution in frequency-domain.

Xs(jω) = 1
2π

∫ ∞

−∞
S(jν)X(j(ω − ν)) dν

= 1
2π

∫ ∞

−∞

[
2π

Ts

∞∑
k=−∞

δ(ν − kωs)

]
X(j(ω − ν)) dν

= 1
Ts

∞∑
k=−∞

X(j(ω − kωs))

▶ the spectrum of the sampled signal is a periodized version of the
spectrum of original signal, with period ωs in the frequency domain!
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Sampling of band-limited signals

▶ if ωs ≥ 4πB, or equivalently Ts ≤ 1
2B

then the periodization is nicely
spread out in the frequency domain, and the picture looks like this
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Sampling of band-limited signals

▶ from only the samples, we can obtain the periodized spectrum and
window it to recover the original spectrum X(jω)

X(jω) = Ts ·Xs(jω) · [u(ω + 2πB) − u(ω − 2πB)]︸ ︷︷ ︸
≜W (jω)

▶ now we can recover entire original signal x(t) using the i-CTFT!

Theorem 5.1 (Nyquist-Shannon Theorem). Let x be a bandlimited
CT signal with bandwidth B. If x is sampled with sampling period Ts

satisfying Ts ≤ 1
2B , then x can be exactly recovered from the samples.

▶ the minimum sampling frequency ωs which satisfies this is equal to
4πB, and is called the Nyquist frequency
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Application: digital audio recording

▶ the human ear cannot perceive audio frequencies above 20kHz

▶ when recording audio, one can therefore filter out frequencies above
20kHz, producing a band-limited signal with B = 20kHz

▶ to perfectly reconstruct this bandlimited signal from samples, one
needs to sample at 2B ≈ 40kHz

▶ this logic is how the standard rate of 44.1kHz was chosen for
high-quality audio

▶ the extra 2.05kHz added to the bandwidth allows for some wiggle
room in the design of the filter which produces the bandlimited signal
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Aliasing

▶ what happens if ωs < 4πB?
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Aliasing

▶ windowing the sampled spectrum Xs(jω) no longer recovers the
original spectrum X(jω)

▶ performing the i-CTFT on this will obviously not recover the original
signal x. Instead, you will obtain a distorted version of the original
signal; this distortion is called aliasing

▶ to avoid aliasing, you must sample faster!
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Extra: reconstruction and interpolation

▶ we can derive a more direct formula to express the original signal x(t)
in terms of the samples

▶ if Ts ≤ 1
2B , our formula for the spectrum of x is

X(jω) = Ts ·Xs(jω) · [u(j(ω + 2πB)) − u(j(ω − 2πB))]︸ ︷︷ ︸
≜W (jω)

Multiplication in frequency-domain ⇔ convolution in time-domain.

▶ we already know that

xs(t) =
∞∑

n=−∞
x(nTs)δ(t− nTs)
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Extra: reconstruction and interpolation

▶ from our previous calculations, the i-CTFT of W (jω) is

w(t) = sin(2πBt)
πt

= 2B sin(2πBt)
(2πBt) ≜ 2B sinc(2Bt)

Note: sinc(x) = sin(πx)/(πx)

(i) sinc(0) = 1, and

(ii) sinc(x) = 0 for all
x ∈ {±1,±2,±3, . . .}.
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Extra: reconstruction and interpolation

▶ we can now recover x as

x(t) = Ts

∫ ∞

−∞
xs(τ)w(t − τ) dτ

= Ts

∫ ∞

−∞

[
∞∑

n=−∞

x(nTs)δ(τ − nTs)

]
[2Bsinc(2B(t − τ))] dτ

= 2BTs

∞∑
n=−∞

x(nTs)
∫ ∞

−∞
δ (τ − nTs) sinc(2B(t − τ)) dτ

= 2BTs

∞∑
n=−∞

x(nTs)sinc(2B(t − nTs))

▶ the reconstruction is a sum of scaled and time-shifted sinc signals
▶ if we assume that Ts = 1

2B , things simplify
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Extra: reconstruction and interpolation

Time-domain reconstruction: x(t) =
∞∑

n=−∞
x( n

2B )sinc(2Bt− n)

▶ the samples of x are at times tℓ = ℓ
2B for ℓ ∈ Z

▶ at the sampling instants, we have

x(tℓ) =
∞∑

n=−∞

x( n
2B

)sinc(2B ℓ
2B

− n) =
∞∑

n=−∞

x( n
2B

)sinc(ℓ − n)

= x( ℓ
2B

)

= x(tℓ)

since only one term in the sum gives a non-zero contribution
▶ for each sample, there is a sinc function centred directly at the sample
▶ we achieve exact reconstruction at the sampling instants
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Extra: convolution with the sampling function

▶ implicit in our previous arguments is the following nice fact

Periodization ⇐⇒ convolution with s(t)

(x ∗ s)(t) =
∫ ∞

−∞
x(τ)s(t− τ) dτ

=
∫ ∞

−∞
x(τ)

[ ∞∑
n=−∞

δ(t− nTs − τ)
]

dτ

=
∞∑

n=−∞

∫ ∞

−∞
x(τ)δ(t− nTs − τ) dτ

=
∞∑

n=−∞
x(t− nTs)
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems.
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems.
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, 2nd Ed.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

The sampling theorem 7.1 15 5.1 9.2 11.3
Aliasing 7.3 15 5.1 9.2 11.1, 11.3
Signal reconstruction 7.2 15 5.1 9.2 11.2
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6. Fundamentals of Continuous-Time Systems

• definition of a CT system and examples
• linearity, time-invariance, causality
• memory, invertibility, stability
• linear time-invariant (LTI) systems
• impulse response of a LTI system
• response of a LTI system and convolution
• convolution
• LTI system properties and the impulse response
• more on LTI systems and causality
• series, parallel, and feedback combinations of LTI systems
• differential equations and CT LTI systems
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What is a CT system

▶ a system is any entity that interacts with its external environment
though input and output signals

▶ in this course, we focus on systems which produce a unique output for
a given input, i.e., an input-output mapping system

TInput = x Output = y = T{x}

▶ notation: T{x}(t) is the value of the output signal at time t ∈ R.

▶ CT systems often (but not always) model physical systems with
inputs and outputs, such as circuits, electromechanical systems,
aerodynamics, thermodynamics, biological, chemical, social, . . .
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Pointwise definition of a CT system

▶ a CT system takes a CT input and produces a CT output

One way to define a CT system is pointwise: give a formula for
y(t) = T{x}(t) in terms of (potentially) all the input signal values

{x(t)}t∈R. This yields an explicit formula for the output.

▶ example: the system Tsq defined by y(t) = (x(t))2 produces an
output which is the squared value of the input at each t ∈ R
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Pointwise definition of a CT system

▶ example: the τ -delay system Tdelay defined by y(t) = x(t− τ).

▶ example: the derivative system Tdiff defined by y(t) = d
dtx(t)
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Pointwise definition of a CT system

▶ example: for a > 0 the system Tavg{x}(t) = 1
2a

∫ t+a

t−a
x(τ) dτ

averages the input signal over the time window [t− a, t+ a]

▶ example: the system Tmod defined by y(t) = x(t) ·A sin(ω0t)
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Example: the RC circuit

Capacitor: i(t) = C
dvc

dt , Ohm’s Law: i(t) = 1
R

[vs(t) − vc(t)]

R i(t)

C

−

+
vs(t)

+

−
vc(t)

1st-order linear c.c. ODE

RC
dvc

dt + vc(t) = vs(t)

▶ differential equations do not have unique solutions, but a system
must produce a unique output for any given input

▶ to ensure uniqueness, we will impose that the input vs and the desired
response vc should both be right-sided
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Example: the RC circuit

▶ let’s compute vc(t) via the method of integrating factors

▶ multiply both sides by et/RC to obtain

et/RC
[dvc

dt
+ 1

RC
vc(t)

]
= et/RC 1

RC
vs(t)

which can be written as
d

dτ

(
eτ/RCvc(τ)

)
= 1

RC
eτ/RCvs(τ)

▶ integrating from −∞ to t, the left-hand side simplifies to∫ t

−∞

d
dτ

(
eτ/RCvc(τ)

)
dt = et/RCvc(t) − lim

τ→−∞
eτ/RCvc(τ)︸ ︷︷ ︸

=0 by right-sidedness

= et/RCvc(t)

so the equation becomes

et/RCvc(t) =
∫ t

−∞

1
RC

eτ/RCvs(τ) dτ
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Example: the RC circuit

▶ rearranging, we obtain the point-wise system representation

vc(t) =
∫ t

−∞

1
RC

e−(t−τ)/RCvs(τ) dτ

▶ our RC circuit defines a system TRC, which transforms a voltage
source signal into a capacitor voltage signal

vs vc

We will more systematically examine systems defined by ODEs
at the end of the chapter.
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Example: a point mass

m
F (t) = force

+p = position Newton’s 2nd Law

m
d
dtv(t) = F (t)

d
dtp(t) = v(t)

▶ we again assume that the force F (t) and responses p(t), v(t) are right-sided
▶ integrating, we obtain

v(τ) = 1
m

∫ τ

−∞
F (σ) dσ, p(t) =

∫ t

−∞
v(τ) dτ

and we again get a pointwise system representation

p(t) = 1
m

∫ t

−∞

∫ τ

−∞
F (σ) dσdτ or simply p = TNewton{F }
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Response of RC circuit and point mass

▶ response of the RC circuit to a voltage input

▶ response of the point mass to a force input
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More complex example: control of COVID-19

▶ systems can also model very large-scale phenomena

Gov. Policy

Lockdown Deaths

▶ COVID-19/population system: complicated differential equations
modelling interaction between disease and population

▶ Government policy system: decision-making rules for when to
enact/lift restrictions and lockdowns (i.e., a feedback controller)
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More complex example: systems described by PDEs

▶ partial differential equations are also key sources of CT systems
▶ examples: fluid flow (Navier-Stokes), electromagnetic fields/waves

(Maxwell), and quantum mechanics (Schrödinger)

− ℏ2

2m∇2ψ(r, t) + V (r)ψ(r, t)

= iℏ
∂

∂t
ψ(t, r)

▶ Input: photon excitation, Output: quantum state of atom/molecule
▶ more PDEs in APM 384
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System properties: linearity

Definition 6.1. A CT system T is linear if for any two input signals x, x̃
and any two constants α, α̃ ∈ C it holds that

T{αx+ α̃x̃} = αT{x} + α̃T{x̃}.

▶ in words: if the input is a linear combination of different signals, you
can apply T to each piece and add the results (“superposition”)

▶ for a linear system, zero input always produces zero output (why?)

▶ superposition extends to discrete and continuous sums (integrals)

T


n∑

j=1
αjxj

 =
n∑

j=1
αjT{xj}, T

{∫
α(τ)xτ dτ

}
=
∫
α(τ)T{xτ } dτ.
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Example: the squaring system

▶ recall: the squaring system Tsq defined by y(t) = (x(t))2

▶ let x(t) and x̃(t) be two inputs with corresponding outputs

y(t) = Tsq{x}(t) = (x(t))2, ỹ(t) = Tsq{x̃}(t) = (x̃(t))2.

▶ for constants α, α̃, we have

Tsq{αx+ α̃x̃}(t) = (αx(t) + α̃x̃(t))2

= α2(x(t))2 + α̃2(x̃(t))2 + 2αα̃x(t)x̃(t).

▶ on the other hand

αTsq{x}(t) + α̃Tsq{x̃}(t) = α(x(t))2 + α̃(x̃(t))2

Therefore, the system Tsq is not linear
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Example: the RC circuit

▶ recall: the RC circuit TRC{vs}(t) =
∫ t

−∞
1

RC e
−(t−τ)/RCvs(τ) dτ

▶ let vc, ṽc be two input signals and let α, α̃ be constants

▶ we calculate that

TRC{αvs + α̃ṽs}(t) =
∫ t

−∞

1
RC e

−(t−τ)/RC(αvs(τ) + α̃ṽs(τ)) dτ

= α

∫ t

−∞

1
RC e

−(t−τ)/RCvs(τ) dτ + α̃

∫ t

−∞

1
RC e

−(t−τ)/RC ṽs(τ) dτ

= αTRC{vs}(t) + α̃TRC{ṽs}(t)

Therefore, the system TRC is linear.
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System properties: time-invariance

▶ notation: let xτ (t) = x(t− τ) be short form notation for a
time-delayed signal

Definition 6.2. A CT system T is time-invariant if for any input x with
output y = T{x}, it holds that yτ = T{xτ } for all time shifts τ ∈ R.

physical meaning: an

experiment on the system

tomorrow will produce the

same results as an

experiment on the system

today.
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Example: the squaring system

To check if a system is time-invariant, we compute yτ ,
compute T{xτ }, and see if they are equal.

▶ for the squaring system, let x be an input with corresponding output

y(t) = Tsq{x}(t) = (x(t))2

▶ if we simply shift the obtained output, we obtain

yτ (t) = (x(t− τ))2

▶ if we instead shift the input signal to be xτ (t) = x(t− τ), we compute

Tsq{xτ }(t) = (xτ (t))2 = (x(t− τ))2

These two calculations agree, so Tsq is time-invariant.
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Example: the modulation system

▶ for the system Tmod let x be an input with output

y(t) = Tmod{x}(t) = x(t) ·A sin(ω0t)

▶ if we simply shift the obtained output, we obtain

yτ (t) = x(t− τ) ·A sin(ω0(t− τ))

▶ if we instead shift the input signal to be xτ (t) = x(t− τ), we compute

Tmod{xτ }(t) = x(t− τ)A sin(ω0t)

These two calculations disagree, so Tmod is not time-invariant.
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Example: the RC circuit

▶ for TRC we have y(t) =
∫ t

−∞
1

RC e
−(t−σ)/RCx(σ) dσ

▶ if we simply shift the obtained output by τ ∈ R, we have

yτ (t) = y(t− τ) =
∫ t−τ

−∞

1
RC e

−(t−τ−σ)/RCx(σ) dσ.

▶ if we instead shift the input signal by τ , the output T{xτ } is

TRC{xτ }(t) =
∫ t

−∞

1
RC

e−(t−ξ)/RCx(ξ − τ) dξ

=
∫ t−τ

−∞

1
RC

e−(t−τ−σ)/RCx(σ) dσ, where σ = t − τ.

These two calculations agree, so TRC is time-invariant. Physically,
the circuit is time-invariant because R and C are constant.
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System properties: causality

Definition 6.3. A CT system T is causal if for all t ∈ R, the output
value y(t) depends only on the past and present input values {x(τ)}τ≤t.

▶ physical meaning: the system does not “look into the future”

You can often check causality by just inspecting the formula for y(t).

▶ the RC circuit y(t) =
∫ t

−∞
1

RC e
−(t−τ)/RCx(τ) dτ is causal, because

the integral uses only the values {x(τ)} for −∞ ≤ τ ≤ t.

▶ the averaging system y(t) = 1
2a

∫ t+a

t−a
x(τ) dτ is not causal, because

the integral uses the values {x(τ)} for t ≤ τ ≤ t+ a
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System properties: causality (equivalent definition)

▶ the following equivalent definition is easy to visualize

Definition 6.4. A CT system T is causal if for any time t0 and any two
inputs x, x̃ that satisfy x(t) = x̃(t) for all t ≤ t0, the corresponding
outputs y = T{x} and ỹ = T{x̃} satisfy y(t) = ỹ(t) for all t ≤ t0.

interpretation: if two

inputs agree up to some

time, then the

corresponding outputs

must also agree up to

that time.
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Proof that Def. 6.3 and Def. 6.4 are the same
Proof: Suppose the system is causal in the sense of Definition 6.3. Let x be an input
with corresponding output y = T {x}. Now let t0 ∈ R, and suppose x̃ is another input
satisfying x̃(τ) = x(τ) for all τ ≤ t0. For any time t ≤ t0, we have that ỹ(t) = T {x̃}(t)
depends only on x̃ up to time t, which is identical to x up to time t. Thus,

ỹ(t) = T {x̃}(t) = T {x}(t) = y(t),

and so the two outputs agree at time t. Since this holds for all times t ≤ t0, the system
is causal in the sense of Definition 6.4.

Conversely, suppose the system is causal in the sense of Definition 6.4. Let t0 ∈ R and
let x be an input. Define a new input x̃ via

x̃(t) =

{
x(t) if t ≤ t0

0 if t > t0.

Obviously, x̃ just contains the values of x up to time t0. Therefore, T {x} and T {x̃}

also agree up to time t0, so y(t) = T {x}(t) = T {x̃} depends only on the input values

of x up to time t0, so the system is causal in the sense of Definition 6.3.
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System properties: memoryless

Definition 6.5. A CT system T is memoryless if for all times t ∈ R, the
output value y(t) depends only on the input value x(t) at that same time.

▶ meaning: only the current time matters, not the past or future
▶ this is a special case of causality

▶ the squaring system T{x}(t) = (x(t))2 is memoryless
▶ the modulation system T{x}(t) = A sin(ω0t) · x(t) is memoryless
▶ the derivative system T{x}(t) = d

dtx(t) is not memoryless
▶ the RC circuit y(t) =

∫ t

−∞
1

RC e
−(t−τ)/RCx(σ) dσ is not memoryless
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System properties: invertibility

Definition 6.6. A CT system T is invertible if there exists another CT
system Tinv such that Tinv{T{x}} = T{Tinv{x}} = x for all inputs x.

T Tinvx
T{x}

x

▶ physical meaning: you can “undo” the operation of T
▶ example: the delay system T{x}(t) = x(t− τ) is invertible, with its

inverse being Tinv{x}(t) = x(t+ τ).
▶ example: the squaring system T{x}(t) = (x(t))2 is not invertible,

for the same reason the function y = x2 is not invertible.
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System properties: stability (linear systems only)

▶ recall: a CT signal x has finite amplitude or is bounded if
∥x∥∞ = maxt∈R |x(t)| is finite, and if so, we write x ∈ L∞

▶ note: if we label A = ∥x∥∞, then this means that |x(t)| ≤ A for all
t ∈ R; the signal’s magnitude is always less than A

Definition 6.7. A linear CT system T is Bounded-Input
Bounded-Output (BIBO) stable if there is a constant K ≥ 0 such that
∥y∥∞ ≤ K∥x∥∞ for all bounded inputs x and outputs y = T{x}.

▶ roughly speaking: bounded inputs produce bounded outputs

▶ stability is a critical property in many engineering applications
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Example: the RC circuit

▶ recall: the RC circuit TRC{x}(t) =
∫ t

−∞
1

RC e
−(t−τ)/RCx(τ) dτ

▶ let x be a bounded input, i.e., x ∈ L∞. We try to bound y:

|y(t)| =
∣∣∣∣∫ t

−∞

1
RC e

−(t−τ)/RCx(τ) dτ
∣∣∣∣

≤
∫ t

−∞

1
RC e

−(t−τ)/RC |x(τ)| dτ

≤
∫ t

−∞

1
RC e

−(t−τ)/RC ·
(

max
σ∈R

|x(σ)|
)

dτ

= ∥x∥∞

∫ t

−∞

1
RC e

−(t−τ)/RC dτ = ∥x∥∞.

▶ so ∥y∥∞ = maxt∈R |y(t)| ≤ ∥x∥∞.

Since x was arbitrarily chosen, TRC is BIBO stable with K = 1.
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Example: integrator system

▶ consider the integrator system Tint{x}(t) =
∫ t

−∞ x(τ) dτ

To show that a system is not BIBO stable, you need to give an
example of a bounded input which leads to an unbounded output.

▶ let’s try the unit step input x(t) = u(t). We compute that

y(t) = Tint{u}(t) =
∫ t

−∞
u(τ) dτ =

0 if t < 0

t if t ≥ 0
= t · u(t)

▶ this output is unbounded, even though the input was bounded!

Therefore, Tint is not BIBO stable.
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Example engineering applications of system properties

▶ linearity: if I double the applied voltage signal, I will get double the
response from my circuit

▶ time-invariance: if I design my circuit to my liking today, it will
behave the same way tomorrow

▶ causality: important for real-time signal processing, filtering, and
control

▶ memoryless: many important nonlinear phenomena (e.g., signal
saturation, deadband, quantization, friction) are memoryless.

