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1. Introduction to digital control

• course mechanics
• topics & outline
• what is digital control?
• why study digital control?
• continuous/discrete/sampled-data systems
• A/D, D/A, and aliasing
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Course mechanics

I syllabus is authoritative reference

learn.uwaterloo.ca

course requirements:

I laboratory completion (attendance and report submission)

I midterm test (outside of class, scheduling by MME)

I final exam (scheduling by Registrar)

problem sets will be posted weekly (not graded)
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Prerequities

I working knowledge of linear algebra (e.g., MATH 115)
• vectors, matrix-vector algebra, linear independence . . .
• matrices: rank, nullity, invertibility, eigenvalues . . .
• solvability of linear systems of equations

I signals and systems (e.g., SYDE 252)
• differential and difference equations
• Laplace and z-transforms

I analog control systems (e.g., MTE 360)
• details to follow

I brief mathematics review in appendix of these notes
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Course notes

I these notes are

• designed to be accompanied by lecture

• full of blank spaces (we will fill these together)

I these notes are not a textbook

• they give a bare-bones (but complete) presentation

• supplementary reference chapters listed at the end of each chapter of
these notes; these contain additional information and problems

• blank space at end of each chapter for personal notes / digressions

• all MATLAB code used in notes is on LEARN! Experiment with it!
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Major topics & outline

I models of LTI systems

• differential and difference equations (old)

• transfer functions (old)

• state-space models (new?)

I nonlinear continuous-time state-space models, linearization

I advanced continuous-time control design

I emulation design for sampled-data systems

I direct design for sampled-data systems
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What you’ll be able to do

I analyze complex models in both continuous and discrete-time

I design stable feedback systems in both continuous and discrete-time

I apply design principles to sampled-data control systems

Controller Actuator System

Sensor

r e u y

−
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Strategies for success in ECE 484

I brush up on signals & systems, linear algebra, analog control

I attend lectures to complete notes

I understand the ideas, including key steps in derivations

I in very broad strokes, course emphasizes

(i) understanding advantages/disadvantages of digital design methods

(ii) developing comfort with state-space models

I midterm and final will reflect this emphasis
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Decision making in an uncertain world

I making decisions with your eyes closed (feedforward)

Decision
Making The World

Desired result Action Result

I making decisions with your eyes open (feedback)

Decision
Making The World

Desired result Action Result

Observation
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Can I please have a volunteer . . .

Y. P. Leong and J. C. Doyle, “Understanding Robust Control Theory Via Stick Balancing”, in IEEE CDC, 2016.
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What is feedback?

I feedback is a scientific phenomena where the output of a system
influences the input, which again influences the output, which . . .

I the broad field of control is concerned with
• the mathematical study of feedback systems (control theory)
• the application of feedback to engineering (control engineering)

I benefits of feedback
• improves dynamic response of controlled variables
• reduces or eliminates effect of disturbances on controlled variables
• reduces sensitivity to modelling error/uncertainty
• allows for stabilization of unstable processes
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Consequences of feedback instability

Boeing illustration (Courtesy of/Boeing)

I sensor failure produced wrong angle-of-attack measurement
I MCAS control system repeatedly pitched nose downward
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History of digital control

I a long time ago, in a galaxy far, far away . . .

• controllers were implemented using analog circuits (30’s–60’s)

−
+

u

R2
C

R1

e

exercise: u(s)
e(s) = −R2

R1

(
1 + 1

R2Cs

)
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Advantages/disadvantages of analog control

I advantages of analog controllers

• infinite resolution

• no computational delays

• allows for exact realization of controller transfer function C(s)

I disadvantages of analog controllers

• single purpose circuit

• maintenance

• component drift
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History of digital control

I theory pioneered in 40’s/50’s at Columbia (Ragazzini, Franklin, . . . )

I invention of transistor (1947)

I application to paper mills and chemical plants (late 1950’s)

I Apollo missions relied heavily on digital control (late 60’s)

I personal computers (1980’s), massive growth

I relatively cheap ICs and microcontrollers (1990’s)

I ubiquitous dirt cheap sensing and computing (present)
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Terminology issues

digital control is “feedback control using a computer”, including

I sensing: real-time signal acquisition

I computation: real-time control law calculation

I actuation: real-time control input generation

digital control is not:

I sequencing / digital logic (consumer electronics)

I supervisory software
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Why study digital control?

all modern control systems are digital control systems

I robotics (humanoid, quad-coptors, teams, swarms . . . )
I intelligent automotive and transportation systems
I renewable energy and smart grid
I smart buildings and cities
I synthetic biology
I aerospace
I medical (e.g., artificial organs, closed-loop anesthesia)
I smart materials (e.g., energy harvesting)
I various evil disciplines like finance, advertising . . .
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Advantages/disadvantages of digital control

I advantages of digital controllers

• programmable and cheap

• complex controllers possible

• single-chip solutions possible

• no component nonlinearities

• more reliable

I disadvantages of digital controllers

• sampling/computational issues

• more complex to analyze/design
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Issues arising in digital control

I physics is continuous-time, computers are discrete-time

I two methods for designing discrete-time controllers

• approximate a given continuous-time controller (emulation)

• directly design a new discrete-time controller (direct design)

I DAQ issues (sampling, conditioning, quantization)

I component selection (sensors, actuators, microprocessor)

I computing aspects (memory, computation time, priority, . . . )
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Continuous-time control systems

C P

d
r e u y

n

−

I standard unity-gain negative feedback configuration

I P is the plant or system, C is the controller

I u(t) is the plant input, y(t) is the plant output

I r(t) is ref. signal, d(t) is disturbance, n(t) is noise

I 0 ≤ t <∞ is the continuous time variable
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Typical step response of continuous control system
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Continuous-time control systems contd.

linear time-invariant systems can be analyzed with Laplace transforms

y(s) := L {y(t)} =
∫ ∞

0
y(t)e−st dt .

typical control system objectives are

I closed-loop stability

I good transient performance for step response

I robustness to model uncertainty (property of feedback)

I attenuation (or outright rejection) of disturbances d(t)

I tracking limt→∞ |y(t)− r(t)| = 0
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Continuous-time control systems contd.