▶ invertibility: “CTRL+Z”. Also, many feedback control problems are
implicitly about approximately inverting the system model

▶ stability: unstable systems are often dangerous in practice, will lead
to component damage and failure.
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Linear Time-Invariant (LTI) systems

▶ we now focus on systems which are both linear and time-invariant

▶ remember that, roughly speaking
1. linearity: “the superposition principle holds”
2. time-invariance: “the system will be the same tomorrow as it is today”

▶ LTI systems are important for several reasons:
(i) many real physical processes are reasonably modelled as LTI systems
(ii) many useful engineering algorithms are described by LTI systems
(iii) we have good theoretical tools for analyzing LTI systems
(iv) we have good procedures available for designing LTI systems

▶ you will use LTI systems in many other courses: control,
communications, signal processing, energy systems, robotics, . . .
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Recall: the CT unit impulse signal

▶ the CT unit impulse δ(t) is defined as δ(t) = lim∆→0 p∆(t)
▶ an idealized very fast pulse at t = 0
▶ notation for shifted impulse: δτ (t) = δ(t− τ)

Unit Area:
∫ ∞

−∞
δτ (t) dt = 1

Sifting:
∫ ∞

−∞
x(t)δτ (t) dt = x(τ)
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The impulse response of a LTI system

Definition 6.8. The impulse response h of a CT LTI system T is the
response to a unit CT impulse input applied at t = 0, i.e., h = T{δ}.

▶ key idea: we “hit the system sharply”, and observe how it responds

▶ example: the integrating system Tint{x}(t) =
∫ t

−∞ x(τ) dτ is LTI,
and we have h(t) =

∫ t

−∞ δ(τ) dτ = u(t)

▶ example: the delay system Tdelay{x}(t) = x(t− τ) is LTI, and we
have h(t) = δ(t− τ) = δτ (t), a shifted impulse function.

▶ example: the averaging system y(t) = 1
2a

∫ t+a

t−a
x(τ) dτ is LTI, and

we have h(t) = 1
2a (u(t+ a) − u(t− a)).
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Example: impulse response of RC circuit

▶ the RC circuit is linear, time-invariant, and causal

R i(t)

C

−

+
vs(t)

+

−
vc(t)

vc(t) =
∫ t

−∞

1
RC

e−(t−τ)/RCvs(τ) dτ

vc = TRC{vs}

h(t) = TRC{δ}(t) =
∫ t

−∞

1
RC e

−(t−τ)/RCδ(τ) dτ =
{

1
RC

e−t/RC if t ≥ 0
0 if t < 0

▶ physically: we apply a big voltage spike to the circuit at t = 0, the
capacitor quickly charges and develops a voltage 1

RC , then the
capacitor discharges exponentially with rate 1

RC
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The response of an LTI system

Remarkably, the impulse response enable us to compute the
output of the LTI system for any input signal.

▶ consider the CT system y = T{x} where T is LTI

▶ from the sifting formula, we have that

x(τ) =
∫ ∞

−∞
x(t)δτ (t) dt

▶ if we just switch the labels t and τ , then we obtain

x(t) =
∫ ∞

−∞
x(τ)δt(τ) dτ =

∫ ∞

−∞
x(τ)δτ (t) dτ

since δt(τ) = δ(τ − t) = δ(t− τ) = δτ (t)
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The response of an LTI system

▶ this gives us an impulse representation of any signal x:

x(t) =
∫ ∞

−∞
x(τ)δ(t− τ) dτ or x =

∫ ∞

−∞
x(τ)δτ dτ

interpretation: we are expressing x as a (continuous) linear
combination of the “basis”’ signals δτ with weighting coefficients x(τ)

▶ let’s compute the output y = T{x}:

y = T{x} = T

{∫ ∞

−∞
x(τ)δτ dτ

}
=
∫ ∞

−∞
x(τ)T{δτ } dτ

where we used linearity (i.e., superposition) of the system T
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The response of an LTI system

▶ to go further, we need to calculate T{δτ }

▶ since T is time-invariant, the response T{δτ } to an impulse at time
τ is equal to the impulse response h = T{δ} shifted by τ time units:

T{δτ } = hτ or T{δτ }(t) = h(t− τ).

▶ we therefore have that

y(t) = T{x}(t) =
∫ ∞

−∞
hτ (t)x(τ) dτ =

∫ ∞

−∞
h(t− τ)x(τ) dτ

This very important formula is called the convolution of
the signals h and x, and is denoted by y = h ∗ x
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Some observations about convolution

Convolution: y(t) = (h ∗ x)(t) =
∫ ∞

−∞
h(t− τ)x(τ) dτ.

▶ Observation #1: convolution is not a pointwise operation. For any
time t ∈ R, the value y(t) depends on the entire signal x and the
entire signal h.

▶ Observation #2: computing the value y(t) involves a few steps:
(i) time-reverse h

(ii) shift the result forward by t seconds
(iii) multiply the result pointwise by x

(iv) integrate over all τ
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Properties of CT convolution

▶ we can think of convolution as a general operation which takes two
signals v, w and returns another signal v ∗ w defined as

(v ∗ w)(t) =
∫ ∞

−∞
v(t− τ)w(τ) dτ.

For any CT signals v, w, x and any constants α, β the following hold:

(i) superposition: x ∗ (αv + βw) = α(x ∗ v) + β(x ∗ w)

(ii) commutative: v ∗ w = w ∗ v

(iii) time-invariance: v ∗ wσ = (v ∗ w)σ

(iv) identity element: δ ∗ x = x

(v) differentiation: D(v ∗ w) = (Dv) ∗ w = v ∗ (Dw) where “D”
denotes differentiation

Section 6: Fundamentals of Continuous-Time Systems 6-267



Proof of commutative property of convolution

The convolution operation is commutative, meaning that
v ∗ w = w ∗ v. More explicitly, we have that∫ ∞

−∞
v(t− τ)w(τ) dτ =

∫ ∞

−∞
v(τ)w(t− τ) dτ for all t ∈ R.

Proof: For any fixed t, let σ = t − τ , so that τ = t − σ. Then

(v ∗ w)(t) =
∫ ∞

−∞
v(t − τ)w(τ) dτ =

∫ ∞

−∞
v(σ)w(t − σ) dσ = (w ∗ v)(t)

which shows the equality.

▶ the other properties are proved very similarly by applying the
definition and doing basic calculus; we will skip the details.
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Can we always convolve any two signals? No.

▶ convolution is a tool, and all tools have limitations

▶ example: if v(t) = 1 for all t ∈ R, then

(v ∗ v)(t) =
∫ ∞

−∞
(1)(1) dτ = +∞, for all t ∈ R.

▶ question: when is v ∗ w well-defined?

When is (v ∗ w)(t) =
∫ ∞

−∞
v(t− τ)w(τ) dτ finite for all t?

▶ intuitively we would get a finite result if
(a) τ 7→ v(t − τ)w(τ) has finite duration for all t, or
(b) v or w (or possibly both) tend to zero fast enough as τ → ±∞
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Conditions for existence of convolution

Proposition 6.1. The following statements hold:

(i) If v and w are right-sided, then v ∗ w exists and is also right-sided;

(ii) If v or w has finite duration, then v ∗ w exists. Moreover, if v and w both
have finite duration, then v ∗ w also has finite duration;

(iii) If v, w have finite action, then v ∗ w exists and also has finite action.
Moreover, ∥v ∗ w∥1 ≤ ∥v∥1∥w∥1;

(iv) If v has finite action and w has finite energy, then v ∗ w exists and has
finite energy. Moreover, ∥v ∗ w∥2 ≤ ∥v∥1∥w∥2;

(v) If v has finite action and w has finite amplitude, then v ∗ w exists and has
finite amplitude. Moreover, ∥v ∗ w∥∞ ≤ ∥v∥1∥w∥∞.

In cases (i), (ii), or (iii), convolution is also associative, meaning that

x ∗ (v ∗ w) = (x ∗ v) ∗ w, for all signals x, v, w.
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Partial Proof of Proposition 6.1
Proof: Our convolution formula is

z(t) =
∫ ∞

−∞
v(t − τ)w(τ) dτ. (1)

(i): If v, w are both right-sided, then
▶ there is a time τ1 such that w(τ) = 0 for all τ < τ1, and
▶ there is a time τ2 such that v(τ) = 0 for all τ < τ2, so therefore v(t − τ) = 0 for

all τ > t − τ2

and we therefore have that

z(t) =
∫ ∞

−∞
v(t − τ)w(τ) dτ =

∫ t−τ2

τ1

v(t − τ)w(τ) dτ.

This is now a finite integral, so we will get a finite result as long as v and w are “nice

enough” signals. To see that z is also right-sided, note that if t < τ1 + τ2, then

v(t − τ)w(τ) will always be zero for all τ , and the integral will yield zero. Thus, z is

right sided from time τ1 + τ2.
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Partial Proof of Proposition 6.1
(ii): Similar reasoning to part (i).

(iii): We can calculate directly that

∥z∥1 =
∫ ∞

−∞
|z(t)| dt =

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
v(t − τ)w(τ) dτ

∣∣∣∣ dt

≤
∫ ∞

−∞

∫ ∞

−∞
|v(t − τ)| · |w(τ)| dτ dt

=
∫ ∞

−∞

[∫ ∞

−∞
|v(t − τ)| dt

]
· |w(τ)| dτ = ∥v∥1∥w∥1.

(iv): Omitted because it’s a bit tricky to prove.

(v): Omitted, but it’s an easy calculation; try it.
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Convolution example: integrator system

▶ the integrator system Tint has h(t) = u(t). Let’s compute the output
to input x(t) = u(t) via convolution:

y(t) =
∫ ∞

−∞
u(t− τ)u(τ) dτ

for t < 0 : y(t) =
∫ 0

−∞
u(t − τ) u(τ)︸︷︷︸

=0

dτ +
∫ ∞

0
u(t − τ)︸ ︷︷ ︸

=0

u(τ) dτ = 0

for t ≥ 0 : y(t) =
∫ 0

−∞
u(t − τ) u(τ)︸︷︷︸

=0

dτ +
∫ ∞

0
u(t − τ)︸ ︷︷ ︸
=1 if τ<t

u(τ)︸︷︷︸
=1

dτ

=
∫ t

0
dτ = t

so we again obtain the output y(t) = t · u(t)!

Section 6: Fundamentals of Continuous-Time Systems 6-273



Convolution example: Gaussian and wavelet

▶ you can use convolution as an operation to build interesting signals
▶ consider the Gaussian, the “wavelet”, and their convolution:

▶ if we instead convolve w(t) with various shifted Gaussians . . .
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LTI system properties and the impulse response

▶ summary: the output of any LTI system is given by the convolution
of the impulse response with the input signal

y = h ∗ x y(t) =
∫ ∞

−∞
h(t− τ)x(τ) dτ

▶ h is very useful for understanding properties of LTI systems

Theorem 6.1. A CT LTI system T with impulse response h = T{δ} is

(i) causal if and only if h(t) = 0 for all t < 0;

(ii) memoryless if and only if h(t) = αδ(t) for some α ∈ C;

(iii) BIBO stable if h has finite action, i.e., h ∈ L1, in which case

∥y∥∞ ≤ ∥h∥1∥x∥∞, for allx ∈ L∞ with y = T{x}.
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Proof of Theorem 6.1 (sufficiency only)

Proof: Our convolution formula for the output is

y(t) =
∫ ∞

−∞
h(τ)x(t − τ) dτ =

∫ ∞

−∞
h(t − τ)x(τ) dτ. (2)

(i): A system is causal if y(t) depends only on {x(τ)}τ≤t. If h(t) = 0 for all t < 0,
then (2) simplifies to

y(t) =
∫ t

−∞
h(t − τ)x(τ) dτ

which shows that T is causal.

(ii): Try to make the argument yourself using the convolution formula.

(iii): Let x ∈ L∞ be a bounded input. Then

|y(t)| =

∣∣∣∣∫ ∞

−∞
h(τ)x(t − τ) dτ

∣∣∣∣ ≤
∫ ∞

−∞
|h(τ)| · |x(t − τ)| dτ ≤ ∥x∥∞

∫ ∞

−∞
|h(τ)|dτ

so ∥y∥∞ = maxt∈R |y(t)| ≤ ∥h∥1∥x∥∞, and hence the system is BIBO stable.
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More on LTI systems and causality

▶ models of physical systems are always causal, so it is particularly
important to understand causal LTI systems

▶ recall: a linear system always produces zero output for zero input

▶ this simplifies the interpretation of causality from Definition 6.4

Proposition 6.2. A linear CT system T is causal if and only if for any
time t0 and any input x such that x(t) = 0 for all t ≤ t0, the output
y = T{x} satisfies y(t) = 0 for all t ≤ t0.

Equivalently: if the input is right-sided from time t0, then the
output will also be right-sided from time t0.
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More on LTI systems and causality

▶ the case of an input starting at time 0 comes up quite often

Theorem 6.2. Let T be a causal LTI system with impulse response
h = T{δ}. If x is right-sided from time 0, then y = T{x} is right-sided
from time 0 and

y(t) =
∫ ∞

−∞
h(t− τ)x(τ) dτ =

∫ t

0−
h(t− τ)x(τ) dτ, t ≥ 0.

Proof: Suppose t < 0. When −∞ < τ < t < 0, x(τ) is zero, since x is right-sided from

time 0. When t < τ < ∞, h(t − τ) = 0, by causality. So the integrand is zero over all

τ , so y(t) = 0 for any t < 0. Now suppose t ≥ 0. Since x(τ) = 0 for τ < 0, we can

start the integral at τ = 0− instead of −∞. Since h(t − τ) = 0 for τ > t, we can stop

the integral at time t instead of +∞.
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Convolution example: RC circuit

▶ the RC circuit is LTI, causal, and BIBO stable

R i(t)

C

−

+
x(t)

+

−
y(t)

h(t) = 1
RC e

−t/RCu(t)

▶ our goal: compute the response y(t) to the unit pulse input

x(t) = 1
∆ [u(t) − u(t − ∆)] or x = 1

∆(u − u∆)

▶ note: since this input is right-sided from time 0, and the system is LTI and
causal, we know immediately that y(t) = 0 for all t < 0
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Example: RC circuit

h(t) = 1
RC e

−t/RCu(t), x(t) = 1
∆ [u(t) − u(t− ∆)]

Use the properties of LTI systems and convolution to simplify.

y = h ∗ ( 1
∆ (u− u∆)) (convolution)

= 1
∆ (h ∗ u) − 1

∆ (h ∗ u∆) (superposition)

= 1
∆ (h ∗ u) − 1

∆ (h ∗ u)∆ (time-invariance)

▶ therefore, we can just focus on calculating h ∗ u for t ≥ 0:

(h ∗ u)(t) =
∫ t

0

1
RC

e−(t−τ)/RC u(τ)︸︷︷︸
=1

dτ = −e−(t−τ)/RC
∣∣∣t
0

= 1 − e−t/RC

▶ therefore for all t: (h ∗ u)(t) = (1 − e−t/RC)u(t)
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Example: RC circuit

▶ putting it all together, we find that

y(t) = 1
∆ (h ∗ u)(t) − 1

∆ (h ∗ u)(t− ∆)

= 1
∆ (1 − e−t/RC)u(t) − 1

∆ (1 − e−(t−∆)/RC)u(t− ∆)
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Series combinations of LTI systems

▶ consider the series combination of two LTI systems

T1 T2x x̃ y

▶ if h1 and h2 are the associated impulse responses, then

y = h2 ∗ x̃ = h2 ∗ (h1 ∗ x) = (h2 ∗ h1) ∗ x

where we used the associative property of convolution. Therefore

(i) the series combination has impulse response h2 ∗ h1

(ii) by the commutative property h2 ∗ h1 = h1 ∗ h2, so we can always
change the order of two LTI systems and still get the same result.

Since the above requires the associative property, we are implicitly
assuming we are in cases (i), (ii), or (iii) of Proposition 6.1.
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LTI systems and invertibility

▶ recall: a system T is invertible if we can “undo” the operation by
applying some other system Tinv

T Tinvx
T{x}

x

▶ for LTI systems, we can say more about invertibility

Lemma 6.1. Suppose that T is a LTI system with impulse response h.
Then T is invertible if and only if there exists another impulse response
hinv such that h ∗ hinv = δ.

▶ immediate consequence: the inverse of a LTI system (if there is
one) is also a LTI system!
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Example: invertibility

▶ consider the LTI system T with impulse response

h(t) = δ(t) + (a− b)e−btu(t), a, b ∈ R, a ̸= b.

▶ claim: T is invertible and inverse has impulse response

hinv(t) = δ(t) − (a− b)e−atu(t).

h ∗ hinv(t) =

∫ t

0−
h(t − τ)hinv(τ) dτ

=

∫ t

0−
(δ(t − τ) + (a − b)e

−b(t−τ))(δ(τ) − (a − b)e
−aτ ) dτ

= δ(t) − (a − b)e
−at + (a − b)e

−bt − (a − b)2
e

−bt

∫ t

0

e
−(a−b)τ dτ

= δ(t) − (a − b)e
−at + (a − b)e

−bt + (a − b)e
−bt[e−at

e
bt − 1]

= δ(t)
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Parallel combinations of LTI systems

the parallel combination of two LTI
systems is given by this diagram

T1

T2

x y

▶ if h1 and h2 are the associated impulse responses, then

y = (h1 ∗ x) + (h2 ∗ x) = (h1 + h2) ∗ x

where we used the linear property of convolution.

The impulse response of the parallel combination is h1 + h2
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Feedback combinations of LTI systems

the negative feedback combination
of two LTI systems is given by the

diagram

T1

T2

x y
−

▶ y = h1 ∗ (x− h2 ∗ y) = h1 ∗ x− h1 ∗ (h2 ∗ y)

▶ since δ ∗ y = y, we can rearrange to find that

(δ + h1 ∗ h2) ∗ y = h1 ∗ x (can we solve for y?)

If the LTI system with impulse response (δ + h1 ∗ h2) is
invertible, then y = h ∗ x where h = (δ + h1 ∗ h2)−1 ∗ h1.
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Differential equations and CT systems

▶ many physical phenomena are described by differential equations; the
RC circuit and a point mechanical mass are two simple examples

▶ when studying those two, we explicitly solved the ODE to obtain a
pointwise system definition; this isn’t always easy to do . . .

▶ fact: under mild technical conditions, ODEs with inputs still define
CT systems, even if you cannot solve the ODE explicitly!

We will now study a special case of this general fact, and argue
that linear, inhomogeneous, constant-coefficient ordinary

differential equations can define causal CT LTI systems.
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LICC-ODEs and CT systems

▶ we consider an nth order, linear, inhomogeneous, constant-coefficient
ordinary differential equation (LICC-ODE)

an
dny(t)

dtn + an−1
dn−1y(t)

dtn−1 + · · · + a1
dy(t)

dt + a0y(t)

= bm
dmx(t)

dtm + bm−1
dm−1x(t)

dtm−1 + · · · + b1
dx(t)

dt + b0x(t)

which must hold for all times t ∈ R. In this equation
(i) x is a given CT signal,
(ii) y is the unknown CT signal to be solved for,
(iii) n, m are nonnegative integers, and
(iv) the coefficients a0, . . . , an, b0, . . . , bm are real constants.

▶ without loss of generality, we can always assume that an = 1

Section 6: Fundamentals of Continuous-Time Systems 6-288



LICC-ODEs and CT systems

▶ we will use the short-form notation Dky(t) = dky(t)
dtk , and

Q(D) = Dn + an−1D
n−1 + · · · + a1D + a0

P (D) = bmD
m + bm−1D

m−1 + · · · + b1D + b0

▶ with this, we can write our ODE succinctly as

Q(D)y(t) = P (D)x(t) (LICC-ODE)

When does (LICC-ODE) define a (causal, LTI) CT system?

▶ we need to think carefully about
(i) the possibility of multiple outputs for one input
(ii) the issue of “initial conditions”
(iii) the issues of time-invariance and causality
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LICC-ODEs and CT systems

(i) Issue of multiple solutions: Consider n = 1, m = 0, with input
x(t) = δ(t), i.e., dy(t)

dt
= δ(t). This equation has infinitely many solutions

y(t) = u(t) + c, c ∈ R.

However, this is not allowed: by our definition, a system must produce only
one output for each input.

(ii) Issue of “initial” conditions: Sometimes you can use initial conditions at
some time, e.g., t = 0, to fix the non-uniqueness issue. But what if y(t)
contains a CT impulse at t = 0? Then y(0) is not even well-defined. So if
we want to include impulsive signals, initial conditions are not the answer.

(iii) Issue of causality: Nothing in the ODE stipulates that y(t) must only
depend on {x(τ)}τ≤t; we should not automatically expect causality
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LICC-ODEs define LTI CT systems

▶ it turns out that all these issues will be resolved if we

(i) restrict our attention to right-sided inputs x(t), and
(ii) restrict our attention right-sided solutions y(t).

Theorem 6.3. For each right-sided input x(t), the LICC-ODE
Q(D)y(t) = P (D)x(t) possesses exactly one right-sided solution y(t), and
therefore defines a system y = T{x}. Moreover
▶ the system T is linear, time-invariant, and causal;
▶ the system T is BIBO stable if and only if m ≤ n and all roots of

Q(s) = sn + an−1s
n−1 + · · · + a1s+ a0

in the complex variable s ∈ C have negative real part.
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Proof sketch for Theorem 6.3

Existence and Uniqueness of a Right-Sided Solution: Establishing this is beyond our
scope.

Linearity: Take two right-sided inputs x1, x2, with corresponding right-sided outputs
y1, y2. Now consider the right-sided input x = c1x1 + c2x2 for c1, c2 ∈ R. We want to
establish that y = c1y1 + c2y2 is the corresponding right-sided output. This is verified
by direct substitution into Q(D)y(t) = P (D)x(t) as follows:

Q(D)y = Q(D) · (c1y1 + c2y2) = c1Q(D)y1 + c2Q(D)y2

= c1P (D)x1 + c2P (D)x2

= P (D) · (c1x1 + c2x2)

= P (D)x

We must also establish that if x = 0 is the zero input, then the response y is zero. The
zero-input response is determined by the homogeneous ODE Q(D)y = 0:

dny(t)
dtn

+ an−1
dn−1y(t)

dtn−1 + · · · + a1
dy(t)

dt
+ a0y(t) = 0.
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Proof sketch for Theorem 6.3

Linearity (Continued): We know from the theory of ODEs that the general solution to
this linear constant coefficient ODE has the form

y(t) =
n∑

k=1

bktmk epkt

where b1, . . . , bn are free constants, m1, . . . , mn are nonnegative integers, and p1, . . . , pn

are the roots of the polynomial Q(s) = sn + an−1sn−1 + · · · + a0. (Aside: as a case
that might be more familiar, if the roots of Q(s) are all distinct, then the constants mk

are all zero, and you just have a sum of exponentials).

However, by the existence/uniqueness result, we also know that y(t) must be right-sided,
so there must exist a time τ⋆ such that y(t) and all its derivatives are zero for all times
t < τ⋆. This is only possible if all constants bk are zero, and thus y(t) = 0 for all time,
which shows that zero input produces zero output.
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Proof sketch for Theorem 6.3

Time-Invariance: Let x be a right-sided input with corresponding right-sided output y

satisfying Q(D)y(t) = P (D)x(t). We want to consider the effect of a shifted input. Let
τ ∈ R and consider the shifted input xτ (t) = x(t − τ); since x is right-sided, so is xτ .
The system’s response η(t) = T {xτ }(t) to xτ (t) must be right-sided as well, and satisfy
Q(D)η(t) = P (D)xτ (t). But because acting with the differential operators P (D) and
Q(D) only consists of taking derivatives and multiplying by constants, and adding, both
operations commute with time-shifting. Therefore

Q(D)η(t) = P (D)xτ (t) = [P (D)x]τ (t) = [Q(D)y]τ (t) = Q(D)yτ (t)

so we conclude that Q(D)(η(t) − yτ (t)) = 0. Note we can also write this as

Q(D) · (η(t) − yτ (t)) = P (D) · (0).

By uniqueness of the response, it follows that η(t) − yτ (t) must be the response of the

system to the zero input. However, the system is linear, so the response to zero input

must be zero. We conclude that η(t) = yτ (t), so the system is time-invariant.
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Proof sketch for Theorem 6.3

Causality: Let t0 ∈ R be an arbitrary time, and suppose that x(t) is an input that
is right sided from time t0. We need to show that the response y(t), determined by
Q(D)y(t) = P (D)x(t), is also right-sided from t0.

From existence/uniqueness, we know that the response y(t) is right-sided. Let τ⋆ be the

largest time such that y(t) is right-sided from time τ⋆, i.e., the response y starts from

time τ⋆. By contradiction, let’s assume that τ⋆ < t0. Then for any time t in the range

(τ⋆, t0), we know that x and all its derivatives must be zero, and thus Q(D)y(t) = 0

for all t ∈ (τ⋆, t0). In fact, Q(D)y(t) = 0 for all t ∈ (−∞, t0), due to right-sidedness

of y. Similar to our previous argument for linearity, this can only be true if y(t) = 0 for

all t ∈ (−∞, t0), but this contradicts the assumption that y begins from time τ⋆ < t0.

Thus, y(t) is right-sided from time t0, which shows causality.
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Proof sketch for Theorem 6.3

BIBO Stability Part 1: Suppose that m > n. As an example of such a system, consider
n = 0 and m = 1, i.e., y(t) = dx(t)

dt
. The right-sided input x(t) = sin(t2)u(t) is

bounded, but with this input we have

y(t) =
d
dt

[
sin(t2)u(t)

]
= 2t cos(t2)u(t) + sin(t2)δ(t)

= 2t cos(t2)u(t) + sin(0)δ(t)

= 2t cos(t2)u(t)

which is unbounded. This argument can be generalized to any situation where m > n;

we omit the details. Thus, if m > n, the system will never be BIBO stable.
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Proof sketch for Theorem 6.3
BIBO Stability Part 2: Suppose then that m ≤ n. The impulse response h of the
system is determined by applying the input x(t) = δ(t), i.e., as the solution to the ODE

Q(D)h(t) = P (D)δ(t).

We now apply the Laplace transform to both sides of this equation, and use the fact
that all initial conditions are zero. Using the derivative rule, we have that

Laplace{Q(D)h(t)} = snH(s) + an−1sn−1H(s) + · · · + a0H(s) = Q(s)H(s)

and since Laplace{δ(t)} = 1, we have Laplace{P (D)δ(t)} = P (s), so H(s) = P (s)
Q(s) .

So H(s) is a ratio of two polynomials, with the order of the denominator greater than
or equal to the order of the numerator. Using partial fraction expansion and the inverse
Laplace transform will give us an expression of the form

h(t) =
[

c0δ(t) +
∑n

k=1
cktmk epkt

]
u(t)

where c0, . . . , cn are constants, m1, . . . , mn are nonnegative integers, and p1, . . . , pn

are the roots of Q(s). The only way we h(t) will have finite action is if these are decaying

exponentials, which will occur if and only if Re{pk} < 0 for all roots.
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Example: the RC circuit

R i(t)

C

−

+
vs(t)

+

−
vc(t) dvc

dt + 1
RC vc(t) = 1

RC vs(t)

▶ we now know that any right-sided input vs will lead to a right-sided
output vc, and the ODE defines a causal LTI system

▶ the single root of the polynomial Q(s) = s+ 1
RC is

s = − 1
RC

which always has negative real part, so the circuit is BIBO stable
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Example: the series RLC circuit

−+v(t)

R i(t) L

C

LC
d2i(t)

dt2 +RC
di(t)

dt + i(t)

= C
dv(t)

dt

▶ we now know that any right-sided input v(t) will lead to a right-sided
output i(t), and the ODE defines a causal LTI system

▶ the roots of the polynomial Q(s) = s2 + R
L s+ 1

LC are

s = − R

2L ± 1
2LC

√
R2C2 − 4LC = − R

2L ± R

2L

√
1 − 4L

R2C
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Example: the series RLC circuit

s = − R

2L ± R

2L

√
1 − 4L

R2C

▶ case #1: if 4L
R2C > 1, then the second term is imaginary, and both

roots have real part − R
2L , so the circuit is BIBO stable

▶ case #2: if 0 < 4L
R2C < 1, then the entire square root is strictly

between 0 and 1, so the first term always out-weighs the second term,
and the circuit is again BIBO stable

Final comment: In cases where Q(s) is a more complicated
polynomial, you must try to factor Q(s) into simple pieces. In ECE311
you will learn other, more general techniques for assessing stability.
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From time-domain to frequency-domain analysis

▶ we now understand a good amount about CT systems in general, and
even more about CT LTI and causal systems

▶ the next two chapters are devoted to analyzing CT LTI systems in the
frequency domain, via two different methods

▶ the two methods have different assumptions and strengths

Fourier Trans. Method
▶ two-sided CTFT-able inputs
▶ causality not required
▶ used in signal processing,

communications, . . .

Laplace Trans. Method
▶ LT-able inputs which are

right-sided from time 0
▶ causal systems only
▶ used in control, energy,

robotics, aerospace, . . .
Section 6: Fundamentals of Continuous-Time Systems 6-301



Relevant MATLAB commands

▶ computing a “CT” convolution

1 %Define Time

2 T_max = 10; step = 0.001; t = -T_max:step:T_max;

3

4 %%Define impulse response of RC circuit

5 R = 0.3; C = 1; h = heaviside(t).*exp(-t/R/C)/R/C;

6

7 %% Define input signal

8 x = heaviside(t) - heaviside(t-3) - heaviside(t-6);

9

10 %% Compute convolution

11 y = step*conv(x,h,'same');

12

13 %% Plot

14 plot(t,x); hold on; plot(t,y); hold off;
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems.
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems.
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, 2nd Ed.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

Definition of a system 1.5 1 1.6 3.1, 3.2 1.2, 2.3 V5 1.1–1.2
System properties 1.6, 2.3 1 1.7 3.2, 3.3, 3.6
LTI systems, impulse response 2.2 2 2.1–2.8 3.3, 3.4
Convolution 2.2 2 2.3 3.5 9.1 V4 4.1–4.2
System interconnections 1.5, 9.8 1 3.9
Differential equations 2.4 3 2.5 4.1–4.6 13.7
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7. Analysis of Continuous-Time Systems using
the Fourier Transform

• response of a LTI system to a complex exponential input
• response of a LTI system to a periodic input
• response of a LTI system to a general two-sided input
• frequency response conditions for invertibility
• filtering in the frequency domain using LTI systems
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Warm-up: LTI systems with complex exponential inputs

▶ let T be a LTI system with impulse response h

Tx(t)
y(t) =

∫ ∞

−∞
h(t− τ)x(τ) dτ

=
∫ ∞

−∞
h(τ)x(t− τ) dτ

▶ if the input x is a complex exponential x(t) = ejω0t, then

y(t) =
∫ ∞

−∞
h(τ)ejω0(t−τ) dτ =

[∫ ∞

−∞
h(τ)e−jω0τ dτ

]
︸ ︷︷ ︸

CTFT of h at ω = ω0

ejω0t

If the input is a complex exp., then the output is also a complex exp.
with the same frequency, but scaled by the CTFT of h!
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Frequency response of a LTI system

The CTFT of the impulse response is known as the system’s frequency
response, and is denoted by H(jω) =

∫∞
−∞ h(t)e−jωt dt.

▶ write H(jω) ∈ C in polar form as H(jω) = |H(jω)|ej∠H(jω)

x(t) = ejω0t =⇒ y(t) = H(jω0)ejω0t = |H(jω0)|ej(∠H(jω0))ejω0t

(i) “eigenfunction” property: if x(t) = ejω0t, then y(t) ∝ ejω0t

(ii) amplitude scaling: output amplitude is scaled by |H(jω0)|

(iii) phase shifting: output phase is shifted by ∠H(jω0)

A LTI system amplitude-scales and phase-shifts any complex exp. input!
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Example: RC circuit

▶ the RC circuit has impulse response h(t) = 1
RC e

−t/RCu(t)

▶ the frequency response is

H(jω) =
∫ ∞

−∞
h(t)e−jωt dt = 1

1 +RC(jω)

▶ in terms of magnitude and phase, we have

|H(jω)| = |1|√
12 + (RCω)2

= 1√
(RC)2ω2 + 1

∠H(jω) = ∠1 − ∠(1 +RC(jω))

= 0 − tan−1(RCω)

= − tan−1(RCω)
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Example: RC circuit (RC = 1
2)

▶ it is often very useful to plot these as a function of ω

Notes:

(i) mag → 0 as ω → ±∞

(ii) phase → ±90◦ as ω → ∓∞

(iii) low frequencies are passed,

high frequencies are

attenuated
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Example: RC circuit

▶ more often, we plot this information with slightly different axes:
(i) log (base 10) scale for frequency;
(ii) log (base 10) scale for magnitude, multiplied by 20 (decibels)
(iii) only plot for positive frequencies ω > 0 (why?)

▶ with a log-log scale, the key features of the magnitude plot often
become more obvious

▶ such a plot is called a Bode plot of the frequency response

▶ note that if H(jω) = Hnum(jω)/Hden(jω) then

20 log10 |H(jω)| = 20 log10 |Hnum(jω)| − 20 log10 |Hden(jω)|
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Example: RC circuit (RC = 1
2)

Notes:

(i) magnitude max. value of 0
dB

(ii) magnitude shows “break
point” at ≈ 2 rad/s,
transition from flat to linear

(iii) frequencies above ≈ 2 rad/s
are attenuated

(iv) frequencies below ≈ 2 rad/s

are passed

We call such a system a low-pass filter
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Response of a LTI system to a periodic input

▶ we previously studied how to take the CTFT of a periodic signal:

x(t) =
∞∑

k=−∞

αke
jkω0t ⇐⇒ X(jω) = 2π

∞∑
k=−∞

αkδ(ω − kω0)

▶ we can now compute the output of the LTI system as

Y (jω) = H(jω)X(jω) = 2π
∞∑

k=−∞

αkH(jkω0)δ(ω − kω0)

and therefore, taking the inverse CTFT:

y(t) =
∞∑

k=−∞

αkH(jkω0)︸ ︷︷ ︸
Fourier coefficients

ejkω0t (Fourier series of output!)

▶ amazing: the output is T0 = 2π
ω0

periodic, just like the input!
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Response of a LTI system and the CTFT

These ideas generalize to more general input signals

Tx(t) y(t) =
∫∞

−∞ h(t− τ)x(τ) dτ

▶ recall: convolution in time ⇐⇒ multiplication in frequency

y(t) = (h ∗ x)(t) ⇐⇒ Y (jω) = H(jω)X(jω)

In the frequency domain, the output spectrum Y (jω) is given
by the product of the frequency response H(jω) and the input

spectrum X(jω). Much simpler than convolution!
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Response of a LTI system and the CTFT
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Example: computing the output for the RC circuit

▶ the RC circuit has impulse response h(t) = 1
RC e

−t/RCu(t)
▶ the frequency response is

H(jω) =
∫ ∞

−∞
h(t)e−jωt dt =

∫ ∞

0

1
RC e

−t/RCe−jωt dt

= 1
RC

∫ ∞

0
e−( 1

RC +jω)t dt = −
1

RC
1

RC + jω
e−( 1

RC +jω)t

∣∣∣∣∣
∞

0

= 1
1 +RC(jω)

▶ for c > 0 consider the input signal

x(t) = e−ctu(t) ⇐⇒ X(jω) = 1
c+ jω

Let’s compute the output using the FT method
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Example: computing the output for the RC circuit

▶ the spectrum of the output signal y is

Y (jω) = H(jω)X(jω) = 1
1 +RC(jω)

1
c+ jω

▶ using the method of partial fractions, we write

Y (jω) =
A

1 + RC(jω)
+

B

c + jω
=

A(c + jω) + B(1 + RC(jω))
[1 + RC(jω)][c + jω]

=
Ac + B + (A + BRC)(jω)

[1 + RC(jω)][c + jω]

so Ac+B = 1 and A+BRC = 0, yielding

A =
−RC

1 − cRC
, B =

1
1 − cRC

(assuming cRC ̸= 1)

▶ inverting Y (jω) term by term, we obtain

y(t) = −RC
1 − cRC

1
RC

e−t/RCu(t) + 1
1 − cRC

e−ctu(t)
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LTI systems and invertibility

▶ recall: a LTI system with impulse response h is invertible if there
exists an impulse response hinv such that h ∗ hinv = δ.

Let’s look at what this says in the frequency domain . . .

▶ take CTFT of both sides and use convolution property:

h ∗ hinv = δ ⇐⇒ H(jω)Hinv(jω) = 1

so we can always solve for Hinv(jω) as long as H(jω) ̸= 0

Proposition 7.1. A LTI system T with impulse response h is invertible if
and only if H(jω) ̸= 0 for all ω ∈ R.
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Example: invertibility

▶ recall: the LTI system T with impulse response

h(t) = δ(t) + (a− b)e−btu(t), a, b ∈ R, a ̸= b.

▶ this system has frequency response

H(jω) = 1 + a− b

jω + b
= jω + a

jω + b

▶ since H(jω) ̸= 0 for all ω ∈ R, the inverse Tinv of T exists and has
freq. response

Hinv(jω) = jω + b

jω + a
⇐⇒ hinv(t) = δ(t) + (b− a)e−atu(t)

which agrees with Chapter 6.
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Example: invertibility and feedback interconnections

the negative feedback combination
of two LTI systems is the LTI system

T with impulse response

h = (δ + h1 ∗ h2)−1 ∗ h1.

T1

T2

x y
−

▶ we now know that (δ + h1 ∗ h2) is invertible if and only if

1 +H1(jω)H2(jω) ̸= 0 for all ω ∈ R

▶ if this holds, then we have

H(jω) = H1(jω)
1 +H1(jω)H2(jω)
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Filtering via LTI systems

▶ to filter a signal means to emphasize or de-emphasize some subset of
frequency content within the signal

▶ several common classes of filters are
(i) low-pass filters (attenuates/removes all “high”-frequency content)
(ii) high-pass filters (attenuates/removes all “low”-frequency content)
(iii) band-pass filter (attenuates/removes all content outside a band)
(iv) band-stop filter (attenuates/removes all content inside a band)

Filters can be conveniently designed using LTI systems
through an appropriately chosen frequency response

▶ we will examine simple ideal and non-ideal filters
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The ideal low-pass filter
For ωc > 0 consider the freq.

response

H(jω) =

1 if − ωc ≤ ω < ωc

0 otherwise

This system perfectly passes frequencies |ω| < ωc.

The impulse response is

h(t) = sin(ωct)
πt
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The ideal low-pass filter

The filter is not causal, since
h(t) is not zero for all t < 0.
We therefore cannot use this
ideal filter in any real-time

application.

▶ we often instead prefer non-ideal but causal filters, because
(i) they can be modelled using differential equations
(ii) they can be easily implemented in hardware/software for real-time use

▶ another issue with the ideal LPF is that its impulse response
oscillates; when convolved in the time-domain, this tends to produce
undesirable oscillations (“ripple”) in the output signal
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The RC circuit is a non-ideal LPF

▶ the RC circuit is an example of a non-ideal but causal LPF

|HRC(jω)| = 1√
1 + (RCω)2

with 1
RC = ωc

hRC(t) = 1
RC e

−t/RCu(t)
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Comparison of RC circuit and ideal LPF

▶ for ωc = 2 rad/s, let’s consider the input x(t) = [1 + 0.1 sin(3t)]u(t)

▶ the ideal filter
(i) anticipates the input change (because it is not causal)
(ii) perfectly removes the oscillatory component above ωc

▶ the RC circuit
(i) reacts only after the input changes (because it is causal)
(ii) attenuates the oscillatory component, but cannot remove it
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The ideal high-pass filter
For ωc > 0 consider the freq.

response

H(jω) =

1 if |ω| > ωc

0 otherwise

This system perfectly passes frequencies |ω| > ωc.

The impulse response is

h(t) = δ(t) − sin(ωct)
πt
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A non-ideal HPF via the RC circuit

R i(t)

C

−

+
vs(t)

+

−
vc(t)

vc(t) =
∫ t

0

1
RC

e−(t−τ)/RCvs(τ) dτ

▶ let’s measure the resistor voltage instead of the capacitor voltage
▶ the voltage across the resistor is vr = vs − vc, so

vr(t) = vs(t) −
∫ t

0

1
RC e

−(t−τ)/RCvs(τ) dτ

=
∫ t

0

[
δ(t− τ) − 1

RC e
−(t−τ)/RC

]
︸ ︷︷ ︸

h̃(t−τ)

vs(τ) dτ
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A non-ideal HPF via the RC circuit

▶ this impulse response defines a non-ideal but causal HPF

|H̃(jω)| = 1− 1√
1 + (RCω)2

with 1
RC = ωc

▶ for ωc = 2 rad/s, let’s consider the input x(t) = [1 + 0.1 sin(3t)]u(t)
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Relevant MATLAB commands

▶ MATLAB has very useful LTI system commands

1 %% Define the system via its transfer function

2 s = tf('s');

3 H = 2/(s+2);

4

5 %% Plot the Bode plot, impulse response, step response

6 bode(H); impulse(H); step(H);

7

8 %% Simulate response to any input

9 h = 0.0001: T_max = 10;

10 t = 0:h:T_max;

11 u = sin(t).*exp(-t).*heaviside(t);

12 y = lsim(H,u,t);
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems, Chp. 1.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems, Chp. 1, 8
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems, Chp. 2, Appendix A
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, 2nd Ed.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

Frequency response 6.2 8 4.4, 7.1, 7.2 7.5 8.1, 8.2
Filters 6.3, 6.4 5, 8 4.5, 7.5–7.8 9.4 9
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Supplementary reading

▶ Oppenheim & Willsky, Chp. 3.2, 3.10, 6.2, 6.3, 6.7.1

▶ Boulet, Chp. 5, 8

▶ Lathi, Chp. 4, 7

▶ Kwakernaak & Sivan, Chp. 7.5
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8. Analysis of Continuous-Time Systems using
the Laplace Transform

• response of a LTI system to a complex exponential input
• signals of exponential class and the Laplace transform
• response of a causal LTI system to a right-sided input
• analysis of LICC-ODEs via the Laplace transform
• steady-state interpretation of the freq. response for causal LTI systems
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Warm-up: LTI systems with complex exponential inputs

▶ let T be a LTI system with impulse response h

Tx(t)
y(t) =

∫ ∞

−∞
h(t− τ)x(τ) dτ

=
∫ ∞

−∞
h(τ)x(t− τ) dτ

▶ if the input x is a complex exponential x(t) = est for s ∈ C, then

y(t) =
∫ ∞

−∞
h(τ)es(t−τ) dτ =

[∫ ∞

−∞
h(τ)e−sτ dτ

]
︸ ︷︷ ︸
“Transfer function” H(s)

est

If the input is est then the output is also proportional to est, but
scaled by the “transfer function” H(s). Seems familiar!
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Motivation for transfer function methods

What is this new object H(s) =
∫∞

−∞ h(t)e−st dt, and what
use is it compared to the CTFT H(jω)?