Goal: Design controller C(s) to achieve objectives. You already know
tools for analyzing and designing these systems:

I stability analysis: poles, Routh-Hurwitz test

I stability margins: gain and phase margins

I steady-state analysis: final value theorem

I transient specs: settling time, rise time, overshoot

I frequency domain analysis: Bode plots, Nyquist plots

I controller designs: PID, possibly lead/lag as well
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Discrete-time control systems

C P

d
r e u y

n

−

I standard unity-gain negative feedback configuration

I P is the plant or system, C is the controller

I u[k] is the system input, y[k] is the system output

I r[k] is ref. signal, d[k] is disturbance, n[k] is noise

I k = 0, 1, 2, 3, . . . is the discrete time variable
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Typical step response of discrete control system
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Discrete-time control systems contd.

linear time-invariant systems can be analyzed with z-transforms

y[z] := Z{y[k]} =
∞∑
k=0

y[k]z−k .

I we will develop tools for
• analyzing discrete-time control systems

• designing discrete-time controllers

I Never ever ever mistake ‘z’ for ‘s’!
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Digital control systems

C D/A P

A/D

Clock

r[k] e[k] u[k] u(t) y(t)
−

y[k] n

I continuous-time plant P , discrete-time controller C

I sampled (A/D) measurement y[k] of plant output y(t)

I D/A interpolates digital control signal u[k] to continuous u(t)

I between samples, system runs in open-loop!
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Digital control systems contd.

some immediate issues are

I how to model A/D and D/A

• slew rates

• quantization

• synchronization errors

I how to select sampling rate (or rates)

I how to mitigate aliasing (we will define this shortly)
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Sampled-data control systems

C[z] HT P (s)

ST

r[k] e[k] u[k] u(t) y(t)
−

y[k]

I sampled-data system is an idealized digital control system

I sampler ST and hold HT are perfectly timed, infinite precision

I sampled-data systems are not linear time-invariant systems!

I nonetheless, some simple analysis and design tools exist
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Typical step response of sampled-data control system
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Design methods for sampled-data systems

I emulation (discrete equivalent)

• design C(s) for P (s), the discretize C(s) to obtain C[z]

• advantage: simple

• disadvantage: requires “fast” sampling

I direct design (discrete design)

• discretize P (s) to obtain P [z], then directly design C[z] for P [z]

• advantage: can handle “slow” sampling rates

• disadvantage: more complicated to design and analyze
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Ideal model for A/D conversion

I A/D modeled using ideal sampler block with period T

ST
y(t) y[k] = y(kT )

k = 0, 1, 2, 3 . . .
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Ideal model for D/A conversion

I D/A modeled using ideal zero-order hold block with period T

HT
u[k] u(t)

u(t) = u[k] for kT ≤ t < (k+1)T
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Assumptions for ideal sampler and ideal hold

I no quantization (infinite precision)

I sampling period T is constant and used by all sample/hold blocks

I all ideal samplers and ideal holds are synchronized

I no clock drift

validity of these assumptions depends on your specific hardware
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Aliasing

I suppose we sample a signal f(t) with sampling frequency ωs = 2π
T

I aliasing occurs when f(t) contains frequency components higher
than ωNyq := ωs/2 (this is called the Nyquist frequency)

5 10 15 20 25
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1

t

f(t)
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Aliasing contd.

I sampling signal u1(t) = cos(ωt) at times tk = kT :

u1[k] = cos(ωkT ) = cos
(

2π ω
ωs
k

)
I sampling signal u2(t) = cos((ω + ωs)t) yields

u2[k] = cos((ω + ωs)kT ) = cos
(

2πω + ωs

ωs
k

)
= cos

(
2π ω
ωs
k + 2πk

)
= cos

(
2π ω
ωs
k

)
= u1[k]

I even though u1(t) 6= u2(t), we have identical sampled signals
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Aliasing contd.

5 10 15 20

−1

−0.5

0.5

1

t

f(t)

Section 1: Introduction to digital control 1-36



Aliasing contd.

I sampling any member of the family of continuous-time signals

un(t) = cos ((ω ± nωs)t) , n ∈ Z

produces the same discrete-time signal

u[k] = cos
(

2π ω
ωs
k

)
I we say the frequencies {ω± nωs} are aliases of the base frequency ω

with respect to the sampling frequency ωs
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Example: Data acquisition in a lab

I sampling frequency 50Hz, T = 1/50

I signal of interest is at frequency 4Hz

I noise from lights at 60Hz, 120Hz, 180Hz

I sampled signal will only have components less than 25Hz
I 60Hz noise will be aliased to 60± n50

{. . . ,−40,10, 60, 110, . . .}

I 120Hz and 180Hz noise will be aliased to

{. . . ,−30,20, 70, . . .} and {. . . ,−70,−20, 30, 80, . . .}
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Aliasing in control systems

I why care about aliasing for digital control?