▶ main idea: we saw that the CTFT is not always well-defined; it turns
out that H(s) will exist in many situations where H(jω) does not

▶ while the theory here can be developed for two-sided signals and for
non-causal LTI systems, we will study only

(i) CT signals that are right-sided (in this section, always from time 0)
(ii) CT systems that are LTI and causal

▶ this setting describes physical systems (e.g., circuits, mechanical
systems, etc.) . . . analyzing such systems is crucial in all engineering
problems that involve “atoms” and not “bits”
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Signals of exponential class

Definition 8.1. A right-sided CT signal x is of exponential class if
|x(t)| ≤ Meσt for some constants M > 0, σ ∈ R and for all t ≥ 0. The
smallest possible value for σ that works is denoted by σ⋆(x).

▶ idea: σ⋆(x) is our sharpest bound on the “growth rate” of x.

▶ examples: et2
u(t) is not of exponential class
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The right-sided Laplace transform

Definition 8.2 (Laplace Transform). Suppose x is of exponential
class, and let Rx = {s ∈ C | Re(s) > σ⋆(x)}. The Laplace transform of
x is the complex-valued function

X : Rx → C, X(s) =
∫ ∞

0−
x(t)e−st dt

▶ the lower limit “0−” means we will include CT impulses at t = 0

▶ X(s) is only defined for s ∈ Rx, the region of convergence

Re(s)

Im(s)

σ⋆
Re(s)

Im(s)

σ⋆
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Existence of the Laplace transform

Let’s check that this definition makes sense.

For any s ∈ C, we can bound X(s) as

|X(s)| ≤

∣∣∣∣∫ ∞

0−
x(t)e−st dt

∣∣∣∣ ≤
∫ ∞

0−
|x(t)| · |e−st| dt

If s = σ + jω, then |e−st| = |e−σte−jωt| = e−σt, so

|X(s)| ≤
∫ ∞

0−
|x(t)|e−σt dt ≤

∫ ∞

0−
Meσ∗te−σt dt.

Since x is of exponential class, |x(t)| ≤ Meσ∗t, so

|X(s)| ≤
∫ ∞

0−
Me−(σ−σ∗)t dt

For σ > σ∗ (i.e., for s ∈ Rx), the exponential term is decaying, so the integral evaluates

to a finite number. Thus X(s) is well-defined for all s ∈ Rx.
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Example: LT of right-sided exponentials

▶ for a > 0 consider the signals x1(t) = e−atu(t) and x2(t) = eatu(t)

▶ the signal x1 is exp. class with σ⋆(x1) = −a, so Rx1 = {s | Re(s) > −a}.
▶ the LT of x1 is

X1(s) =
∫ ∞

0−
e−atu(t)e−st dt =

∫ ∞

0
e−(s+a)t dt = −

1
s + a

e−(s+a)t

∣∣∣∣∞
t=0

=

{
1

s+a
if s ∈ Rx1

undefined otherwise
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Example: LT of right-sided exponentials

X1(s) = 1
s+a , if Re(s) > −a X2(s) = 1

s−a , if Re(s) > a

Re(s)

Im(s)

−a
Re(s)

Im(s)

a
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Connection between LT and the CTFT

▶ observation: for the decaying exponential signal x1, the region of
convergence Rx1 contains the imaginary axis {s = σ + jω | σ = 0}.

▶ it is therefore fine to substitute s = jω, and we find that

X1(s)

∣∣∣∣∣
s=jω

= 1
s+ a

∣∣∣∣∣
s=jω

= 1
jω + a

= CTFT of x1(t) = X1(jω)

General Fact: when Rx contains the imaginary axis, the CTFT
X(jω) of x(t) is obtained by substutitng s = jω into the LT X(s)

▶ when Rx does not contain the imaginary axis, the CTFT cannot be
obtained from the LT; the CTFT may not even exist!
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Important Laplace transforms

Name x(t) X(s) Rx

Impulse δ(t) 1 all s

Step u(t) 1/s Re(s) > 0

Ramp tu(t) 1/s2 Re(s) > 0

Monomial tnu(t) n!/sn+1 Re(s) > 0

Sine sin(ω0t)u(t) ω0/(s2 + ω2
0) Re(s) > 0

Cosine cos(ω0t)u(t) s/(s2 + ω2
0) Re(s) > 0

Exponential eatu(t) 1/(s − a) Re(s) > a

Exp/Sin eat sin(ω0t)u(t) ω0/[(s − a)2 + ω2
0 ] Re(s) > a

Exp/Cos eat cos(ω0t)u(t) (s − a)/[(s − a)2 + ω2
0 ] Re(s) > a
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Properties of the Laplace transform

We let x be a right-sided CT signal with LT X.

Name x(t) X(s) Rx

Superposition αx1(t) + βx2(t) αX1(s) + βX2(s) at least Rx1 ∩ Rx2

Time-shift by t0 ≥ 0 x(t − t0)u(t − t0) e−t0sX(s) Rx

Differentiation ẋ(t) sX(s) at least Rx

Integration up to t ≥ 0
∫ t

0 x(τ) dτ 1
s

X(s) at least Rx ∩C>0

Convolution (x1 ∗ x2)(t) X1(s)X2(s) at least Rx1 ∩ Rx2

Initial value theorem x(0+) lims→∞ sX(s) ¯

Final value theorem limt→∞ x(t) lims→0 sX(s) ¯
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Response of a causal LTI system and the LT

The Laplace transform can be used to compute the response of a
causal LTI CT system to a general right-sided input.

▶ T causal LTI, impulse response h with LT H(s) and RoC Rh

▶ x right-sided with LT X(s) and RoC Rx

Tx y = h ∗ x

▶ by the convolution property of the LT, we have

Y (s) = H(s)X(s) with RoC at least Rh ∩ Rx
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Response of a causal LTI system and the LT

▶ Time-domain expression for output y(t):

Convolution: y(t) =
∫ t

0−
h(t− τ)x(τ) dτ, t ≥ 0

▶ Laplace-domain expression for output Y (s)

Multiplication: Y (s) = H(s)X(s), s ∈ Ry ⊇ Rh ∩ Rx

In the Laplace domain, the output Y (s) is given by the
product of the transfer function

H(s) =
∫ ∞

0−
h(t)e−st dt

and the input X(s). Much simpler than convolution!
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Response of a LTI system and the LT
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Example: RC circuit

h(t) = 1
RC e

−t/RCu(t), x(t) = 1
∆ [u(t) − u(t− ∆)]

Let’s compute the output using the LT method

▶ The two LTs are

H(s) =
1

RCs + 1
, X(s) =

1
∆

1
s

−
1
∆

e−∆s

s
=

1
∆

1
s

(1 − e−∆s)

▶ Therefore
Y (s) =

1
∆

1
s(RCs + 1)

(1 − e−∆s)

▶ Using partial fractions, note that

1
s(RCs + 1)

=
A

s
+

B

RCs + 1
=

(ARC + B)s + A

s(RCs + 1)

so A = 1 and B = −RC
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Example: RC circuit

▶ Therefore we have

Y (s) = 1
∆

(
1
s

− RC

RCs+ 1

)
(1 − e−∆s)

= 1
∆

(
1
s

− 1
s+ 1

RC

)
− 1

∆

(
1
s

− 1
s+ 1

RC

)
e−∆s

▶ Going back to the time-domain, we have

y(t) = 1
∆(1 − e−t/RC)u(t) − 1

∆(1 − e−(t−∆)/RC)u(t− ∆)

which is the same solution we obtained via convolution

Note: The LT method can also be used to include non-zero
initial conditions the response calculations. We don’t care

about this in ECE216, but in other courses you might.
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Analysis of LICC-ODEs via Laplace Transform

▶ recall: the LICC-ODE Q(D)y(t) = P (D)x(t) defines a causal LTI
system which produces a unique right-sided output y(t) for each
right-sided input x(t)

▶ the quantities Q(D) and P (D) are the linear differential operators

Q(D) = Dn + an−1D
n−1 + · · · + a1D + a0

P (D) = bmD
m + bm−1D

m−1 + · · · + b1D + b0

and Dξ(t) = dξ(t)
dt is the derivative operation

We can use the Laplace transform to compute the impulse
response of this causal LTI system.
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Analysis of LICC-ODEs via Laplace Transform

The key idea is to take the LT of both sides of the
differential equation Q(D)y(t) = P (D)x(t), then rearrange.

▶ using the LT derivative rule

(sn + an−1s
n−1 + · · · + a1s+ a0)Y (s)

= (bms
m + bm−1s

m−1 + · · · + b1s+ b0)X(s)

▶ rearranging

Y (s)
X(s) = H(s) = bms

m + bm−1s
m−1 + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0
= P (s)
Q(s)

The transfer function of an LTI system defined by a LICC-ODE is very
easy to find; this is often the preferred way to compute outputs.
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Analysis of LICC-ODEs via Laplace Transform

▶ now we have the rational function

H(s) = bms
m + bm−1s

m−1 + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0
= P (s)
Q(s) ,

and you can compute the impulse response h(t) by:
(i) factoring the denominator
(ii) performing a partial fraction expansion on H(s)
(iii) computing the inverse Laplace transform term-by-term

▶ if m ≤ n, you will obtain an expression of the form

h(t) = b0δ(t) +
[

n∑
k=1

bkt
mkepkt sin(ωkt+ ϕk)

]
u(t)

for appropriate constants bk, pk,mk, ωk, ϕk . . . often complicated, but
occasionally useful
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Example: the series RLC circuit

−+v(t)

R i(t) L

C

d2i(t)
dt2 + R

L

di(t)
dt + 1

LC
i(t)

= 1
L

dv(t)
dt

▶ Following our procedure we obtain

H(s) = I(s)
V (s) =

1
Ls

s2 + R
L s+ 1

LC

=
1
Ls

s2 + 2ζωns+ ω2
n︸ ︷︷ ︸

standard form

▶ Equating the coefficients, you can easily find that

ωn = “natural frequency” =
√

1
LC

, ζ = “damping ratio” = R

2

√
C

L
.
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Steady-state interpretation of the frequency response

▶ in Chap. 7, we understood frequency response H(jω) as telling us
about the response of a LTI system to two-sided complex exp. inputs

x(t) = ejω0t =⇒ y(t) = H(jω0)ejω0t = |H(jω0)|ej(∠H(jω0))ejω0t

▶ in this chapter though we have been looking at right-sided inputs
and causal systems – how should our interpretation change?

▶ consider applying a right-sided complex exponential input

x(t) = ejω0tu(t)

Tx(t) y(t) =
∫∞

−∞ h(τ)x(t− τ) dτ
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Steady-state interpretation of the frequency response

▶ main assumption: h has finite action, so T is BIBO stable

▶ the system responds with the output signal

y(t) =

[∫ ∞

−∞

h(τ)e
jω0(t−τ)

u(t − τ) dτ

]
u(t)

=

[∫ t

−∞

h(τ)e
−jω0τ dτ

]
e

jω0t
u(t)︸ ︷︷ ︸

x(t)

(prop. of unit step)

=

[∫ ∞

−∞

h(τ)e
−jω0τ dτ

]
︸ ︷︷ ︸

CTFT of h

x(t) −

[∫ ∞

t

h(τ)e
−jω0τ dτ

]
︸ ︷︷ ︸

≜F (t)

x(t) (rewriting)

= H(jω0)x(t) − F (t)x(t)

The first term looks familiar from our CTFT analysis of LTI
systems. But what is this new term F (t)?
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Steady-state interpretation of the frequency response

▶ since h has finite action, we can bound |F (t)| as

|F (t)| =
∣∣∣∣∫ ∞

t

h(τ)e−jω0τ dτ

∣∣∣∣ ≤
∫ ∞

t

|h(τ)| dτ

=
∫ ∞

−∞
|h(τ)| dτ︸ ︷︷ ︸

some number M

−
∫ t

−∞
|h(τ)| dτ︸ ︷︷ ︸
m(t)

where m(t) ≥ 0 satisfies limt→∞ m(t) = M . So

lim
t→∞

|F (t)| ≤ M − lim
t→∞

m(t) = 0 =⇒ lim
t→∞

F (t) = 0.

The new term F (t) vanishes as t → ∞. We think of this term
as capturing the transient response.
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Steady-state interpretation of the frequency response

▶ if we define the steady-state response as

yss(t) ≜ H(jω0)x(t) = |H(jω0)|ej(∠H(jω0))ejω0tu(t)

then
lim

t→∞
[y(t) − yss(t)] = lim

t→∞
F (t)x(t) = 0!

▶ the output y(t) converges to yss(t)!

For a causal and BIBO stable system, the frequency response H(jω0)
quantifies the steady-state amplitude scaling and phase shift experienced

by right-sided complex exponential signal.
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Example: steady-state response of RC circuit

▶ RC = 1/2, input is x(t) = cos(ω0t)u(t) with ω0 = 2 rad/s
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Steady-state interpretation of the frequency response

Theorem 8.1. For a causal and BIBO stable CT LTI system

(i) the response to a sinusoidal input is sinusoidal in steady-state;

(ii) the s.s. response has the same frequency as the input;

(iii) the s.s response amplitude is the input amplitude times |H(jω0)|;

(iv) the s.s response phase is the input phase plus a shift of ∠H(jω0).

▶ The frequency response H(jω) of a BIBO stable physical system can
be measured by applying a sinusoidal inputs, waiting, and recording
the steady-state output

▶ Bode plots are the standard way to visualize H(jω)
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Relevant MATLAB commands

▶ working with transfer functions for simulations

1 s = tf('s');

2 H_1 = 1/(s^2 + 0.1*s+1);%Define two TFs

3 H_2 = 1/(5*s+1);

4 bode(H_1*H_2); %Plot's Bode diagram

5 step(H_1 + H_2); %Response with unit step input

▶ MATLAB also has symbolic tools for doing LTs

1 syms s;

2 syms t a real;

3 x = exp(-a*t)*heaviside(t); %Define a right-sided signal

4 X = laplace(x); %Compute the LT

5 x_recovered = ilaplace(X); %Compute the inverse LT
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems.
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems.
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

Laplace transform 9.1–9.6, 9.9 6 6.1, 6.2 8.1–8.5 13.3–13.7 V4 9.1
Transfer functions 9.7 7 6.3–6.5 8.6–8.7 13.3–13.7
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9. Fundamentals of Discrete-Time Systems

• definition of a DT system and examples
• linearity, causality, time-invariance
• memory, invertibility, stability
• linear time-invariant (LTI) systems
• impulse response of a LTI system
• response of a LTI system and convolution
• LTI system properties and the impulse response
• finite impulse response (FIR) systems
• difference equations and DT LTI systems
• frequency-domain analysis of DT LTI systems
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What is a DT system

▶ a DT system is some operation T that takes a DT input and
produces exactly one DT output

Tx y = T{x}

▶ notation: T{x}[n] is the value of the output signal at time n ∈ Z.

▶ while CT systems often arise from physics, DT systems tend to come
from engineering processes or phenomenological models, such as

(i) discretization of CT systems,
(ii) digital filtering or signal processing,
(iii) economic/financial models, . . .
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Pointwise definition of a DT system

One way to define a DT system is pointwise: give a
formula for y[n] = T{x}[n] in terms of (potentially) all the

input signal values {x[n]}n∈Z.

▶ example: the system Tsq defined by y[n] = (x[n])2 produces an
output which is the squared value of the input at each n ∈ Z
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Pointwise definition of a DT system

▶ example: the system defined by y[n] = max{x[n], x[n− 1], x[n− 2]}

▶ example: the system Tdiff defined by y[n] = x[n] − x[n− 1]

Section 9: Fundamentals of Discrete-Time Systems 9-370



Pointwise definition of a DT system

▶ example: the three-point moving average filter
y[n] = 1

3 (x[n− 1] + x[n] + x[n+ 1])

▶ example: the summing system Tsum defined by y[n] =
∑n

k=−∞ x[k]
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Example: discretized RC circuit

R i(t)

C

−

+
vs(t)

+

−
vc(t)

RC
dvc

dt + vc(t) = vs(t)

▶ suppose we sample the values of the voltages every Ts seconds, and
approximate the derivative with a first difference

RC
vc(nTs) − vc((n− 1)Ts)

Ts
+ vc((n− 1)Ts) = vs((n− 1)Ts)

▶ rearranging, we have the recursion

vc[n] = (1 − Ts
RC )vc[n− 1] + Ts

RC vs[n− 1]
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Example: a bank account

Discrete-time systems are often useful for modelling financial or
economic processes that are indexed at discrete times (e.g., quarterly)

▶ consider a bank account where
(i) s[n] = savings balance at end of month n (we start at month n = 0)
(ii) x[n] = earnings deposited at end of month n

▶ let r > 0 be the monthly interest rate, s[0] = x[0] the initial balance

▶ a simple model describing the balance evolution is

s[n] = (1 + r)s[n− 1]︸ ︷︷ ︸
old balance plus interest

+ x[n]︸︷︷︸
new deposit

▶ this is again a recursive definition of a DT system
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Example: a bank account

▶ in this simple case, we can actually convert the recursive definition
into a pointwise definition by iterating:

s[0] = x[0]

s[1] = (1 + r)s[0] + x[1] = (1 + r)x[0] + x[1]

s[2] = (1 + r)s[1] + x[2] = (1 + r)2x[0] + (1 + r)x[1] + x[2]
...

s[n] =
n∑

k=0
(1 + r)n−kx[k]
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Example: a bank account
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Properties of DT systems: linearity and causality

Definition 9.1. A DT system T is linear if for any two input signals x, x̃
and any two constants α, α̃ ∈ C it holds that
T{αx+ α̃x̃} = αT{x} + α̃T{x̃}.

▶ the summing system y[n] =
∑n

k=−∞ x[k] is linear
▶ the squaring system y[n] = (x[n])2 is not linear

Definition 9.2. A DT system T is causal if for all n ∈ Z, the output
value y[n] depends only on the present and previous input values
{. . . , x[n− 3], x[n− 2], x[n− 1], x[n]}.

▶ the 1-step delay system y[n] = x[n− 1] is causal
▶ the system y[n] = 1

3 (x[n− 1] + x[n] + x[n+ 1]) is not causal
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Properties of DT systems: time-invariance

▶ notation: let xk[n] = x[n − k] be short form notation for a time-shifted signal

Definition 9.3. A DT system T is time-invariant if for any input signal
x with output signal y = T{x}, it holds that yk = T{xk} for all possible
time shifts k ∈ Z.

▶ physical meaning: an experiment on the system tomorrow will produce the same

results as an experiment on the system today.

▶ the squaring system y[n] = (x[n])2 is time-invariant
▶ the summing system y[n] =

∑n
l=−∞ x[l] is time-invariant

▶ the system y[n] = sin(n/10)x[n] is not time-invariant
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Example: time-invariance of reversal system

▶ consider the time-reversal system Ttr defined by

y[n] = x[−n]

▶ let x be an input with correspond. output

y[n] = Ttr{x}[n] = x[−n]

▶ if we simply shift the obtained output, we obtain

yk[n] = y[n− k] = x[−(n− k)] = x[−n+ k]

▶ if we shift the input signal as xk[n] = x[n− k], we compute the
output

Ttr{xk}[n] = xk[−n] = x[−n− k]

These two signals are not equal, so the system is not time-invariant.
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Properties of DT systems: memory and invertibility

Definition 9.4. A DT system T is memoryless if for all times n ∈ Z,
the output value y[n] depends only on the input value x[n].

▶ the squaring system y[n] = (x[n])2 is memoryless
▶ the summing system y[n] =

∑n
k=−∞ x[k] is not memoryless

Definition 9.5. A DT system T is invertible if there exists another DT
system Tinv such that Tinv{T{x}} = T{Tinv{x}} = x for all inputs x.

▶ the 1-step delay system y[n] = x[n− 1] is invertible, with inverse
y[n] = x[n+ 1].