I aliased noise enters controller, generating spurious control actions

C[z] HT P (s)

ST

r[k] e[k] u[k] u(t) y(t)

n(t)

−

y[k]

I example: 1 kHz noise in a motor control system, aliased down to
10Hz, will then generate a real 10Hz oscillation on the motor shaft
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Strategies for avoiding aliasing

two possible strategies for avoiding aliasing

1. sample very fast: ωs > 2× (highest frequency in meas. noise)

• often infeasible due to hardware limitations

2. include an analog low-pass filter f(s) in loop with cutoff ωcut

C[z] HT P (s)

ST f(s)

r[k] e[k] u[k] u(t) y(t)
−

y[k] n(t)

• added expense, inflexible, introduces phase lag in loop
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Example: prefiltering before sampling

I square wave with 0.9Hz oscillation, 1Hz sampling
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Competing constraints on sampling rates

I many competing constraints on sampling frequency ωs

1. faster sampling = more expensive hardware

2. in emulation approach to digital control, we need to sample fast, or
the system will perform poorly

3. if we sample very fast, might not be able to compute control actions
between samples

4. sampling rates often fixed by installed sensors and actuators
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Guidelines for filter design

I achievable performance depends on frequency spectrum of noise and
fixed sampling rates of system

I filter cutoff design is a compromise between

1. introducing phase shift into the feedback loop

2. successfully filtering out the noise

I to minimize extra phase lag at crossover, want ωcut > ωbw

I to filter noise above Nyquist, want ωcut < ωNyq = ωs/2

I rough rule of thumb is therefore

ωbw < ωcut < ωs/2
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Quick review: bandwidth of a system

I for “low-pass” transfer function, bandwidth ωbw is the frequency
where the magnitude drops −3 dB below low-frequency magnitude

I first order system P (s) = 1
τs+1 , τ > 0

−20

−40

1/τ

−3

Frequency (rad/s)

Am
pl
itu

de
(d
B)

I Bandwidth is ωbw = 1/τ , and 90% rise time ≈ 2τ .
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Example: DC Motor Position Control

I goal: fast step reference tracking for motor control
• θ = angular position, V = voltage applied
• measurement noise of 0.02 rad at fnoise = 1005 Hz

PID[z] HT P (s)

ST

θref [k] e[k] V [k] V (t) θ(t)

n(t)

−

θ[k]

I motor model and controller given by

P (s) =
1
s

K

(Js+ b)(Ls+R) +K2 , PID[z] = Kp +Kd
z − 1
z

+Ki
z

z − 1
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Example: DC Motor Position Control

I controller designed with sampling period T = 0.001s

I unit step response of sampled-data system looks great . . .
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Example: DC Motor Position Control

I but response contains unexpected ≈ 5 Hz oscillation
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I Why? fs = 1000 Hz, fnoise = 1005 Hz!
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Example: DC Motor Position Control

I let’s add a low-pass anti-aliasing filter

PID[z] HT P (s)

ST
(

ωcut
s+ωcut

)N

θref [k] e[k] V [k] V (t) θ(t)
−

θ[k] n(t)

I need to choose corner frequency ωcut and order N of filter
• system bandwidth: rise time ≈ 0.01 s ⇒ ωbw ≈ 200 rad/s
• Nyquist frequency: ωNyq = (2πfs)/2 ≈ 3100 rad/s

I not a lot of room (≈ one decade): use high-order for sharper cutoff
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Example: DC Motor Position Control

I step response with ωcut = 400 rad/s, N = 2
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I cut-off too low (close to bandwidth), need to move cut-off up further
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Example: DC Motor Position Control

I step response with ωcut = 3200 rad/s, N = 3
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I exercise: play with ωs and N yourself in MATLAB code
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MATLAB commands

I Plotting discrete-time signals: stem(t,y)

I Plotting held signals: stairs(t,y)

I Analog filtering signals (many different options)

s = tf(‘s’);
f = (2*pi*f_cut)^2 / ...

(s^2 + 2*damping*2*pi*f_cut*s + (2*pi*f_cut)^2);
u_filt = lsim(f,u,t);
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Additional references

I introduction to digital control
• Nielsen, Chapter 0

• Franklin, Powell, & Emami-Naeini, Chapter 8

• Franklin, Powell, & Workman, Chapter 1 and Chapter 3

• Phillips, Nagle, & Chakrabortty, Chapter 1

• Astrom & Wittenmark, Chapter 1

I sampling
• Phillips, Nagle, & Chakrabortty, Chapter 3.2

I signal reconstruction
• Phillips, Nagle, & Chakrabortty, Chapter 3.7
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Personal Notes

Section 1: Introduction to digital control 1-53



Personal Notes
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Personal Notes
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2. Classical continuous-time control systems

• modeling for controller design
• notation and Laplace transforms
• continuous-time LTI systems
• feedback stability
• time-domain analysis
• system approximation
• PID control and its variants
• static nonlinearities in control systems
• reference tracking and the internal model principle
• minor loop design
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Modeling for controller design

I models can be obtained from

• physics (Newton, Kirchhoff, Maxwell, fluid mechanics, . . . )
• experiments on the system
• combinations of these two

I many classes of possible models
• finite-dimensional vs. infinite-dimensional
• deterministic vs. random
• linear vs. nonlinear
• time-invariant vs. time-dependent
• continuous-time vs. discrete-time vs. hybrid

I for control purposes, models just need to be “good enough”
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Steps for successful modeling

1. model for design (simplified) vs. model for simulation (complex)

2. break system into collection of subsystems with inputs and outputs

3. model each subsystem, keeping track of assumptions,
approximations, etc.

4. interconnect subsystems to form full model

5. validate model experimentally, repeat steps as needed
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Notation

I set of real numbers R

I x ∈ S means x is a member of the set S

I set of complex numbers C

I strictly left/right-hand complex plane C−/C+

I the Laplace transform of a signal f(t) is given by

f(s) := L {f(t)} =
∫ ∞

0
f(t)e−st dt .