▶ the squaring system y[n] = (x[n])2 is not invertible
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Properties of DT systems: stability (linear systems)

▶ recall: a DT signal x has finite amplitude or is bounded if
∥x∥∞ = maxn∈Z |x[n]| is finite, and if so, we write x ∈ ℓ∞

Definition 9.6. A linear DT system T is Bounded-Input
Bounded-Output (BIBO) stable if there is a constant K ≥ 0 such that
∥y∥∞ ≤ K∥x∥∞ for all bounded inputs x and outputs y = T{x}.

“Bounded inputs produce bounded outputs”

▶ the 1-step delay system y[n] = x[n− 1] is BIBO stable
▶ the summing system y[n] =

∑n
k=−∞ x[k] is not BIBO stable

▶ the difference system y[n] = x[n] − x[n− 1] is BIBO stable
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Linear Time-Invariant (LTI) systems

▶ we now focus on systems which are both linear and time-invariant

▶ remember that, roughly speaking
1. linearity: “the superposition principle holds”
2. time-invariance: “the system will be the same tomorrow as it is today”

▶ recall: the DT unit impulse and sifting formula

δ[n] =

0 if n ̸= 0

1 if n = 0

Sifting formula: x[n] =
∞∑

k=−∞

x[k]δ[n−k] or x =
∞∑

k=−∞

x[k]δk
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Visualization of sifting formula
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The impulse response of a LTI system

Definition 9.7. The impulse response h of a DT LTI system T is the
response T{δ} to a unit impulse δ input applied at n = 0, i.e., h = T{δ}.

▶ example: the system y[n] =
∑n

k=−∞ x[k] has impulse response

h[n] =
n∑

k=−∞

δ[k] =

0 if n < 0

1 if n ≥ 0
= u[n]

▶ example: the system y[n] = 1
3 (x[n− 1] + x[n] + x[n+ 1]) has

impulse response

h[n] = 1
3(δ[n− 1] + δ[n] + δ[n+ 1])
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Response of a DT LTI system

▶ let’s apply the input x to a DT LTI system

Tx =
∑∞

k=−∞ x[k]δk y = T{x}

▶ using linearity of T , we calculate that

y = T{x} = T

{ ∞∑
k=−∞

x[k]δk

}
=

∞∑
k=−∞

x[k]T{δk}

▶ since T is time-invariant, the response T{δk} to an impulse at time
k is equal to the response h = T{δ0} shifted by k time units, i.e.,

T{δk} = hk, or explicitly T{δk}[n] = h[n− k]
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Response of a DT LTI system

▶ putting everything together, we have

y[n] = T{x}[n] =
∞∑

k=−∞

x[k]hk[n] =
∞∑

k=−∞

h[n− k]x[k]

This is the DT convolution of the signals h and x, and is
denoted by y = h ∗ x

▶ compare convolution in continuous and discrete time:

CT Convolution

y(t) =
∫ ∞

−∞
h(t− τ)x(τ) dτ

DT Convolution

y[n] =
∞∑

k=−∞

h[n− k]x[k]
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Examples of DT convolution

▶ example: consider the impulse response h[n] = δ[n− n0], a shifted
impulse function. We compute via convolution that

y[n] =
∞∑

k=−∞

δ[n− k − n0]x[k] = x[n− n0]

so this impulse response corresponds to a n0-step delay system

▶ example: consider the impulse response h[n] = δ[n] − δ[n− 1]. We
compute that

y[n] =
∞∑

k=−∞

δ[n− k]x[k] − δ[n− 1 − k]x[k] = x[n] − x[n− 1]

so this is actually the impulse response of Tdiff!
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Properties of DT convolution

▶ as with CT signals, we can think of convolution as an operation which
takes two signals v, w and returns another signal v ∗ w defined as

(v ∗ w)[n] =
∑∞

k=−∞
v[n− k]w[k].

For any DT signals v, w, x and any constants α, β the following hold:

(i) superposition: x ∗ (αv + βw) = α(x ∗ v) + β(x ∗ w)

(ii) commutative: v ∗ w = w ∗ v

(iii) time-invariance: v ∗ wk = (v ∗ w)k

(iv) identity element: δ ∗ x = x

▶ as with CT signals, convolution is not always well-defined, but
Proposition 6.1 applies also to DT convolution with no changes
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Example: DT convolution and polynomial multiplication

▶ convolution pops up in some other unexpected places

▶ consider the two polynomials P and Q defined by

P (s) =
∑n

k=0
a[k]sk, Q(s) =

∑m

ℓ=0
b[ℓ]sℓ.

with coefficients a[0], . . . , a[n] and b[0], . . . , b[m]

▶ if we pad both sets of coefficients with zeros on either side, i.e.,

. . . , 0, a[−2]︸ ︷︷ ︸
=0

, a[−1]︸ ︷︷ ︸
=0

, a[0], . . . , a[n], a[n+ 1]︸ ︷︷ ︸
=0

, 0, . . .

we can think of a and b as DT signals defined for all k ∈ Z, and we
can then write P and Q as

P (s) =
∑∞

k=−∞
a[k]sk, Q(s) =

∑∞

ℓ=−∞
b[ℓ]sℓ.
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Example: DT convolution and polynomial multiplication

▶ multiplying these two poly. we get a degree n+m poly.

P (s)Q(s) =
∞∑

k=−∞

∞∑
ℓ=−∞

a[k]b[ℓ]sk+ℓ (double sum)

=
∞∑

r=−∞

∞∑
ℓ=−∞

a[r − ℓ]b[ℓ]︸ ︷︷ ︸
≜c[r]

sr (r = k + ℓ)

▶ therefore, we get coefficients c[r] = (a ∗ b)[r]

The coefficients of a product of polynomials are given by the DT
convolution of the original coefficients!
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LTI system properties and the impulse response

▶ summary: the output of any DT LTI system is given by the
convolution of the impulse response with the input signal

y = h ∗ x y[n] =
∞∑

k=−∞

h[n− k]x[k]

▶ h is very useful for understanding properties of LTI systems

Theorem 9.1. A DT LTI system T with impulse response h = T{δ} is

(i) causal if and only if h[n] = 0 for all n < 0;

(ii) memoryless if and only if h[n] = αδ[n] for some α ∈ C;

(iii) BIBO stable iff h has finite action, i.e., h ∈ ℓ1, in which case

∥y∥∞ ≤ ∥h∥1∥x∥∞, for allx ∈ ℓ∞ with y = T{x}.
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Proof of Theorem 9.1

Recall that our convolution formula for the output is

y[n] =
∑∞

k=−∞
h[k]x[n − k] =

∞∑
k=−∞

h[n − k]x[k]. (3)

(i): A system is causal if y[n] depends only on {. . . , x[n − 2], x[n − 1], x[n]}. If h[n] = 0
for all n < 0, then (3) simplifies to

y[n] =
∞∑

k=0

h[k]x[n − k] = h[0]x[n] + h[1]x[n − 1] + · · ·

which shows that T is causal. Conversely, if T is causal, then all terms k = −∞ to
k = −1 in (3) must be zero for any input x, so it must be that h[n] = 0 for all n < 0.

(ii): A system is memoryless if y[n] depends only on x[n], and not on the value of x

at any other time. If h[n] = 0 for all n ̸= 0, then (3) simplifies to y[n] = h[0]x[n] so

we conclude that T is memoryless. Conversely, if T is memoryless, then all terms in (3)

must be zero except for k = 0 any for any x, so it must be that h[n] = 0 for all n ̸= 0.
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Proof of Theorem 9.1
(iii): Suppose that h ∈ ℓ1 and let x ∈ ℓ∞. Then

|y[n]| ≤

∣∣∣∣∣
∞∑

k=−∞

h[k]x[n − k]

∣∣∣∣∣ ≤
∞∑

k=−∞

|h[k]| · |x[n − k]| ≤ ∥x∥∞

∞∑
k=−∞

|h[k]|

so ∥y∥∞ ≤ ∥h∥1∥x∥∞. Since x was arbitrary, T is BIBO stable with K = ∥h∥1.

To show the converse, we show that if h is does not have finite ation, then T is not
BIBO stable. To show that T is not BIBO stable, we need only construct one bounded
input which produces an unbounded output. Consider the candidate input

x[n] =

{
h[−n]∗/|h[−n]| if h[−n] ̸= 0
0 if h[−n] = 0

which is bounded since |x[n]| = 1 or |x[n]| = 0 for all n ∈ Z. We compute that

y[0] =
∞∑

k=−∞

h[−k]x[k] =
∞∑

k=−∞

h[−k]
h[−k]∗

|h[−k]|
=

∞∑
k=−∞

|h[−k]|2

|h[−k]|
=

∞∑
k=−∞

|h[k]|.

which equals +∞ since h /∈ ℓ1, so y is not bounded, and hence T is not BIBO stable.
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Example: bank account model

▶ the equation for the bank account model is

s[n] =
∑n

k=0
(1 + r)n−kx[k], n ≥ 0.

▶ the impulse response is computed to be

h[n] =
∑n

k=0
(1 + r)n−kδ[k]

= (1 + r)nu[n]

▶ note that
(i) the system is causal, since h[n] = 0 for all n < 0;
(ii) the system is not memoryless, since, e.g., h[1] = 1 + r ̸= 0
(iii) the system is not BIBO stable, since∑∞

k=−∞
(1 + r)ku[k] =

∑∞

k=0
(1 + r)k = +∞
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Example: bank account model

▶ consider the input x[n] = 5u[n], corresponding to a $5,000/month deposit

▶ for n < 0, the response (h ∗ x)[n] will be zero

▶ we compute the response y = h ∗ x for n ≥ 0 as

y[n] =
∞∑

k=−∞

h[n − k]x[k] =
∞∑

k=−∞

(1 + r)n−ku[n − k] · (5u[k])

= 5
n∑

k=0

(1 + r)n−k

= 5
1 − (1 + r)n+1

1 − (1 + r)
= 5

(1 + r)n+1 − 1
r

▶ therefore, we have the final answer

y[n] = (h ∗ x)[n] =

{
0 if n < 0

5 (1+r)n+1−1
r

if n ≥ 0
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Example: bank account model
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Finite impulse response (FIR) systems

▶ a causal finite impulse response (FIR) system is a DT LTI system
of the form

y[n] =
M∑

k=0
bkx[n− k] = b0x[n] + b1x[n− 1] · · · + bMx[n−M ]

where {bk}M
k=0 are constants and M is the order of the system

“The current output value is a finite linear combination of
the past and present input values”

▶ FIR systems are commonly used in signal processing and filtering; one
can also consider non-causal versions by incorporating terms
proportional to x[n+ 1], x[n+ 2], etc.
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Finite impulse response (FIR) systems

▶ we compute the impulse response of an FIR system to be

h[n] =
M∑

k=0
bkδ[n− k] =

bn if 0 ≤ n ≤ M

0 otherwise

▶ the impulse response is non-zero only for a finite number of time
steps, hence the terminology FIR system

▶ note that this LTI system is
(i) causal, since h[n] = 0 for all n < 0
(ii) BIBO stable, since

∞∑
k=−∞

|h[n]| =
M∑

k=0

|bk| = some number < ∞.
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Example: FIR system
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Difference equations and DT systems

▶ DT systems sometimes arise from recursive relationships called
difference equations; we saw this when we discretized the RC
circuit, and in the bank account model

▶ sometimes it is easy to transform the recursive definition into a
pointwise definition, sometimes it is more difficult

▶ fact: under mild technical conditions, difference equations with
inputs always lead to DT systems, even if you can’t solve the
recursion explicitly!

We will now study a special case of this general fact, and argue
that linear, inhomogeneous, constant-coefficient difference

equations can define causal DT LTI systems.
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LICC-DEs and DT systems

▶ we consider an nth order, linear, inhomogeneous constant-coefficient
difference equation (LICC-DE)

a0y[k] + a1y[k − 1] + · · · + any[k − n] = b0x[k] + · · · + bmx[k −m]

which must hold for all times k ∈ Z. In this equation
(i) x is a given signal,
(ii) y is the unknown to be solved for,
(iii) n, m are nonnegative integers, and
(iv) the coefficients a0, . . . , an, b0, . . . , bm are real constants.

▶ without loss of generality, we will assume that a0 = 1
▶ example: bank model y[k] = (1 + r)y[k − 1] + x[k]
▶ examaple: RC circuit y[k] =

(
1 − Ts

RC

)
y[k − 1] + Ts

RCx[k − 1]
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LICC-DEs and DT systems

▶ we will use the short-form notation Dℓy[k] = y[k − ℓ], and set

Q(D) = 1 + a1D + a2D
2 + · · · + anD

n

P (D) = b0 + b1D + b2D
2 + · · · + bmD

m

▶ we can now write our difference equation

y[k] + a1y[k − 1] + · · · + any[k − n] = b0x[k] + · · · + bmx[k −m]

in the short form
Q(D)y[k] = P (D)x[k] (LICC-DE)

When does (LICC-DE) define a (causal, LTI) DT system?
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LICC-DEs define LTI DT systems

▶ as with LICC-ODEs for CT systems, we will consider only right-sided
inputs and outputs

Theorem 9.2. For each right-sided input x[k], the LICC-DE
Q(D)y[k] = P (D)x[k] possesses exactly one right-sided solution y[k], and
therefore defines a DT system y = T{x}. Moreover
▶ the system T is linear, time-invariant, and causal;
▶ the system T is BIBO stable if and only if all roots of

Q(z) = zn + a1z
n−1 + · · · + an−1z + an

in the complex variable z ∈ C have magnitude less than one.
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Example: discretized RC circuit

▶ the RC circuit discretized with sampling period Ts is

vc[n] − (1 − Ts
RC )vc[n− 1] = Ts

RC vs[n− 1]

▶ this is a difference equation with n = m = 1, a1 = −(1 − Ts
RC ),

b0 = 0, and b1 = Ts
RC .

▶ the polynomial is Q(z) = z − (1 − Ts
RC ) = 0, which has one root.

▶ the root has magnitude less than one if and only if

−1 < 1 − Ts
RC < 1 or Ts < RC.

The original CT model is BIBO stable. The DT model is also
BIBO stable when sampling period is sufficiently small!
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Warm-up: LTI systems with complex exponential inputs

▶ let T be a LTI system with impulse response h

Tx[n]
y[n] =

∑∞

k=−∞
h[n− k]x[k]

=
∑∞

k=−∞
h[k]x[n− k]

▶ if the input x is a complex exponential x[n] = ejω0n, then

y[n] =
∞∑

k=−∞

h[k]ejω0(n−k) =
[ ∞∑

k=−∞

h[k]e−jω0k

]
︸ ︷︷ ︸

DTFT of h at ω = ω0

ejω0n

If the input is a complex exp., then the output is also a complex exp.
with the same frequency, but scaled by the DTFT of h!
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Frequency response of a LTI system

The DTFT of the impulse response is known as the system’s frequency
response, and is denoted by H(ejω) =

∑∞
n=−∞ h[n]e−jωn .

▶ write H(ejω) ∈ C in polar form as H(ejω) = |H(ejω)|ej∠H(ejω)

x[n] = ejω0n =⇒ y[n] = H(ejω0)ejω0n = |H(ejω0)|ej(∠H(ejω0 ))ejω0n

(i) “eigenfunction” property: if x[n] = ejω0n, then y[n] ∝ ejω0n

(ii) amplitude scaling: output amplitude is scaled by |H(ejω0)|

(iii) phase shifting: output phase is shifted by ∠H(ejω0)

A LTI system amplitude-scales and phase-shifts any complex exp. input!
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Response of a LTI system and the DTFT

These ideas generalize to more general input signals

Tx[n] y[n] =
∑∞

k=−∞ h[n− k]x[k]

▶ recall: convolution in time ⇐⇒ multiplication in frequency

y[n] = (h ∗ x)[n] ⇐⇒ Y (ejω) = H(ejω)X(ejω)

In the frequency domain, the output spectrum Y (ejω) is given
by the product of the frequency response H(ejω) and the
input spectrum X(ejω). Much simpler than convolution!
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Proof of convolution ⇐⇒ multiplication

Y (e
jω) =

∑∞

n=−∞
y[n]e−jωn (def. of DTFT for y)

=
∑∞

n=−∞

[∑∞

k=−∞
h[n − k]x[k]

]
e

−jωn (convolution)

=
∞∑

k=−∞

∞∑
n=−∞

h[n − k]x[k]e−jωn (change order of summation)

=
∞∑

k=−∞

x[k]
∞∑

n=−∞

h[n − k]e−jωn (group terms)

=
∞∑

k=−∞

x[k]

[
∞∑

ℓ=−∞

h[ℓ]e−jω(k+ℓ)

]
(ℓ = n − k)

=

[
∞∑

ℓ=−∞

h[ℓ]e−jωℓ

][
∞∑

k=−∞

x[k]e−jωk

]
(rearrange)

= H(e
jω)X(e

jω) (def. of DTFT)
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The ideal discrete-time low-pass filter

For 0 < ωc < π consider

H(ejω) =

1 if − ωc ≤ ω < ωc

0 otherwise

This system perfectly passes frequencies |ω| < ωc.

The impulse response is

h[n] =


sin(ωcn)

πn , n ̸= 0
ωc
π , n = 0.
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Some non-ideal discrete-time low-pass filters

▶ the filter is not causal since h[n] ̸= 0 for all n < 0. We can come up
with some causal alternatives.

Basic causal low-pass filter

L(ejω) = 1 − ωc

1 − ωce−jω

A better option is to

(i) take the ideal h[n]

(ii) time shift it to the right

(iii) multiply by u[n]

(iv) compute its DTFT
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Comparison of ideal and non-ideal filters

▶ for ωc = 0.4 rad/sample, let’s consider the input
x[n] = (1 + 0.1 sin(0.6n))u[n]

▶ the ideal filter anticipates the input change
▶ the non-ideal filter reacts only after the input change (and in this

case, initially reacts in the “wrong” direction)
▶ both filters do a good job of removing the oscillatory component
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Example: three-point moving average as a FIR LPF
Consider the impulse response

h[n] = 1
4δ[n] + 1

2δ[n− 1]

+ 1
4δ[n− 2]

▶ in Chapter 4 we computed that H(ejω) = 1
4 e−jω(2 + 2 cos(ω))
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Example: difference system as a FIR HPF

Consider the impulse response

h[n] = 1
2 (x[n] − x[n− 1])

▶ try it yourself: the frequency resp. is H(ejω) = e−j( ω
2 − π

2 ) sin(ω/2)
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Laplace transform analysis of DT LTI systems

▶ in Chap. 8 we used the Laplace transform to analyze causal CT LTI
systems with right-sided (from time 0) inputs

▶ there is a directly analogous tool called the z-transform for causal
DT LTI systems with right-sided inputs

▶ for a DT signal x right-sided from time 0, its z-transform is defined as

X : Rx → C, X(z) =
∞∑

n=0
x[n]z−n

where Rx is a region of convergence

The z-transform can actually be understood using what we
know about the Laplace transform and sampling.
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Laplace transform analysis of DT LTI systems

▶ given a right-sided DT signal x, choose any sampling period Ts > 0
and construct the fictitious continuous-time signal

xct(t) =
∞∑

n=0
x[n]δ(t− nTs)

▶ the Laplace transform of xct is

Xct(s) =
∫ ∞

0

( ∞∑
n=0

x[n]δ(t− nTs)
)
e−st dt

=
∞∑

n=0
x[n]

∫ ∞

0
δ(t− nTs)e−st dt

=
∞∑

n=0
x[n](esTs︸︷︷︸

“z”

)−n = X(z)

From this
observation, one can
begin to translate all

our CT system
results over to DT

systems.
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Laplace transform analysis of DT LTI systems

The following results can all be established.

▶ the transfer function H(z) of a causal DT LTI system is
H(z) =

∑∞
n=0 h[n]z−n, the z-transform of the impulse response

▶ if the RoC of H(z) contains the unit circle {z ∈ C | |z| = 1}, then
the freq. response H(ejω) can be obtained by substituting z = ejω

into H(z)

▶ the output of a causal DT LTI system can be computed in the
z-domain via Y (z) = H(z)X(z)

▶ the z-transform can be used to easily determine transfer functions of
systems defined by LICC-DEs
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Relevant MATLAB commands

▶ computing a DT convolution

1 %% bank model example

2 %% define time

3 N_max = 100;

4 n = -N_max:1:N_max;

5

6 %% define impulse response and input

7 r = 0.05/12;

8 h = (1+r).^n.*heaviside(n); h(n==0) = 1;

9 x = 5*heaviside(n); x(n==0) = 5;

10

11 %% compute convolution

12 y = conv(x,h,'same');
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Supplementary reading

▶ O-W: A. V. Oppenheim and S. Willsky, Signals and Systems, 2nd Ed.
▶ BB: B. Boulet, Fundamentals of Signals and Systems.
▶ BPL: B. P. Lathi, Signal Processing and Linear Systems.
▶ K-S: H. Kwakernaak and R. Sivan, Modern Signals and Systems.
▶ EL-PV: E. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems, 2nd Ed.