I Unit step function

1(t) =

1 if t ≥ 0

0 if else
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Key properties of Laplace transforms

I linearity
L {α1f1 + α2f2} = α1f1(s) + α2f2(s)

I delay
L {f(t− τ)} = e−τsf(s)

I integral formula

L

{∫ t

0
f(τ) dτ

}
= 1
s
f(s)

I derivative formula

L

{
df
dt

}
= sf(s)− f(0)

I convolution
L {g ∗ f} = g(s)f(s)
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Continuous-time causal LTI systems

I a system takes an input signal u(t) and produces output signal y(t)

G
u(t) y(t)

I linearity: if y1 = G(u1) and y2 = G(u2), then

G(α1u1 + α2u2) = α1G(u1) + α2G(u2) = α1y1 + α2y2 .

I time-invariance: if input u(t) produces output y(t), then for any
delay τ , input u(t− τ) produces output y(t− τ).

I causality: if u1(t) = u2(t) for all 0 ≤ t ≤ T , then y1(t) = y2(t) for
all 0 ≤ t ≤ T .
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Representations of LTI systems

G
u y

I in Laplace-domain, multiplication with transfer function G(s)

y(s) = G(s)u(s)

I in time-domain, convolution with impulse response g(t)

y(t) = (g ∗ u)(t) =
∫ t

0
g(t− τ)u(τ) dτ .

I these are equivalent, can show that

G(s) = L {g(t)} and g(t) = L −1{G(s)}
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Transfer function representation contd.

G(s)
u(s) y(s)

I we call G(s) rational if G(s) = N(s)
D(s) for some polynomials N(s) and

D(s) with real coefficients

I a pole p ∈ C of G(s) satisfies lims→p |G(s)| =∞

I a zero z ∈ C of G(s) satisfies G(z) = 0

I the degree deg(D) of the denominator is the order of the system

I G(s) is proper if deg(N) ≤ deg(D), strictly proper if
deg(N) < deg(D)
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Bounded-input bounded-output (BIBO) stability

I signal y(t) is bounded if there is M ≥ 0 s.t. |y(t)| ≤M for all t ≥ 0

G
u(t) y(t)

I BIBO stability: every bounded u(t) produces a bounded y(t)

I if the LTI system G is rational and proper, then G is BIBO stable if
and only if either of the following equivalent statements hold:

• every pole of transfer function G(s) belongs to C−

• the integral
∫∞

0 |g(t)| dt of the impulse response is finite.
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Examples

1
s+ 1

1
s− 1

1
s2 + 2s+ 1

Kp + Ki

s

s− 1
s+ 1

1
s2 + 2s− 1

e−t t100e−t 1(t) sin(ω0t)
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Feedback stability

C(s) P (s)

d(s)
r(s) e(s) u(s) y(s)
−

I r and d are external signals, e, u and y are internal signals

I definition: the closed-loop is feedback stable if every bounded pair
of external inputs (r, d) leads to bounded internal responses (e, u, y)

I 2 external signals, 3 internal signals =⇒ 6 transfer functions
e(s)
r(s)

=
1

1 + PC

u(s)
r(s)

=
C

1 + PC

y(s)
r(s)

=
PC

1 + PC

e(s)
d(s)

=
−P

1 + PC

u(s)
d(s)

=
1

1 + PC

y(s)
d(s)

=
P

1 + PC

I feedback stable if and only if all transfer func. are BIBO stable
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Feedback stability contd.

I assume P (s) is rational and strictly proper: P (s) = Np(s)
Dp(s)

I assume C(s) is rational and proper: C(s) = Nc(s)
Dc(s)

I for example, we can calculate that

y(s)
r(s) = PC

1 + PC
=

Np
Dp

Nc
Dc

1 + Np
Dp

Nc
Dc

= NpNc

NpNc +DpDc

I the denominator is the characteristic polynomial

Π(s) := Np(s)Nc(s) +Dp(s)Dc(s)

I under these assumptions, the closed-loop is feedback stable
if and only if all roots of Π(s) belong to C−.
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Pole-zero cancellations

plant: P (s) = Np(s)
Dp(s) controller: C(s) = Nc(s)

Dc(s)

I a plant P and a controller C have a pole-zero cancellation if either

(a) Nc(s) and Dp(s) have a common root, or

(b) Np(s) and Dc(s) have a common root

I pole-zero cancellation is stable if the common root is in C−;
otherwise, cancellation is unstable and must be avoided

I we only worry about pole-zero cancellations between systems;
pole-zero cancellation between a system and a signal is fine!
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Example of unstable pole-zero cancellation

1
s−1

s−1
(s+1)2

r(s) e(s) u(s) y(s)
−

=⇒ Π(s) = (s+ 1)2(s− 1) + (s− 1)

= (s− 1)(s2 + 2s+ 2)

I root at s = 1, feedback system is unstable. Note that

y(s)
r(s) = 1

s2 + 2s+ 2 ,
u(s)
r(s) = (s+ 1)2

(s− 1)(s2 + 2s+ 2)
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Example of unstable pole-zero cancellation

1
s−1

s−1
(s+1)2

r(s) e(s) u(s) y(s)
−
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I Output y(t) looks fine, but control u(t) blows up!
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Time-domain analysis

G
u(t) y(t)

(i) rise time Tr, settling time Ts

(ii) peak time Tp, peak max Mp

(iii) steady state value yss? t

y(t)
Mp

yss r

TpTr Ts

I Final value theorem: if f(s) = L {f(t)} is rational and proper,
with all poles of sf(s) contained in C− then fss = limt→∞ f(t)
exists and

fss = lim
t→∞

f(t) = lim
s→0

sf(s) .
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The “DC gain” of G(s) is G(0)

I suppose G(s) is rational, proper, and BIBO stable T.F.