▶ ADL: A. D. Lewis, The Mathematical Theory of Signals and Systems.

Topic O-W BB BPL K-S EL-PV ADL

Definition of a system 1.5 1 1.6 3.1, 3.2 1.2, 2.3
System properties 1.6 1 1.7 3.1, 3.2, 3.6

LTI systems, impulse response 2.1, 2.3 2 9.1–9.4 3.3, 3.4
Convolution 2.1 2 9.3 3.5 9.1

System interconnections 10.8 1 3.9
Difference equations 2.4 3 9.5 4.1–4.6 13.7
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10. Appendix: More on the DT Fourier Series
and DT Fourier Transform

• introduction
• more on the discrete-time Fourier series (DTFS)
• DTFS as a numerical approximation of the CTFS
• more on the DT Fourier transform (DTFT)
• DTFT as the CTFT of a sampled CT signal
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Introduction

The CTFS, DTFS, CTFT, and DTFT share many similarities and
properties; once one understands the CTFS/CTFT, the corresponing

DT methods are typically easy to pick up and use.

▶ this appendix contains additional information regarding the DT
Fourier Series and DT Fourier Transform

▶ the material has been placed in this appendix not because it is
unimportant, but to minimize monotonous repetition in the lectures

▶ refer to this appendix as needed for additional exposition
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The discrete-time Fourier series (DTFS)

▶ let x be a DT periodic signal with fundamental period N0

Theorem 10.1. The discrete-time Fourier series of x is

x[n] =
N0−1∑
k=0

αke
jkω0n, αk = 1

N0

N0−1∑
l=0

x[l]e−jkω0l.

▶ we will now derive these formulas, mirroring the CT derivation
Section 10: Appendix: More on the DT Fourier Series and DT Fourier Transform 10-423



Derivation of the DTFS via approximation

▶ for some positive integer K, consider the order K approximation

x̂K [n] =
∑K−1

k=0
αke

jkω0n, ω0 = 2π
N0

,

where we try to approximate x via a sum of DT complex exponentials

note: all the exponentials of
different frequencies

0, ω0, 2ω0, 3ω0, . . . , (N0−1)ω0

are periodic and fit perfectly
within our fundamental
period N0 of x
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Derivation of the DTFS via approximation

▶ since ejkω0n is periodic in frequency, the two signals ejkω0n and
ej(k+N0)ω0n are actually the same signal:

ej(k+N0)ω0n = ejkω0nejN0ω0n = ejkω0nej2πn = ejkω0n.

Therefore, we restrict ourselves to K ≤ N0, since adding additional
terms to the sum will not give us any higher-frequency exponentials.

▶ approximation error quantified via mean-square error

J(α0, . . . , αK−1) = 1
N0

N0−1∑
n=0

|x[n] − x̂K [n]|2.

Our goal: find the choice of constants {αk}K−1
k=0 which minimizes J .
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Orthogonality of complex exponentials

▶ DT exponentials satisfy the following orthogonality relationship

1
N0

N0−1∑
n=0

ejmω0ne−jℓω0n =

1 if m = ℓ+ kN0, k ∈ Z

0 otherwise

For m = ℓ + kN0, we have 1
N0

∑N0−1
n=0 ej(m−ℓ)ω0n = 1

N0

∑N0−1
n=0 e

jkN0
2π
N0

n = 1.
For the other case, we have

1
N0

N0−1∑
n=0

ej(m−ℓ)ω0n =
1

N0

N0−1∑
n=0

(ej(m−ℓ)ω0 )n

=
1

N0

1 − ej(m−ℓ)ω0N0

1 − ej(m−ℓ)ω0

=
1

N0

1 − ej(m−ℓ)2π

1 − ej(m−ℓ)ω0
=

1
N0

1 − 1
1 − ej(m−ℓ)ω0

= 0

where we used the geometric series formula and ej2πn = 1 for all integers n.
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Optimal selection of coefficients

Theorem 10.2 (Optimal Coefficients). The selection of coefficients
{αk}K−1

k=0 which minimizes the mean-squared error J is

αk = 1
N0

N0−1∑
n=0

x[n]e−jkω0n

where ω0 = 2π/N0.

Proof: The function of interest is

J =
1

N0

N0−1∑
n=0

|x[n] − x̂K [n]|2 =
1

N0

N0−1∑
n=0

(x[n] − x̂K [n])∗(x[n] − x̂K [n])

where we used that |z|2 = z∗z. Expanding out, we have

J =
1

N0

N0−1∑
n=0

|x[n]|2 − x[n]∗x̂K [n] − x̂K [n]∗x[n] + |x̂K [n]|2
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Optimal selection of coefficients
We compute that

|x̂K [n]|2 =
(∑K−1

ℓ=0
αℓe

jℓω0n

)∗ (∑K−1

m=0
αme

jmω0n

)
=

K−1∑
ℓ=0

K−1∑
m=0

α
∗
ℓ αme

j(m−ℓ)ω0n
.

Substituting into J , we can write things out as

J =
1

N0

N0−1∑
n=0

[
|x[n]|2 − x[n]∗

K−1∑
m=0

αme
jmω0n − x[n]

K−1∑
m=0

α
∗
me

−jmω0n

+
K−1∑
ℓ=0

K−1∑
m=0

α
∗
ℓ αme

j(m−ℓ)ω0n

]
If we define βm = 1

N0

∑N0−1
n=0

x[n]e−jmω0n then we can more simply write this as

J =

[
1

N0

N0−1∑
n=0

|x[n]|2

]
−

K−1∑
m=0

(αmβ
∗
m + α

∗
mβm) +

K−1∑
ℓ=0

K−1∑
m=0

α
∗
ℓ αm

1
N0

N0−1∑
n=0

e
j(m−ℓ)ω0n

︸ ︷︷ ︸
=1 iff m=ℓ
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Optimal selection of coefficients

We therefore have that

J =

[
1

N0

N0−1∑
n=0

|x[n]|2
]

−
K−1∑
m=0

(αmβ∗
m + α∗

mβm) +
K−1∑
m=0

|αm|2

=

[
1

N0

N0−1∑
n=0

|x[n]|2
]

+
K−1∑
m=0

(−αmβ∗
m − α∗

mβm + |αm|2)

If we add and subtract |βm|2 inside the sum, we can complete the square:

J =

[
1

N0

N0−1∑
n=0

|x[n]|2
]

+
K−1∑
m=0

(|βm|2 − αmβ∗
m − α∗

mβm + |αm|2) −
K−1∑
m=0

|βm|2

=

[
1

N0

N0−1∑
n=0

|x[n]|2
]

+
K−1∑
m=0

(βm − αm)∗(βm − αm) −
K−1∑
m=0

|βm|2

The first and third terms do not depend at all on α! Therefore, the best thing we can

do to minimize J is to make the middle term zero. We therefore find that αk = βk,

which completes the proof. •
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Summary of results

The order K approximation x̂K of an N0-periodic DT signal x is

x̂K [n] =
K−1∑
k=0

αke
jkω0n, αk = 1

N0

N0−1∑
n=0

x[n]e−jkω0n.

▶ roughly speaking, the magnitude of αk tells us how strongly the frequency
ωk = kω0 is present in the overall signal x

▶ the k = 0 term in x̂K [n] is constant; this is called the “dc” term
▶ we limit ourselves to K ≤ N0, since we know there are only N0 distinct

complex exponentials which are periodic with period N0

▶ to compute αk, you can sum over any interval of length N0, i.e., if
convenient you can instead use the sum

∑η+N0−1
n=η

for any η ∈ Z.
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Convergence of the approximation

▶ in continuous-time, we had our approximation x̂K(t) of a periodic signal
x(t), and we saw that the energy in the error signal x̂K(t) − x(t) tended
to zero as K → ∞; we needed an infinite linear combination of complex
exponential functions to achieve zero error

▶ in discrete-time, we know that there is no point in considering K > N0,
since there are only a finite number of distinct periodic complex exponential
functions with period N0.

▶ a major consequence of this fact is that our approximation x̂K [n] of a DT
periodic signal becomes exact if K = N0 (much simpler than CT signals!)

Theorem 10.3. Let x be a periodic DT signal with period N0 ∈ Z≥1,
and let x̂N0 be our approximation where we keep N0 terms. Then
x̂N0 [n] = x[n] for all n ∈ Z.
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Convergence of the approximation

Proof: The optimal coefficients are given by

αk =
1

N0

N0−1∑
l=0

x[l]e−jkω0l

With K = N0, our MSE approximation x̂K is

x̂N0 [n] =
N0−1∑
k=0

αkejkω0n =
N0−1∑
k=0

[
1

N0

N0−1∑
l=0

x[l]e−jkω0l

]
ejkω0n

=
1

N0

N0−1∑
l=0

x[l]

[
N0−1∑
k=0

ejkω0(n−l)

]
We previously determined though that

1
N0

N0−1∑
k=0

ejkω0(n−l) =

{
1 if n = l

0 if n ̸= l

and therefore

x̂N0 [n] = x[n] (approximation is exact at all times)
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Matrix-vector notation for DTFS

▶ our formula for the DTFS coefficients αk is

αk =
1

N0

∑N0−1

l=0
x[l]e−jkω0l, k ∈ {0, . . . , N0 − 1}.

▶ we can write these equations together in matrix-vector notation as
α0
α1
α2

.

.

.

αN0−1


︸ ︷︷ ︸

:=α

=
1

N0


1 1 1 · · · 1
1 e−j(1)ω0(1) e−j(1)ω0(2) · · · e−j(1)ω0(N0−1)

1 e−j(2)ω0(1) e−j(2)ω0(2) · · · e−j(2)ω0(N0−1)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 e−j(N0−1)ω0(1) e−j(2)ω0(N0−1) · · · e−j(N0−1)ω0(N0−1)


︸ ︷︷ ︸

:=H


x[0]
x[1]
x[2]

.

.

.

x[N0 − 1]


︸ ︷︷ ︸

:=x

which gives us the very simple compact formula α = 1
N0

Hx

▶ H is symmetric, has complex entries, and has elements Hkn = e−jkω0n

▶ H is known as the discrete Fourier transform matrix; as you can see it is quite

structured, which makes it very amenable to fast algorithms for computing α.
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Matrix-vector notation for DTFS

▶ our formula for x̂N0 in terms of αk is

x̂N0 [n] =
N0−1∑
k=0

αkejkω0n, n ∈ {0, . . . , N0 − 1}.

▶ we can write these equations together in matrix-vector notation as


x̂N0 [0]
x̂N0 [1]
x̂N0 [2]

.

.

.

x̂N0 [N0 − 1]


︸ ︷︷ ︸

:=x̂N0

=


1 1 1 · · · 1
1 ejω0 ejω02 · · · ejω0(N0−1)

1 ejω02 ejω04 · · · ejω02(N0−1)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 ejω0(N0−1) ejω0(N0−1)2 · · · ejω0(N0−1)(N0−1)


︸ ︷︷ ︸

:=G


α0
α1
α2

.

.

.

αN0−1


︸ ︷︷ ︸

α

which gives us the very simple compact formula x̂N0 = Gα

▶ note: the matrix G is symmetric and has complex elements Gnk = ejkω0n
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Matrix-vector notation for DTFS

▶ combining the formulas α = 1
N0

Hx and x̂N0 = 1
N0

Gα we find that

x̂N0 = 1
N0

GHx

▶ what is the product 1
N0

GH? We can compute its elements:

1
N0

(GH)nm =
N0−1∑
k=0

GnkHkm = 1
N0

N0−1∑
k=0

ejkω0ne−jkω0m

= 1
N0

N0−1∑
k=0

ejkω0(n−m)

=

{
1 if n = m

0 otherwise

▶ therefore, 1
N0

GH is the identity matrix, and we conclude that x̂N0 = x.
This is again the statement that the approximation is perfect!
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Numerically approximating the CTFS coefficients

Recall our result for continuous-time Fourier series:

Let xct be a periodic CT signal with fundamental period T0. Then

x̂∞(t) = lim
K→∞

x̂K(t) =
∑∞

k=−∞
αct,ke

jkω0t

is called the continuous-time Fourier series (CTFS) of x, where

αct,k = 1
T0

∫ T0

0
xct(t)e−jkω0t dt, ω0 = 2π

T0
.

▶ the integral for computing αct,k can be difficult (or impossible) to
compute analytically; how could we numerically approximate it? Here
is one approach.
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Numerically approximating the CTFS coefficients

▶ first, we sample the signal xct with sampling period Ts:

x[n] = xct(t)
∣∣∣
t=nTs

= xct(nTs)

▶ to ensure that x[n] is periodic, we need to sample an integer number
of times per period T0. If we want N0 samples per period, we choose
Ts such that N0 = T0/Ts, i.e., Ts = T0/N0

▶ we can approximate the value of αct,k as

αct,k =
1

T0

∫ T0

0
xct(t)e−jkω0t dt ≈

1
T0

N0−1∑
n=0

xct(nTs) · Ts · e−jkω0(nTs)

=
Ts

T0

N0−1∑
n=0

x[n]e−jk 2π
T0

(nTs)

=
1

N0

N0−1∑
n=0

x[n]e−jk 2π
N0

n = αk (DTFS coeff.!!)
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Numerically approximating the CTFS coefficients

▶ the DTFS coefficients {αk}N0−1
k=0 of the sampled signal x[n] can be

used to numerically approximate the CTFS coefficients
{αct,k}∞

k=−∞ of the continuous-time signal xct(t)

▶ the quality of the approximation depends on the number of samples
per period N0; as N0 increases, the approximation will become better,
because we will be using more DTFS coefficients

▶ since the DTFS coefficients can be computed very efficiently via
numerical linear algebra (specifically, using the FFT algorithm), this
leads to efficient methods for approximating the CTFS coefficients
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Derivation of the DT Fourier Transform

▶ suppose we have a general DT signal x, e.g.,

Key idea: an aperiodic signal is a periodic signal with infinite period . . .

Steps we will take:

(i) window the aperiodic signal to [−N,N ], then periodize it

(ii) compute the DTFS of the periodized signal

(iii) take the limit as N → ∞
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Derivation of the DT Fourier Transform

▶ we begin by windowing x to obtain a finite-duration signal

xfin,N [n] = x[n] · (u[n+N ] − u[t− (N + 1)])

▶ we can now periodize xfin,N to obtain the 2N + 1-periodic signal

xper,N [n] =
∑∞

m=−∞
xfin,N (n−m(2N + 1))
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Derivation of the DT Fourier Transform

▶ since xper,N is 2N + 1-periodic, we can represent it via the DTFS

xper,N [n] =
∑N

k=−N
αke

jkω0n

where ω0 = (2π)/(2N + 1) is the fundamental ang. frequency

▶ the corresponding DTFS coefficients αk are given by

αk = 1
2N + 1

N∑
n=−N

xper,N [n]e−jkω0n

▶ however, over the range [−N,N ], we have xper,N [n] = x[n], so

αk = 1
2N + 1

N∑
n=−N

x[n]e−jkω0n
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Derivation of the DT Fourier Transform

▶ as some simplifying notation, if we define the function

X : R → C, X(ejω) =
N∑

n=−N

x[n]e−jωn

then the DTFS coefficients are simply samples of X

αk =
1

2N + 1
X(ejkω0 ), k ∈ {−N, . . . , N}

▶ plugging this back into the DTFS, we find that

xper,N [n] =
N∑

k=−N

1
2N + 1

X(ejkω0 )ejkω0n

and substituting ω0 = 2π
2N+1 we obtain

xper,N [n] =
1

2π

N∑
k=−N

2π

2N + 1
X(ejk 2π

2N+1 )ejk 2π
2N+1 n
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Derivation of the DT Fourier Transform

Our Fourier Series: xper,N [n] = 1
2π

N∑
k=−N

2π
2N + 1X(ejk 2π

2N+1 )ejk 2π
2N+1 n

Recall that the integral
∫ b

a
f(ω) dω is defined as the limit of a

Riemann sum, where one splits the interval [a, b] into M intervals of
width ∆ω = (b− a)/M and considers∫ b

a

f(ω) dω = lim
M→∞

M∑
k=1

∆ω · f(k · ∆ω) = lim
M→∞

M∑
k=1

b−a
M f(k · b−a

M )

Comparing, we may set

a = −π, b = π, M = 2N + 1, f(ω) = X(ejω)ejωn
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Derivation of the DT Fourier Transform

▶ as N → ∞, the DTFS sum becomes the integral

lim
N→∞

xper,N [n] = x[n] = 1
2π

∫ π

−π

X(ejω)ejωn dω

▶ similarly, as N → ∞ the function X becomes

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

These last two formulas extend the DTFS to aperiodic signals!
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The DT Fourier Transform (DTFT)

Definition 10.1. The discrete-time Fourier transform (DTFT) of a
DT signal x is the function X : R → C defined pointwise by

X(ejω) =
∞∑

n=−∞
x[n]e−jωn.

We call X the Fourier transform or spectrum of x.

▶ we think of X (when it exists) as providing a frequency domain
representation of the signal x

▶ note that X is a function of the continuous frequency variable ω ∈ R
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Existence of the DTFT

Theorem 10.4. If x has finite action, i.e., x ∈ ℓ1, then the CTFT
X(ejω) is well-defined.

Proof: Since x has finite action, we can bound the spectrum as

|X(ejω)| =

∣∣∣∣∣
∞∑

n=−∞

x[n]e−jωn

∣∣∣∣∣ ≤
∞∑

n=−∞

|e−jωn||x[n]|

=
∞∑

n=−∞

|x[n]| < ∞

so X(ejω) is well-defined for all ω ∈ R.

▶ there are lots of DT signals which do not satisfy this condition, but
nonetheless have well-defined DTFTs

▶ other signals (e.g., x[n] = 2nu[n]) simply do not have a DTFT
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The inverse discrete-time Fourier transform

Definition 10.2. The inverse discrete-time Fourier transform
(inverse DTFT) of a DT spectrum X is the DT signal x : Z → C defined
pointwise by

x[n] = 1
2π

∫ π

−π

X(ejω)ejωn dω.

▶ the integral can be taken over an interval of length 2π; this is because
the spectrum X is always 2π-periodic in ω

▶ as the name suggests, the inverse DTFT is the inverse of the DTFT,
meaning that if we start with x, apply the DTFT, and then apply the
inverse DTFT, we recover the original signal x
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Proof of inverse relationship

Let x be a DT signal and assume that the DTFT X(ejω) =
∑∞

n=−∞ x[n]e−jωn

is well-defined. We compute the inverse DTFT of X to be

1
2π

∫ π

−π

X(ejω)ejωn dω = 1
2π

∫ π

−π

[
∞∑

k=−∞

x[k]e−jωk

]
ejωn dω

=
∞∑

k=−∞

x[k]
[

1
2π

∫ π

−π

ejω(n−k) dω

]
Using orthogonality of CT complex exponentials, we have

1
2π

∫ π

−π

ejω(n−k) dω = δ[n − k] =

{
1 if n = k

0 if n ̸= k

Therefore, the above simplifies to
∞∑

k=−∞

x[k]δ[n − k] = x[n]

so we recover the original signal x.
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The DTFT of a complex exponential signal

▶ consider the DT complex exponential z[n] = ejνn where −π ≤ ν ≤ π

▶ if we try to directly compute the DTFT of z[n] = ejνn we have that

Z(ejω) =
∑∞

n=−∞
ejνne−jωn =

∑∞

n=−∞
ej(ν−ω)n

and it is not clear how to further evaluate this sum

▶ as an alternative, let’s instead write out the inverse DTFT equation

ejνn = 1
2π

∫ π

−π

Z(ejω)ejωn dω

and try to guess what Z(ejω) must equal for this to be true.

▶ we can now guess Z(ejω) = 2πδ(ω − ν) for −π ≤ ω ≤ π, where δ(ω − ν)
is the continuous-time unit impulse function from Chapter 2.

Section 10: Appendix: More on the DT Fourier Series and DT Fourier Transform 10-449



The DTFT of a complex exponential signal

We can calculate that

1
2π

∫ π

−π

Z(ejω)ejωn dω = 1
2π

∫ π

−π

2πδ(ω − ν)ejωn dω = ejων

so our guess worked!

For −π ≤ ν ≤ π, the DTFT of the DT signal x[n] = ejνn is

X(ejω) = 2πδ(ω − ν), −π ≤ ω ≤ π.
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The DTFT of a periodic signal

We can also apply the DTFT to periodic signals

▶ let x be a periodic DT signal with fundamental period N0, and let
ω0 = 2π/N0 be the fundamental angular frequency

▶ we represent x using the discrete-time Fourier series

x[n] =
∑N0−1

k=0
αke

jkω0n.

▶ going term by term, the DTFT spectrum is (the periodic extension of)

X(ejω) = 2π
∑N0−1

k=0
αkδ(ω − kω0)

The DTFT of a periodic signal is finite sum of impulse functions
located at the first N0 multiples of the fundamental frequency ω0!
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Energy and the DTFT

▶ signals with finite energy are often the nicest case to consider

Theorem 10.5. If x has finite energy, i.e., x ∈ ℓ2, then

(i) X has finite energy, i.e., X ∈ Lper
2 , and

(ii) the signal and its spectrum satisfy Parseval’s relation

∞∑
n=−∞

|x[n]|2 = 1
2π

∫ π

−π

|X(ejω)|2 dω

A beautiful and surprising relationship between the energy of
the signal and the energy of its spectrum.
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Converting between time and frequency domain

▶ there are useful patterns to recognize when converting between the
time and frequency-domain representations of a signal

▶ Example: consider the DT spectrum defined by

X(ejω) =
∑
k∈K

αke
−jωk.

where K is some index set. This is a sum of complex exponentials,
and we know from our example of the n0-step delay that this
corresponds to delays in the time-domain signal. Therefore

x[n] =
∑
k∈K

αkδ[n− k]
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Converting between time and frequency domain

▶ Example: Consider the DT signal x[n] = αnu[n] where |α| < 1. We
compute the DTFT of x to be

X(ejω) =
∞∑

n=−∞
αnu[n]e−jωn =

∞∑
n=0

(αe−jω)n = 1
1 − αe−jω .

Now suppose instead we are given the spectrum

X(ejω) =
∑
k∈K

bk

1 − αke−jω .

Using the previous result term by term, the corresponding DT signal
x must be given by

x[n] =
∑
k∈K

bkα
n
ku[n].
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Converting between time and frequency domain

▶ Example: Consider the DT spectrum

H(ejω) = 1
(1 − αe−jω)(1 − βe−jω)

where |α| < 1, |β| < 1, and α ̸= β. We split H into two terms using
the method of partial fraction expansion. Begin by writing

H(ejω) = a

1 − αe−jω
+ b

1 − βe−jω
= (a + b) − (aβ + bα)e−jω

(1 − αe−jω)(1 − βe−jω)

for some constants a, b that we must solve for. Equating the two
expressions for H, we find that a+ b = 1 and aβ + bα = 0, from
which it follows that a = α/(α− β) and b = β/(β − α). Therefore

h[n] = α

α− β
αnu[n] + β

β − α
βnu[n].
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Converting between time and frequency domain

▶ Example: Consider the DT spectra

H1(ejω) = 1 + 2e−jn0ω, H2(ejω) = 1
1 − αe−jω

.

Now multiply the two spectra to obtain

H(ejω) = H1(ejω)H2(ejω) = 1 + 2e−jn0ω

1 − αe−jω

= 1
1 − αe−jω

+ 2 1
1 − αe−jω

e−jn0ω

The first term we studied in the previous example. The second term
is the same thing scaled by 2, and then multiplied by e−jn0ω which
we know arises from an n0-step delay. Therefore

h[n] = αnu[n] + 2αn−n0u[n− n0].
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DTFT as the CTFT of a sampled CT signal

The DTFT of a DT signal x can also be obtained by applying the
CTFT to the fictitious continuous-time signal

x̃(t) =
∑∞

n=−∞
x[n]δ(t− n)

which has impulses at all n ∈ Z, weighted by the value x[n].

X̃(jω) =
∫ ∞

−∞

[
∞∑

n=−∞

x[n]δ(t − n)

]
e−jωt dt =

∞∑
n=−∞

x[n]e−jωn = X(ejω)
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11. Bonus: Vector Space Concepts in Signals
& Systems

• introduction
• position, length, and angle in RN

• position, length, and angle in CN

• projections onto subspaces and change of basis
• change-of-basis interpretation of DTFS
• filtering as projection onto subspaces
• from filtering to (circular) convolution
• circulant matrices
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Introduction

▶ this section contains material for students who wish to begin building
a richer mathematical conception of signals and systems

▶ underlying the CTFS/DTFS/CTFT/DTFT, there are some
fundamental unifying mathematical ideas from linear algebra

▶ understanding the deeper mathematical concepts helps to build
intuition, and is particularly useful for more complex signal processing
tasks such as image and video processing

▶ the key ideas are geometric:
(i) signals are vectors in a vector space
(ii) Fourier analysis is projection onto the basis of complex exp. signals
(iii) systems are transformations of these vectors
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Definition of a vector space

Definition 11.1 (Vector space). A vector space over the set of
scalars Λ is a set Σ of vectors equipped with the following two
operations:

1. vector addition, which is a map + : Σ × Σ → Σ taking two vectors
x, y ∈ Σ and producing a new vector x, y ∈ Σ s.t.

• commutativity: x + y = y + x;
• associativity: x + (y + z) = (x + y) + z;
• zero vector: there exists an element 0 ∈ Σ such that x + 0 = x;
• additive inverse: for each x ∈ Σ there is some y ∈ Σ s.t. x + y = 0;

2. scalar multiplication, which is a map · : Λ × Σ → Σ taking a scalar
α ∈ Λ and a vector x ∈ Σ and producing a new vector αx ∈ Σ s.t.

• vector distributivity: α(x + y) = αx + αy;
• scalar distributivity: (α1 + α2)x = α1x + α2x;
• multiplicative identity element: 1x = x.
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The vector space Rn over R

Put simply: a vector space is a set of objects which are
closed under addition and scalar multiplication.

▶ real Euclidean space Σ = RN is a vector space over the scalars Λ = R
▶ we often notate vectors in RN as n-tuples

x = (x[0], x[1], x[2], . . . , x[N − 1]), each x[n] ∈ R

▶ addition and scalar multiplication defined as

x+ y = (x[0] + y[0], x[1] + y[1], . . . , x[N − 1] + y[N − 1])

αx = (αx[0], αx[1], αx[2], . . . , αx[N − 1]), α ∈ R

▶ the zero element is
0 = (0, 0, . . . , 0)
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Norms on vector spaces

A vector space is just a set of objects we can add and scale. If we want to
talk about length or size, we need to add another ingredient called a norm.

Definition 11.2 (Norm). A norm on a vector space Σ over Λ is a map
∥ · ∥ : Σ → R satisfying

(i) homogeneity: ∥αx∥ = |α| ∥x∥ for all α ∈ Λ and all x ∈ Σ;

(ii) non-negativity: ∥x∥ ≥ 0 for all x ∈ Σ;

(iii) non-degeneracy: ∥x∥ = 0 if and only if x = 0, and

(iv) triangle inequality: ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ Σ.

▶ a norm allows us to measure the size of a vector ∥x∥ and the
distance between two vectors ∥x− y∥
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Example: the vector space RN over R

▶ on the space RN we usually use the Euclidean norm

∥x∥ =

√√√√N−1∑
n=0

(x[n])2 or ∥x∥2 =
N−1∑
n=0

(x[n])2

which measures the length from the origin to the “tip” of the vector x.
▶ the distance between two vectors x and y is then

∥x− y∥ =

√√√√N−1∑
n=0

(x[n] − y[n])2.

▶ there are many other norms you can use on RN , but we won’t need
them in this course.

Section 11: Bonus: Vector Space Concepts in Signals & Systems 11-463



Defining angles between vectors on RN

▶ the next ingredient we need is to define angles between vectors

▶ consider two vectors x, y ∈ RN

▶ consider the subspace

S = {z ∈ RN | z = αy, α ∈ R}

▶ find the closest point to x on S

min
z∈S

∥x − z∥ = min
α∈R

∥x − αy∥

and call the point zopt = αopty

▶ define angle θ between x and y:

cos θ =
adj
hyp

=
∥zopt∥

∥x∥
=

∥αopty∥
∥x∥

x

y
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Defining angles between vectors on RN

▶ the next ingredient we need is to define angles between vectors

▶ consider two vectors x, y ∈ RN

▶ consider the subspace

S = {z ∈ RN | z = αy, α ∈ R}

▶ find the closest point to x on S

min
z∈S

∥x − z∥ = min
α∈R

∥x − αy∥

and call the point zopt = αopty

▶ define angle θ between x and y:

cos θ =
adj
hyp

=
∥zopt∥

∥x∥
=

∥αopty∥
∥x∥

x

y

S
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Defining angles between vectors on RN

▶ the next ingredient we need is to define angles between vectors

▶ consider two vectors x, y ∈ RN

▶ consider the subspace

S = {z ∈ RN | z = αy, α ∈ R}

▶ find the closest point to x on S

min
z∈S

∥x − z∥ = min
α∈R

∥x − αy∥

and call the point zopt = αopty

▶ define angle θ between x and y:

cos θ =
adj
hyp

=
∥zopt∥

∥x∥
=

∥αopty∥
∥x∥

x

y

S

zopt
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Defining angles between vectors on RN

▶ the next ingredient we need is to define angles between vectors

▶ consider two vectors x, y ∈ RN

▶ consider the subspace

S = {z ∈ RN | z = αy, α ∈ R}

▶ find the closest point to x on S

min
z∈S

∥x − z∥ = min
α∈R

∥x − αy∥

and call the point zopt = αopty

▶ define angle θ between x and y:

cos θ =
adj
hyp

=
∥zopt∥

∥x∥
=

∥αopty∥
∥x∥

x

y

S

zoptθ
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Defining angles between vectors on RN

▶ to compute αopt, we need to minimize the function

f(α) = ∥x − αy∥2 =
∑N−1

n=0
(x[n] − αy[n])2

▶ the minimum occurs when the derivative is zero:

f ′(αopt) = 2
∑N−1

n=0
(x[n] − αy[n])(−y[n]) = 0

▶ solving, we find that

αopt =
∑N−1

n=0 x[n]y[n]∑N−1
n=0 y[n]y[n]

▶ we call the quantity in the numerator the inner product on RN

⟨x, y⟩ =
N−1∑
n=0

x[n]y[n]
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The inner product on RN

⟨x, y⟩ =
N−1∑
n=0

x[n]y[n]

Observations:

(i) the inner product is symmetric: ⟨x, y⟩ = ⟨y, x⟩

(ii) the inner product of a vector with itself is the squared norm:

⟨x, x⟩ =
∑N−1

n=0
x[n]x[n] =

∑N−1

n=0
(x[n])2 = ∥x∥2.

(iii) the inner product distributes over linear combinations

⟨x, α1y + α2z⟩ = α1⟨x, y⟩ + α2⟨x, z⟩
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Defining angles between vectors on RN

▶ with this notation, we get a nice formulas for αopt and zopt

αopt = ⟨x, y⟩
⟨y, y⟩

, zopt = αopty = ⟨x, y⟩
⟨y, y⟩

y.

▶ the angle between x and y becomes

cos θ = ∥zopt∥
∥x∥

= 1
∥x∥

|⟨x, y⟩|
∥y∥2 ∥y∥ = |⟨x, y⟩|

∥x∥∥y∥

How do we know that the RHS is between -1 and 1, so that we
can actually solve cos(θ) = RHS? We will answer this shortly.

For the moment, let’s just check some simple cases.
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Defining angles between vectors on RN

▶ Colinear vectors: suppose that x is just a scaled version of y, i.e., x = γy

for some γ ≥ 0. Then the angle between the two vectors is

cos(θ) = |⟨x, y⟩|
∥x∥∥y∥ = |⟨γy, y⟩|

∥γy∥∥y∥ = |γ|⟨y, y⟩
|γ|∥y∥2 = |γ|∥y∥2

|γ|∥y∥2 = 1

which means that θ = 0; this case checks out!
▶ Orthogonal vectors: note that if ⟨x, y⟩ = 0, then cos(θ) = 0 and hence

θ = 90◦. Therefore, vectors forming a right angle have zero inner product.
From our picture, the vectors y and x − αopty should form a right angle;
let’s check. We have

⟨x − αopty, y⟩ = ⟨x, y⟩ − αopt⟨y, y⟩

= ⟨x, y⟩ − ⟨x, y⟩
⟨y, y⟩ ⟨y, y⟩ = 0

so they do indeed form a right angle!
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Defining angles between vectors on RN

x

y

S

zoptθ

▶ we think of zopt as the best approximation to the vector x among
all vectors in the subspace S.

▶ it is “best” in the sense that the distance from x to S is minimized
▶ we call zopt the projection onto the subspace spanned by y;
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Inner products on vector spaces

We now generalize the idea of an inner product.

Definition 11.3 (Inner product). An inner product on a vector
space Σ over Λ is a map ⟨·, ·⟩ : Σ × Σ → Λ satisfying

(i) conjugate symmetry: ⟨x, y⟩ = ⟨y, x⟩∗,

(ii) linearity: ⟨α1x+ α2y, z⟩ = α1⟨x, z⟩ + α2⟨y, z⟩,

(iii) non-negativity: ⟨x, x⟩ ≥ 0 for all x ∈ Σ, and

(iv) non-degeneracy: ⟨x, x⟩ = 0 if and only if x = 0.

▶ Two vectors x, y ∈ Σ are said to be orthogonal if ⟨x, y⟩ = 0

▶ Any inner product ⟨·, ·⟩ also defines a norm ∥x∥ =
√

⟨x, x⟩
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The Cauchy-Schwarz Inequality

▶ whenever we have a vector space Σ with an inner product ⟨·, ·⟩ we
have a powerful relationship called the Cauchy-Schwarz Inequality

|⟨x, y⟩| ≤ ∥x∥∥y∥, for any x, y ∈ Σ

▶ dividing by ∥x∥∥y∥, it therefore holds that

0 ≤ |⟨x, y⟩|
∥x∥∥y∥

≤ 1 (assuming x, y ̸= 0).

▶ therefore, the formula

cos θ = |⟨x, y⟩|
∥x∥∥y∥

always yields a solution −90◦ ≤ θ ≤ 90◦.
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The vector space CN over C

Many of our ideas for RN carry over to CN with only minor changes.

▶ complex Euclidean space Σ = CN is a vector space over the scalars
Λ = C

▶ we often notate these vectors as n-tuples

x = (x[0], x[1], x[2], . . . , x[N − 1]), each x[n] ∈ C

▶ addition and scalar multiplication defined as

x+ y = (x[0] + y[0], x[1] + y[1], . . . , x[N − 1] + y[N − 1])

αx = (αx[0], αx[1], αx[2], . . . , αx[N − 1]), α ∈ C

▶ the zero element is defined as

0 = (0 + 0j, 0 + 0j, . . . , 0 + 0j)
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The norm on CN over C

▶ on the space CN we usually use the Euclidean norm

∥x∥ =

√√√√N−1∑
n=0

|x[n]|2 =

√√√√N−1∑
n=0

x[n]∗x[n]

▶ inside the sum is the magnitude squared |x[n]|2 = x[n]∗x[n] of x.

▶ the distance between two vectors x, y ∈ CN is

∥x− y∥ =

√√√√N−1∑
n=0

|x[n] − y[n]|2

=

√√√√N−1∑
n=0

(x[n] − y[n])∗(x[n] − y[n])
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The inner product on CN over C

The inner product on CN is defined as

⟨x, y⟩ =
N−1∑
n=0

x[n]y[n]∗

Note the complex conjugation of y[n] in this formula.

(i) the inner product is conjugate symmetric: ⟨x, y⟩ = ⟨y, x⟩∗

(ii) the inner product of a vector with itself is the squared norm:

⟨x, x⟩ =
∑N−1

n=0
x[n]x[n]∗ =

∑N−1

n=0
|x[n]|2 = ∥x∥2.

(iii) in the first argument, the inner product distributes over linear
combinations

⟨α1x + α2y, z⟩ = α1⟨x, z⟩ + α2⟨y, z⟩

(iv) in the second argument, we get the slightly modified conjugate formula

⟨z, α1x + α2y⟩ = α∗
1⟨z, x⟩ + α∗

2⟨z, y⟩
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Defining angles between vectors on CN

Our method of defining angles on RN carries over to CN .

αopt = ⟨x, y⟩
⟨y, y⟩

, zopt = αopty.

cos θ = |⟨x, y⟩|
∥x∥∥y∥

x

y

S

zoptθ

We now prove that this formula for αopt minimizes ∥x− αy∥.
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Proof of angle formula for CN

We again consider the function f(α) = ∥x − αy∥2. Write this using the inner product:

f(α) = ⟨x − αy, x − αy⟩

= ⟨x, x − αy⟩ − α⟨y, x − αy⟩ (using linearity in 1st arg)

= ⟨x − αy, x⟩∗ − α⟨x − αy, y⟩∗ (using conjugate symm.)

= ∥x∥2 − α∗⟨x, y⟩ − α⟨y, x⟩ + αα∗∥y∥2 (using lin. & conjugate sym.)

If we define β = ⟨x, y⟩/∥y∥2 then we can write this as

f(α) = ∥x∥2 − α∗β∥y∥2 − αβ∗∥y∥2 + αα∗∥y∥2

= ∥x∥2 + (|α|2 − α∗β − β∗α)∥y∥2

If we add and subtract |β|2∥y∥2, we can complete the square to obtain

f(α) = ∥x∥2 + (|α|2 + |β|2 − α∗β − β∗α)∥y∥2 − |β|2∥y∥2

= ∥x∥2 − |β|2∥y∥2 + |α − β|2∥y∥2

The first and second terms are independent of α. To minimize f(α), we therefore select

α = β, which shows the desired formula. •
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The vector space ℓ2([0, N0 − 1]) over C

Consider the set ℓ2([0, N0 − 1]) of all complex-valued DT signals which are
periodic with period N0 and have finite energy, i.e.,

ℓ2([0, N0 − 1]) =
{
x : Z → C

∣∣∣∣∣ x is N0-periodic and
N0−1∑
k=0

|x[k]|2 < ∞

}
.

Indeed ℓ2([0, N0 − 1]) is a vector space over C:

(i) the sum of two N0-periodic signals is again N0-periodic =⇒ the set
is closed under vector addition

(ii) an N0-periodic signal scaled by a constant α is again N0-periodic
=⇒ the set is closed under scalar multiplication

(iii) the zero element 0 is the constant zero signal
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The vector space ℓ2([0, N0 − 1]) over C

▶ recall: we established that there is a one-to-one correspondence
between periodic signals xper and finite-duration signals xfin.

▶ therefore, each x ∈ ℓ2([0, N0 − 1]) is equivalent to a vector

x = (x[0], x[1], . . . , x[N0 − 1]) ∈ CN0

▶ it follows that the two vector spaces ℓ2([N0 − 1]) and CN0 are
equivalent (isomorphic); anything you learn about one can be used
on the other.

▶ aside: as a consequence of the above, the finite-energy stipulation in
the definition of ℓ2([0, N0 − 1]) is redundant at the moment, but is
more important when N0 → ∞ . . .
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Projections onto subspaces

▶ to define the angle between a vector x and the subspace
S = {αy | α ∈ R}, we computed the projection of x onto S

▶ zopt ∈ S was the best approximation of x among all vectors z ∈ S

How do we extend this idea to more general subspaces? We
consider a particular kind of subspace which is very useful.

Definition 11.4 (Orthogonal set of vectors). A set of vectors
{y0, . . . , yK−1} in CN is orthogonal if ⟨yi, yj⟩ = 0 for all i ̸= j.

▶ given an orthogonal set of vectors {y0, . . . , yK−1}, define

S =
{
z ∈ CN | z =

K−1∑
k=0

αkyk, αk ∈ C for all 0 ≤ k ≤ K − 1
}
.
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Projections onto subspaces

S =
{
z ∈ CN | z =

K−1∑
k=0

αkyk, αk ∈ C for all 0 ≤ k ≤ K − 1
}
.

S is the set of all linear combinations (i.e., the span) of {y0, . . . , yK−1}

▶ given a vector x ∈ CN , we wish to compute the best approximation
x̂K of x contained within the subspace S, i.e., we solve

min
x̂K∈S

∥x− x̂K∥2 = min
α1,...,αK−1∈C

∥∥∥∥∥x−
K−1∑
k=0

αkyk

∥∥∥∥∥
2

▶ we now prove that the optimal choice of coefficients is given by

αk,opt = ⟨x, yk⟩
∥yk∥2 =⇒ x̂K =

K−1∑
k=0

⟨x, yk⟩
∥yk∥2 yk.
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Projections onto subspaces

S = span({y1, y2})
y2

y1

x̂

x

Projection of x onto S finds the point x̂ ∈ S which is
closest to the original vector x
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Proof of projection formula

We want to minimize the function

f(α0, α1, . . .) =
∥∥∥x −

∑K−1

k=0
αkyk

∥∥∥2

=
〈

x −
∑K−1

k=0
αkyk, x −

∑K−1

k=0
αkyk

〉
= ⟨x, x⟩−

K−1∑
k=0

α∗
k⟨x, yk⟩ −

K−1∑
k=0

αk⟨yk, x⟩ +
K−1∑
k=0

K−1∑
j=0

α∗
kαj⟨yj , yk⟩

Since the vectors {y0, . . . , yK−1} form an orthogonal set, this simplifies to

f(α0, α1, . . .) = ⟨x, x⟩ −
K−1∑
k=0

α∗
k⟨x, yk⟩ −

K−1∑
k=0

αk⟨yk, x⟩ +
K−1∑
k=0

α∗
kαk⟨yk, yk⟩

=
K−1∑
k=0

[ 1
K

∥x∥2 − α∗
k⟨x, yk⟩ − αk⟨yk, x⟩ + α∗

kαk⟨yk, yk⟩
]

Each term in this sum looks exactly like the calculation we did for projections in CN .