I response to step input of amplitude A, i.e., u(s) = A
s is

y(s) = G(s)u(s) = G(s)A
s

I final value of response given by

yss = lim
t→∞

y(t) = lim
s→0

sy(s) = lim
s→0

sG(s)1
s
·A = G(0) ·A

I G(0) is therefore the steady-state gain of the system, i.e., the
amplification a constant input will experience
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Second-order systems

G(s) = K
ω2
n

s2 + 2ζωns+ ω2
n

I natural frequency ωn > 0, damping ratio ζ > 0, DC gain K

I many systems can be well-approximated as second-order

I overdamped (ζ > 1), critically damped (ζ = 1)

I underdamped (ζ < 1)

s = −ζωn ± jωn
√

1− ζ2

= ωne
±j(π−θ)

θ = arccos(ζ) .

Re(s)

Im(s)

ωn

√
1− ζ2

−ζωn
θ

×

×
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Second-order systems contd.

t

y(t)
Mp

yss r

TpTr Ts

I closed-form results

Tp = π

ωn
√

1− ζ2
, Ts ≈

4
ζωn

%OS = Mp −K
K

= exp
(
−ζπ√
1− ζ2

)
I to identify parameter values

• apply step

• measure yss,%OS, and Tp

• solve for ωn, ζ,K
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System approximation

I approximate higher-order system with lower-order one
I example:

G(s) = s+ 10
(s+ 11)(s+ 12)(s2 + 2s+ 2)

Re(s)

Im(s)

×× ◦
×

×
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System approximation contd.

G(s) = s+ 10
(s+ 11)(s+ 12)(s2 + 2s+ 2)

= s+ 10
(s+ 11)(s+ 12)︸ ︷︷ ︸

Gfast(s)

· 1
s2 + 2s+ 2︸ ︷︷ ︸
Gslow(s)

I if Gfast(s) is BIBO stable
=⇒ response due to Gfast(s) quickly reaches steady-state

I replace Gfast(s) with its steady-state value (DC gain) Gfast(0)

Ĝ(s) ≈ Gfast(0)Gslow(s) .

I valid if fast poles/zeros are approx. 10x faster than slow poles/zeros
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Step response for example
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I note: approximation very good for step inputs
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Bode diagram for example
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I note: approximation very good up to ≈ 1 rad/s
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PID control

I most basic proportional-integral-derivative controller

u(t) = K

(
e(t) + 1

Ti

∫ t

0
e(τ) dτ + Td

de(t)
dt

)
where K is the proportional gain, Ti is the integral time constant,
and Td is the derivative time constant

I in transfer function form, we have

C(s) = K

(
1 + 1

sTi
+ Tds

)
I this form is called the “non-interacting” parameterization; other

parameterizations are also common (e.g., with gains Kp,Ki,Kd);
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PID control contd.

I the rough interpretation of the terms is
• present: proportional term reacts to present error
• past: integral term reacts to cumulative error in the past
• future: derivative term reacts to rate of change of error (tries to

predict where error is going)

I PID is bread-and-butter: likely 90% of all controllers in industry are
PID, and 90% of those are PI controllers

I standard tuning methods available (e.g., Ziegler-Nichols, or fancier
ones like pidtool in MATLAB)

I we will not review the basics of tuning PID loops here, but will
instead look at some refinements and advanced topics
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PID control with derivative filter

I pure derivative control is never implemented, as it is very sensitive to
high-frequency noise (to convince yourself, plot the Bode plot)

I all implementations add a low-pass filter to derivative term

C(s) = K

(
1 + 1

sTi
+ Tds

Tds/N + 1

)
I time constant of low-pass filter is Td/N

I N ranges between roughly 5 and 20
• larger N =⇒ less noise filtering, but better control performance
• smaller N =⇒ more noise filtering, but worse control performance
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Example: PID with derivative filter

I consider PID control system with measurement noise

PID 1
(s+1)3

r e u y

n

−

I PID controller gains K = 3, Ti = 2 s, Td = 0.5 s, N = 10

I measurements y(t) corrupted by measurement noise
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Example: PID with derivative filter contd.
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I note the two y-axes on the plots of u(t); standard PID control
generates huge control signals due to fast-varying noise
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PI-D control

I derivative term of PID control takes derivative of error signal

I step change in reference signal =⇒ step change in the error signal
=⇒ big derivative term =⇒ big spike in control signal

I to avoid this, apply derivative control only to y, not to e

K
(

1 + 1
sTi

)

K Tds
Tds/N+1

P (s)r e u y

−

y

−
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Example: PI-D control

I plant and controller gains same as previous example
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Static nonlinearities in control systems

I sensors and actuators are often nonlinear

C(s) ϕ(·) P (s)ur e y

−

I example: suppose you want to shine light on a semiconductor
surface by applying a voltage to a filament: irradiance ∼ voltage2

I common nonlinearities: hysteresis, relay, saturation, deadzone . . .
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Inverting actuator nonlinearities

I a function ϕ(·) is right-invertible if there is a function ψ(·) such that

ϕ(ψ(x)) = x

I example: ψ(x) =
√
x is a right-inverse for ϕ(x) = x2 for all x ≥ 0

I many actuator nonlinearities can be handled by using a right-inverse

C(s) ψ(·) ϕ(·) P (s)ur e y

−

I now can design C(s) for P (s) like usual
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Limit cycles due to nonlinearities

I a limit cycle is a sustained nonlinear oscillation

I common in nature (heart beats, planetary orbits, animal populations)

I limit cycles occur in feedback systems with certain nonlinearities

I example: thermostat control systems

on

off
1
s+a

ur e y

−
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Thermostat temperature response to 20◦ setpoint
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Saturation in control systems

I another very common nonlinearity is saturation

K
Ti

1
s

K

1
s

ur
e

ũ y

−

PI Controller

I saturation limits output from controller

I when saturation is reached, control loop is “broken”

I can cause steady-state error, bad performance, or instability
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Example: step response of system with saturation
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Anti-windup control

I bad performance is caused by so-called “integrator windup”; see
Åström, Chapter 6 for details; solution is to feed back error between
u and ũ to the integrator of the PI controller

K
Ti

1
s

K

1
s

ur
e

ũ y

−

1
Tt −

−

I time constant Tt > 0 can be tuned (smaller is usually better); if you
are also including derivative control, choose Td < Tt < Ti
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Example: performance with anti-windup (Tt = 0.1s)
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Static friction in mechanical control systems

I very common nonlinearity, difficult to model accurately

I can lead to tracking errors, oscillations, instability

I deadzone model of static friction

1
ms2

u y

PID 1
ms2

r e y

−
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Example: step response of mass with PID + stiction
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Control strategies for static friction

I one approach: invert deadzone nonlinearity in controller

PID 1
ms2

r e y

−

I size of inverted deadzone must be tuned

I other approaches: dither signal, dynamic friction estimator
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Example: PID with friction compensation
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Tracking reference signals

C(s) P (s)r e u y

− P (s) = Np(s)
Dp(s)

C(s) = Nc(s)
Dc(s)

I Perfect asymptotic tracking problem: Given P (s), design
controller C(s) such that closed-loop system is feedback stable and

lim
t→∞

(r(t)− y(t)) = 0 .

I step tracking is special case when r(t) is a step function

I application areas: power electronics, position control, robotics, . . .
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Requirements for step tracking

transfer function from r(s) to e(s) = r(s)− y(s) is

e(s)
r(s) = 1

1 + P (s)C(s) = Dp(s)Dc(s)
Np(s)Nc(s) +Dp(s)Dc(s) = Dp(s)Dc(s)

Π(s) .

I suppose we had a step r(t) = 1(t) =⇒ r(s) = 1
s

e(s) = Dp(s)Dc(s)
Π(s) · 1

s

I by final value theorem e(t)→ 0 if

(a) Π(s) has all roots in C− (i.e., system is feedback stable)
(b) lims→0

Dp(s)Dc(s)
Π(s) = 0 ⇐⇒ Dp(0)Dc(0) = 0.

I therefore, product of P and C must have a pole at s = 0
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Three cases for step-tracking

I if P (s) has a zero at s = 0, then step-tracking is not possible (why?)

I if P (s) has a pole at s = 0, C(s) can be any stabilizing controller

I if P (s) does not have a pole or zero at s = 0, then C(s) must have
a pole at s = 0

• design approach: let C(s) = 1
s
C1(s), then design stabilizing C1(s)

I having a pole at s = 0 in the controller is integral control

u(s) = 1
s
e(s) =⇒ u(t) =

∫ t

0
e(τ) dτ

I how does this generalize for other reference signals?
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The Internal Model Principle

I definition: a transfer function G(s) contains an internal model of a
reference signal r(s) if every pole of r(s) is a pole of G(s)

I example:

G(s) = s+ 1
(s2 + 1)(s2 − 4) r(s) = s+ 2

(s2 + 1)(s+ 3)

Internal Model Principle: Assume P (s) is strictly proper,
C(s) is proper, and that the closed-loop system is feedback
stable. Then limt→∞(y(t)− r(t)) = 0 if and only if P (s)C(s)
contains an internal model of the unstable part of r(s).
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Example: sinusoidal tracking

P (s) = 1
s+ 1 r(t) = r0 sin(t) =⇒ r(s) = r0

s2 + 1

Let’s choose: C(s) = 1
s2 + 1C1(s)

I exercise: check using Routh that C1(s) = s
τs+1 is stabilizing for

sufficiently small τ > 0

I exercise: check by hand using FVT that limt→∞ e(t) = 0
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Example: sinusoidal tracking
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Example: ramp tracking

I plant is double-integrator

P (s) = 1
s2

I reference signal is ramp

r(t) = 2t =⇒ r(s) = 2
s2

I plant contains internal model, just design stabilizing C(s)

I for example, filtered PD controller

C(s) = Kp +Kd
s

τs+ 1
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Example: ramp tracking
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More comments on stabilization step for tracking

I our controller is C(s) = Φ(s)C1(s), where Φ(s) includes the poles
that we know we need for tracking – how do we design C1(s)?

C1(s) Φ(s) P (s)r e u y

−

C(s)

I we can equivalently group Φ(s) with P (s) (same block diagram)

I use the augmented plant Paug(s) = Φ(s)P (s), and design C1(s)
using any technique you want to stabilize the system Paug(s)
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Minor loop design

I a.k.a. master/slave, primary/secondary, or cascade design

I extremely common (process control, motors, power electronics . . . )

I very useful when you have an intermediate measurement (e.g., plant
is a series combination of two subsystems)

Controller Plant 1 Plant 2
ỹr e y

−

I if we can also measure ỹ, lets use another feedback loop
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Minor loop design

I idea: design sequence of nested feedback loops

Cmajor Cminor Plt 1 Plt 2
ry rỹ ỹ y

− −

I minor/inner loop is designed first
• control such that ỹ quickly tracks rỹ (high-bandwidth)

I major/outer loop is designed second
• lets y track ry (lower bandwidth by factor 5–10)
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Example: single phase inverter

Inverter

vin
Lf if vf

Cf

igrid
vgrid

I LC filter removes harmonics from switching inside inverter

I objective: design input voltage vin such that vf (t) tracks signal

vref(t) =
√

2 · 120 · cos(ω0t) , ω0 = 2π60 rad/s

I we can measure both current if and voltage vf
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Response of single-phase inverter

I open-loop response with vin(t) = vref(t) =
√

2 · 120 · cos(ω0t)
I disturbance igrid(t) =

√
2 · 20 · sin(ω0t) applied after 3 cycles

0 1 2 3 4 5 6

-300

-200

-100

0

100

200

300

Section 2: Classical continuous-time control systems 2-110



Single phase inverter contd.