We therefore just go term by term and copy the result, seting αk = ⟨x, yk⟩/∥yk∥2.
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Projections onto subspaces

▶ the best approximation of x contained within S is given by

x̂K =
K−1∑
k=0

⟨x, yk⟩
∥yk∥2 yk︸ ︷︷ ︸

projection of x onto yk

Comments:
▶ if one begins with a merely linearly independent set of vectors

{y0, . . . , yK−1}, one can obtain an orthogonal set through the
Gram-Schmidt procedure, as covered in a linear algebra course.

▶ in CN , a very natural orthogonal set are the basis vectors

ek[n] =

1 if n = k

0 otherwise
0 ≤ k ≤ N − 1

i.e., the vectors e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), and so on.
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Representation in a basis

What happens when K = N? The subspace S consists of all linear
combinations of a set of N orthogonal vectors {y0, . . . , yN−1}; such a
set forms a basis for CN . Therefore S is the entire vector space CN .

▶ in this case, our best approximation x̂K is exact, i.e., x̂K = x

▶ our approximation formula

αk = ⟨x, yk⟩
∥yk∥2 , x̂K = x =

N−1∑
k=0

αkyk (4)

is the representation of x in the basis {y0, . . . , yN−1}
▶ the coefficient αk = ⟨x,yk⟩

∥yk∥2 can be thought of as the amount that yk

contributes towards the overall vector x.
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DTFS is just a representation of x in a new basis

Recall: Let x be a periodic DT signal with fundamental period N0,
and let ω0 = 2π/N0. The decomposition

x[n] =
N0−1∑
k=0

αke
jkω0n, n ∈ {0, . . . , N0 − 1}

with coefficients αk given by

αk = 1
N0

N0−1∑
l=0

x[l]e−jkω0l, k ∈ {0, . . . , N0 − 1}.

is called the discrete-time Fourier series (DTFS) of the signal x.

We now show that these formulas are performing a change of basis!
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DTFS is just a representation of x in a new basis

▶ we are in the vector space ℓ2([0, N0 − 1]), with inner product

⟨x, y⟩ =
N0−1∑
n=0

x[n]y[n]∗.

▶ consider the set of vectors {ϕ0, . . . , ϕN0−1} defined by

ϕk[n] = ejkω0n, n ∈ {0, . . . , N0 − 1}.

▶ we know from our previous calculations for the DTFS that

⟨ϕk, ϕj⟩ =
N0−1∑
n=0

ϕk[n]ϕj [n]∗ =

N0 if k = j

0 if k ̸= j.

so these N0 vectors form an orthogonal basis for ℓ2([0, N0 − 1]).
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DTFS is just a representation of x in a new basis

▶ let x ∈ ℓ2([0, N0 − 1]) be a DT periodic signal
▶ if we want to represent x in the basis defined by {ϕ0, . . . , ϕN0−1}, we need

only apply the formula (4), which we repeat here:

αk = ⟨x, ϕk⟩
⟨ϕk, ϕk⟩ , x =

N0−1∑
k=0

αkϕk.

▶ note that this means we represent the signal x as

x[n] =
N0−1∑
k=0

αkejkω0n, n ∈ {0, . . . , N0 − 1}.

▶ we compute the coefficient αk to be

αk = 1
⟨ϕk, ϕk⟩ ⟨x, ϕk⟩ = 1

N0

N0−1∑
n=0

x[n]ϕk[n]∗ = 1
N0

N0−1∑
n=0

x[n]e−jkω0n

which is exactly our formula for the DTFS coefficients!!
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Matrix-vector interpretation of DTFS basis change

▶ recall: we developed matrix-vector formulas for the DTFS:

x = Gα, α = 1
N0

Hx.

where Hkn = e−jkω0n and Gnk = ejkω0n and

α = (α0, α1, . . . , αN0−1)

x = (x[0], x[1], . . . , x[N0 − 1])

▶ note that Hkn = G∗
nk. As matrices, we say that H and G are

Hermitian conjugates and we write that G = HH.

▶ we have previously observed that 1
N0

GH = I, and therefore
HHH = N0I.
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DTFS basis change and Parseval’s relation

▶ Let’s compute the norm of α

∥α∥2 = ⟨α,α⟩ = 1
N2

0
⟨Hx,Hx⟩ = 1

N2
0

(Hx)H(Hx)

= 1
N2

0
xHHHHx

= 1
N0

∥x∥2

▶ writing this out explicitly, we find that

1
N0

∥x∥2 = ∥α∥2 or 1
N0

N0−1∑
k=0

|x[k]|2 =
N0−1∑
k=0

|αk|2

▶ this is Parseval’s relation for the DTFS!
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DTFS basis change as a rotation of vectors

▶ Consider two signals x, y ∈ ℓ2([0, N0 − 1]) with associated vectors
x,y ∈ CN , and let α = 1

N0
Hx and β = 1

N0
Hy be the associated

vectors of DTFS coefficients.
▶ The inner product between α and β is

⟨α,β⟩ = 1
N2

0
⟨Hx,Hy⟩ = 1

N2
0

(Hy)H(Hx) = 1
N2

0
xHHHHx

= 1
N0

yHx = 1
N0

⟨x,y⟩

▶ the angle θαβ between α and β is

cos θαβ = |⟨α,β⟩|
∥α∥∥β∥

= N0⟨|x,y⟩|√
N0∥x∥

√
N0∥y∥

= |⟨x,y⟩|
∥x∥∥y∥

= cos θxy

The DTFS transformation preserves angles between vectors! It
is a “rotation” of vectors in CN0 .
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Vector space concepts for CTFS/CTFT/DTFT

▶ the case of a DT periodic signal fits nicely with your current linear
algebra knowledge, because the vector space ℓ2([0, N0 − 1]) is finite
dimensional

▶ when dealing with CT signals, or aperiodic DT signals, the associated
vector spaces are infinite dimensional

▶ while the mathematics becomes more complicated, the key ideas
remain unchanged; all these transformations are just methods of
representing a signal in a new basis, consisting of complex exponential
signals in either CT or DT
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Filtering of signals as projection onto subspaces

▶ when we speak of “filtering” a signal, we usually mean that we modify
the signal to accentuate certain characteristics

▶ the two most common types of filters are
• high-pass filters, where we remove the low-frequency signal content
• low-pass filters, where we remove the high-frequency signal content

▶ we can think of the action of such filters as projection onto subspaces
generated by high-frequency and low-frequency collections of complex
exponential signals, respectively

▶ we illustrate this by returning to a familiar example
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Example: filtering the windowing signal

Let N0 ∈ Z>0 be odd, and let
W ∈ Z satisfy 0 ≤ W ≤ N0−1

2 .
Consider the signal

xW [n] =

1 if |n| ≤ W

0 if W < n ≤ N0−1
2

▶ we consider N0 = 21 and W = 5
▶ consider the low-pass subspace SLP and the high-pass subspace SHP

SLP = span{ejω0(−4)n, . . . , ejω0(−1)n, ejω0(0)n, ejω0(1)n, . . . , ejω0(4)n}

SHP = span{ejω0(−10)n, . . . , ejω0(−5)n, ejω0(5)n, . . . , ejω0(10)n}
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Example: filtering the windowing signal
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From filtering to circular convolution

▶ recall that our DTFS representation of x is given by

x[n] =
N0−1∑
k=0

αke
jkω0n, αk = 1

N0

N0−1∑
l=0

x[l]e−jkω0l

▶ in these previous filtering examples, projection onto a subspace is
equivalent to setting the remaining Fourier coefficients to zero

▶ instead of setting them to zero, let us now generalize our idea of a
“filter” as an operation which produces a new signal y by modifying
each Fourier coefficient αk of x via multiplication by a corresponding
constant βk ∈ C

▶ in other words, the output y of the filter has Fourier coefficients
γk = αkβk
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From filtering to circular convolution

▶ we can now represent y through the DTFS representation

y[n] =
N0−1∑
k=0

γkejkω0n =
N0−1∑
k=0

αkβkejkω0n

▶ inserting the formula for αk we have

y[n] =
N0−1∑
k=0

[
1

N0

N0−1∑
l=0

x[l]e−jkω0l

]
βkejkω0n =

N0−1∑
l=0

x[l]

[
N0−1∑
k=0

βk

N0
ejkω0(n−l)

]
︸ ︷︷ ︸

=h[n−l]

▶ in brackets we have the DTFS representation of a signal with
coefficients βk/N0; let’s call this signal h[n− l]. Therefore

y[n] =
N0−1∑

l=0

h[n − l]x[l]

▶ this is a convolution formula!
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From filtering to circular convolution

Summary: If “filtering” means scaling the DTFS coefficients of the
input x by constants βk ∈ C, then the filtered output is

y[n] =
∑N0−1

l=0
h[n− l]x[l], n ∈ {0, . . . , N0 − 1}

where h is the N0-periodic DT signal with DTFS coefficients βk/N0.

▶ Two important differences with other convolution formulas so far:
(i) x and h are both periodic with period N0

(ii) the sum runs only from 0 to N0 − 1, not from −∞ to ∞

▶ since x and h are N0-periodic, we have y[n + N0] = y[n], so y is also
N0-periodic

▶ this is called circular convolution, and is notated as

y = x ⃝∗ h
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Properties of circular convolution

▶ just like other convolution operations we have encountered, circular
convolution satisfies several appealing properties

(i) commutative property: if x and h are two N0-periodic DT
signals, then x⃝∗ h = h⃝∗ x, or pointwise∑N0−1

l=0
h[n− l]x[l] =

∑N0−1

l=0
h[l]x[n− l]

(ii) linearity: if h, x, y are three N0 periodic DT signals and α, β ∈ C
then

h⃝∗ (αx+ βy) = α(h⃝∗ x) + β(h⃝∗ y)

(iii) time-invariance: if h, x are two N0 periodic DT signals with
y = h⃝∗ x then for all ∆ ∈ Z we have that y∆ = h⃝∗ x∆
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Example 11.3: circular convolution

Consider the input signal

x[n] =

1 if |n| ≤ 2

0 if 2 < |n| ≤ 10

and the impulse response

h[n] = δ[n− 1] − 2δ[n− 3]

for 0 ≤ n ≤ 20, repeated periodically
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Example 11.3: circular convolution

▶ we can now compute for 0 ≤ n ≤ 20 that

(h⃝∗ x)[n] =
N0−1∑
l=0

h[n− l]x[l] =
20∑

l=0
x[l] (δ[n− l − 1] − 2δ[n− l − 3])

= x[n− 1] − 2x[n− 3]

where x is as defined before
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Example 11.4: circular convolution

Consider the input signal

x[n] =

1 if |n| ≤ 2

0 if 2 < |n| ≤ 10

and the impulse response

h[n] = δ[n− 1] − 2δ[n− 3]

+ δ[n− 10]

for 0 ≤ n ≤ 20, repeated periodically
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Example 11.4: circular convolution

▶ we can now similarly compute for 0 ≤ n ≤ 20 that that

(h⃝∗ x)[n] =
N0−1∑
l=0

h[n− l]x[l] = x[n− 1] − 2x[n− 3] + x[n− 10].
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Circulant matrices

▶ we now formalize circular convolution

(h⃝∗ x)[n] = y[n] =
N0−1∑
l=0

h[n− l]x[l], n ∈ {0, . . . , N0 − 1}

using matrix-vector notation

▶ we can write these equations all out explicitly as

y[0] =
∑N0−1

l=0
h[0 − l]x[l]

y[1] =
∑N0−1

l=0
h[1 − l]x[l]

y[2] =
∑N0−1

l=0
h[2 − l]x[l]

...

y[N0 − 1] =
∑N0−1

l=0
h[N0 − 1 − l]x[l]
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Circulant matrices

Writing this all in matrix-vector form, we have
y[0]
y[1]
y[2]

...

y[N0 − 1]

 = C


x[0]
x[1]
x[2]

...

x[N0 − 1]

 or y = Cx

where

C =


h[0] h[−1] h[−2] · · · h[−(N0 − 1)]
h[1] h[0] h[−1] · · · h[1 − (N0 − 1)]
h[2] h[1] h[0] · · · h[2 − (N0 − 1)]

...
...

. . .
. . .

...

h[N0 − 1] h[(N0 − 1) − 1] h[(N0 − 1) − 2] · · · h[(N0 − 1) − (N0 − 1)]


However, we know that h[n+N0] = h[n] for all n ∈ Z. We can use this
to simplify C!
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Circulant matrices

C =


h[0] h[−1] h[−2] · · · h[−(N0 − 1)]
h[1] h[0] h[−1] · · · h[1 − (N0 − 1)]
h[2] h[1] h[0] · · · h[2 − (N0 − 1)]

...
...

...
. . .

...

h[N0 − 1] h[(N0 − 1) − 1] h[(N0 − 1) − 2] · · · h[(N0 − 1) − (N0 − 1)]



=


h[0] h[N0 − 1] h[N0 − 2] · · · h[1]
h[1] h[0] h[N0 − 1] · · · h[2]
h[2] h[1] h[0] · · · h[3]

...
...

...
. . .

...

h[N0 − 1] h[N0 − 2] h[N0 − 3] · · · h[0]


▶ note that C is constant along all diagonals; a Toeplitz matrix
▶ each diagonal corresponds to a value of the impulse response.
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Circulant matrices

C =



h[0] h[N0 − 1] h[N0 − 2] · · · h[1]
h[1] h[0] h[N0 − 1] · · · h[2]
h[2] h[1] h[0] · · · h[3]
...

...
...

. . .
...

h[N0 − 1] h[N0 − 2] h[N0 − 3] · · · h[0]


▶ in addition to being Toeplitz, each row of C is just a one-element

circular shift of the row above; such matrices are called circulant
▶ there is a beautiful connection between this circulant matrix and the

matrix-vector formulation of the DTFS developed in Chapter 6
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Circulant matrices and the DTFS

▶ Recall: the matrix-vector formulas for the DTFS of a signal x

x = Gα, α = 1
N0

Hx.

where Hkn = e−jkω0n and Gnk = ejkω0n and

α = (α0, α1, . . . , αN0−1)

x = (x[0], x[1], . . . , x[N0 − 1])

▶ the matrices H and G satisfy G = HH and HHH = N0I.

Let’s see what happens if we try to compute the DTFS
coefficients γk of the signal y = h⃝∗ x
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Circulant matrices and the DTFS

▶ recall:
(i) the result y of circular convolution was the signal having DTFS

coefficients γk = αkβk

(ii) the impulse response h was correspondingly defined as

h[n] =
∑N0−1

k=0

βk

N0
ejkω0n

so h has DTFS coefficients βk/N0

▶ using our vector formulas, the vector γ of DTFS coefficients of y is

γ = 1
N0

Hy = 1
N0

HCx

▶ substituting x = Gα = HHα we obtain

γ = 1
N0

HCHHα

▶ it follows that the matrix HCHH must be diagonal with diagonal
elements equal to N0βk! The matrix H diagonalizes C.
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Circulant matrices and the DTFS

▶ we therefore have that

diag(β0, β2, . . . , βN0−1) = 1
N0

HCHH

or equivalently C = 1
N0

HHdiag(β0, β2, . . . , βN0−1)H

▶ we can now write the output signal y as

y = Cx =
(

1√
N0

H
)H

︸ ︷︷ ︸
unrotate

diag(β0, β2, . . . , βN0−1)︸ ︷︷ ︸
scale

(
1√
N0

H
)

︸ ︷︷ ︸
rotate

x

▶ the operation of the LTI system defined by circular convolution can
be interpreted as a rotation to a diagonal coordinate system, a
scaling, and a rotation back to the original coordinate system
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12. Bonus: Introduction to Image Processing
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Introduction

▶ throughout the course we have focused on one-dimensional signals
x : R → C in continuous-time or x : Z → C in discrete-time

▶ when we want to work with (digitized) images, these are described by
two-dimensional signals x : Z × Z → R

▶ it turns out that with the geometric methods of Chapter 6, this is not
difficult; we just need to use a different basis and inner product, but
all the ideas are the same

▶ we will look at how to implement simple filters on images to blur and
accentuate edges; the discussion will be at a relatively high level
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Images

▶ an image can be represented by an N ×M matrix X

▶ each entry X[n,m] is a pixel value

▶ in an 8-bit greyscale image, there are 28 = 256 levels, with 0 being
black and 255 being white, so X[n,m] ∈ {0, 1, . . . , 255}
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Vector space and inner product for matrices

▶ the vector space of interest is the vector space of N ×M matrices X

▶ addition and scalar multiplication are defined element-wise by

(X + Y )[n,m] = X[n,m] + Y [n,m], (αX)[n,m] = αX[n,m].

▶ the inner product between two matrices is defined as

⟨X,Y ⟩ =
N−1∑
n=0

M−1∑
m=0

X[n,m]Y [n,m]∗

and is called the Frobenius inner product

▶ this vector space has dimension NM ; we need to define basis
vectors for both time spatial domain and the associated
two-dimensional frequency domain

Section 12: Bonus: Introduction to Image Processing 12-516



Bases for two-dimensional signals

▶ the spatial basis vectors {φk,l} for the space of N ×M matrices are
defined as

φk,l[n,m] = δ[n− k]δ[m− l]

=

1 if (n,m) = (k, l)

0 otherwise

▶ these vectors are orthogonal (in fact, orthonormal), since

⟨φk,l, φk′,l′ ⟩ =
N−1∑
n=0

M−1∑
m=0

φk,l[n, m]φk′,l′ [n, m]∗

=
N−1∑
n=0

δ[n − k]δ[n − k
′]

M−1∑
m=0

δ[m − l]δ[m − l
′] =

{
1 if (k, l) = (k′, l′)
0 otherwise
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Bases for two-dimensional signals

▶ the projection of an image vector X onto the spatial basis vector φk,l

simply returns the value of the image in the (k, l) cell:

⟨X, φk,l⟩
∥φk,l∥2 = ⟨X, φk,l⟩ =

N−1∑
n=0

M−1∑
m=0

X[n,m]φk,l[n,m]

=
N−1∑
n=0

M−1∑
m=0

X[n,m]δ[n− k]δ[m− l]

= X[k, l]

▶ put differently, each basis vector corresponds to one pixel location in
the image, and projection onto that basis vector just picks out the
value of that particular pixel
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Bases for two-dimensional signals

▶ we also need a two-dimensional Fourier basis for the frequency domain

▶ let ω0 = 2π/N and ν0 = 2π/M be the fundamental frequencies for
the two directions, and define the Fourier basis vectors

ϕk,l[n,m] = ejkω0nejν0lm = ej(kω0n+lν0m)

▶ these vectors are orthogonal since

⟨ϕk,l, ϕk′,l′ ⟩ =
N−1∑
n=0

M−1∑
m=0

e
jkω0n

e
jlν0m(e

jk′ω0n
e

jl′ν0m)∗

=
N−1∑
n=0

e
jkω0n

e
−jk′ω0n

M−1∑
m=0

e
jlν0m

e
−jl′ν0m

=
N−1∑
n=0

e
j(k−k′)ω0n

M−1∑
m=0

e
j(l−l′)ν0m

= Nδ[k − k
′] · Mδ[l − l

′] =

{
NM if (k, l) = (k′, l′)
0 otherwise
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Bases for two-dimensional signals

▶ the basis vectors ϕk,l[n,m] = ejkω0nejlν0m are oscillating signals in
two dimensions; they look like waves
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Bases for two-dimensional signals

▶ the values of k and l in ϕk,l[n,m] = ejkω0nejlν0m define the direction
and period of the wave
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Filtering of two-dimensional signals

▶ we can now discuss low-pass and high-pass filtering images
(i) a low-pass filter will smooth the image and blur edges
(ii) a high-pass filter will select out the edges

▶ let 0 ≤ K ≤ N − 1 and 0 ≤ L ≤ M − 1 and define

SLP = span({ϕk,l}k=−K,...,K,l=−L,...,L)

SHP = span({all basis vectors not in SLP})

▶ note that the choices of K and L control the dimensions of these
subspaces

▶ to filter, we take an image, use the DTFT to represent the image in
the Fourier basis, and then project onto these respective subspaces
using the inner product
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Example: filtering of two-dimensional signals
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Example: filtering of two-dimensional signals
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