I Laplace-domain representation of circuit

−+vin(s)

sLf if vf (s)

1
sCf

igrid
vgrid(s)

inductor current: if (s) = 1
sLf

(vin(s)− vf (s))

current balance: sCfvf (s) = if (s)− igrid(s)
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Single phase inverter contd.

I feedback diagram for plant

1
sLf

1
sCf

vin if vf−

igrid

−

I design minor current loop so current if tracks reference iref
f

1
sLf

1
sCf

if vf−

igrid

Cminor
viniref

f −
−
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Single phase inverter contd.

I typically use a PI controller

Cminor(s) = Kp
1 + τs

τs

where Kp is the proportional gain, τ is time constant

I key point: minor loop must be fast (Kp big, τ small)

I over time-scale of minor loop, vf is a constant disturbance

Πminor(s) = Kp(1 + τs) + τs(sLf ) = τLfs
2 +Kpτs+Kp

I for critical damping, take Kp = 4Lf/τ , then make τ << 1
ω0
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Single phase inverter contd.

I design major voltage loop so vf tracks vref
f

1
sLf

1
sCf

if vf−

igrid

Kp
1+τs
τs

Cmajor
viniref

fvref
f −

−−

I to track sinusoidal vref
f , Cmajor(s) needs internal model

L {cos(ω0t)} = s

s2 + ω2
0

=⇒ Cmajor(s) = K1 +K2
s

s2 + ω2
0
.

I called a proportional-resonant controller
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Single phase inverter contd.

I now design major loop separately

Πmajor(s) = Cfs
3 +K1s

2 + (Cfω2
0 +K2)s+K1ω

2
0

I exercise: derive the stability conditions K1 > 0, K2 > 0

1
sLf

1
sCf

if vf−

igrid

Kp
1+τs
τs

K1 +K2
s

s2+ω2
0

viniref
fvref

f −
−−
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Single phase inverter contd.

I inverter with Cf = 50µF, Lf = 1.5mH, vref is 60Hz 120V RMS
I disturbance igrid =

√
2 · 20 · sin(ω0t) applied after 3 cycles
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MATLAB commands

I computing Laplace transform F (s) of f(t) = sin(ωt)

syms t w s; F = laplace(sin(w*t),s);

I inverse Laplace transform

f = ilaplace(w/(s^2 + w^2),t);

I defining transfer functions

s = tf(‘s’); G = (s-2)/(s^2+3);

I pole(G); zero(G); step(G); bode(G);

I feedback interconnection

T = feedback(P*C,1);

Section 2: Classical continuous-time control systems 2-117



Additional references

I Nielsen, Chapters 1 and 2

I Franklin, Powell, and Workman, Chapter 2

I Franklin, Powell, and Emami-Naeini, Chapter 3 and Chapter 4

I MTE 360 / ECE 380 course notes

I Åström & Murray, Chapters 8, 9, 10, 11

I Åström, Chapter 6 (pdf)
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Additional references

I tracking reference signals

• Franklin, Powell, & Emami, Chapter 4.2
• Nielsen, Chapter 1.6

I minor loop design

• Wikipedia, Minor loop feedback

I Smith predictor

• Franklin, Powell, & Emami, Chapter 7.13
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3. Emulation design of digital controllers

• controller emulation
• emulation techniques
• stability of discretized controllers
• emulation design procedure
• modified emulation design procedure
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Controller emulation

C(s) P (s)
d

r e u y

−

I suppose we have designed a continuous controller C(s) for P (s)

I need to convert C(s) to digital controller C[z]

I some immediate questions:
• is there a unique way to do this?
• how do we select sampling rates?

Section 3: Emulation design of digital controllers 3-124



The emulation problem

I given an analog controller C(s), select a sampling period T > 0 and
a discrete controller Cd[z] such that the sampled-data control system

Cd[z] HT P (s)

ST

r[k] e[k] u[k] u(t) y(t)
−

y[k]

closely approximates the continuous-time control system

C(s)
e(t) u(t) '

ST Cd[z] HT
e(t) u(t)
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Quick review: z-transforms

I discrete signal f [k] is a sequence f [0], f [1], f [2], . . .

I the z-transform of a discrete-time signal f [k] is

f [z] := Z{f [k]} =
∞∑
k=0

f [k]z−k , z ∈ C .

I linearity: Z{α1f1 + α2f2} = α1f1[z] + α2f2[z]

I delay formula
Z {f [k − 1]} = z−1f [z]

I convolution

Z{g ∗ f} = Z
{

k∑
m=0

g[k −m]f [m]
}

= g[z]f [z]

Section 3: Emulation design of digital controllers 3-126



Controller emulation

I we will not do a general derivation, but motivate through an example

I integral controller C(s) = 1/s

u(s) = 1
s
e(s) ⇐⇒ u̇(t) = e(t) ⇐⇒ u(t) = u(t0) +

∫ t

t0

e(τ) dτ

I how to implement this in discrete-time? For sampling period T

u(kT ) = u((k − 1)T ) +
∫ kT

(k−1)T
e(τ) dτ

u[k] = u[k − 1] +
∫ kT

(k−1)T
e(τ) dτ

I need to approximate integral over interval between samples
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The bilinear discretization

I also called trapezoidal or Tustin discretization

t

e(t)

(k − 1)T kT

•

•
slope = e(kT )− e((k − 1)T )

T

∫ kT

(k−1)T
≈ Te[k − 1]︸ ︷︷ ︸

rectangle

+ 1
2T (e[k]− e[k − 1])︸ ︷︷ ︸

triangle

= T

2 (e[k − 1] + e[k])
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The bilinear discretization contd.

I we therefore have the difference equation

u[k] = u[k − 1] + T

2 (e[k − 1] + e[k])

I taking z-transforms, we obtain

u[z] = z−1u[z]+ T

2
(
z−1 + 1

)
e[z] =⇒ u[z]

e[z] = Cd[z] = T

2
z + 1
z − 1

I but our original controller was C(s) = 1
s . Comparing, we find

Cd[z] = C(s)
∣∣∣
s= 2

T
z−1
z+1

⇐⇒ s = 2
T

z − 1
z + 1

I derivation was for integral controller, but this rule is general
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Example: PID controller

C(s) = Kp +Kds+ 1
s
Ki =⇒ Cd[z] = Kp +Kd

2
T

z − 1
z + 1 +Ki

T

2
z + 1
z − 1

Cd[z] = 2TKp(z + 1)(z − 1) + 4Kd(z − 1)2 + T 2Ki(z + 1)2

2T (z + 1)(z − 1)

therefore, we obtain Cd[z] = β0z
2 + β1z + β2

z2 − 1

β0 = (2TKp + 4Kd + T 2Ki)/(2T ) , β1 = (2T 2Ki − 8Kd)/(2T )

β2 = (4Kd + T 2Ki − 2TKp)/(2T )
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From transfer function to difference equation

I after simplifying Cd[z], we always get a rational TF (why?)

Cd[z] = β0z
n + β1z

n−1 + · · ·+ βn
zn + α1zn−1 + · · ·+ αn

I for implementation need a difference equation

1. divide top and bottom through by zn

C[z] = u[z]
e[z] = β0 + β1z

−1 + · · ·+ βnz
−n

1 + α1z−1 + · · ·+ αnz−n

2. rearrange

(1 + α1z
−1 + · · ·+ αnz

−n)u[z] = (β0 + β1z
−1 + · · ·+ βnz

−n)e[z]

3. inverse z-transform both sides

u[k] + α1u[k − 1] + · · ·+ αnu[k − n] = β0e[k] + β1e[k − 1] + · · ·
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Implementing difference equation

I suppose we want to implement controller u[k] = u[k − 1] + e[k]
I loop the following code

read y from A/D
e = r - y;
u = u_old + e;

output u from D/A
u_old = u;

return to ‘read’ after T seconds from last ‘read’

I note: we always output new value for u[k] as soon as it is available
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Example: PID controller

Cd[z] = u[z]
e[z] = β0z

2 + β1z + β2

z2 − 1

divide top and bottom by z2

u[z]
e[z] = β0 + β1z

−1 + β2z
−2

1− z−2

multiply through and invert term-by-term

u[k]− u[k − 2] = β0e[k] + β1e[k − 1] + β2e[k − 2]

or
u[k] = u[k − 2] + β0e[k] + β1e[k − 1] + β2e[k − 2]
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The left-side discretization

t

e(t)

(k − 1)T kT

•

•
∫ kT

(k−1)T
e(τ) dτ ≈ Te[k − 1]

I proceeding as before we get the discretization rule (exercise)

s = z − 1
T
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The right-side discretization

t

e(t)

(k − 1)T kT

•

•

∫ kT

(k−1)T
e(τ) dτ ≈ Te[k]

I proceeding as before we get the discretization rule (exercise)

s = z − 1
Tz
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Example: comparison of controller discretizations

I discretization of lead compensator (s+ 1)/(s+ 10), ωs = 300 rad/s
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Aside: discrete-time stability

I a discrete-time signal y[k] is bounded if there exists M ≥ 0 such
that |y[k]| ≤M for all k = 0, 1, 2, . . .

G
u[k] y[k]

I BIBO stability: every bounded u[k] produces a bounded y[k]

I G is BIBO stable if and only if every pole of transfer function G[z]
belongs to

D = {z ∈ C | |z| < 1} “unit disk in z-plane”

i.e., every pole has magnitude less than one
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Stability of discretized controllers

I any good discretization should be such that as T → 0, the
approximation becomes perfect; bilinear, left-side, and right-side all
satisfy this

I how else should we compare/contrast discretization schemes?

I can ask: does discretization preserves stability of the controller?

I of our three schemes, only bilinear does so!

I proof:

s = 2
T

z − 1
z + 1 ⇐⇒ z =

1 + T
2 s

1− T
2 s
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Bilinear discretization preserves BIBO stability

I suppose C(s) has a pole at s̄ ∈ C−

I then Cd[z] must have a pole at z̄ = 1+T
2 s̄

1−T2 s̄

Re(z)

Im(z)

+1−1

T
2 s̄ ×∣∣1 + T

2 s̄
∣∣ ∣∣1− T

2 s̄
∣∣ |z̄| =

∣∣1 + T
2 s̄
∣∣∣∣1− T

2 s̄
∣∣ < 1

therefore, z̄ ∈ D
(converse also true)
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Summary of bilinear discretization

s-plane z-plane

Re(s)

Im(s) z = 1+T
2 s

1−T2 s

s = 2
T
z−1
z+1

Re(z)

Im(z)

+1−1

D

C(s) BIBO stable ⇐⇒ Cd[z] BIBO stable
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Final comments on stability

I the previous stability results refer to stability of the controller, and
not feedback stability of the sampled-data system

I feedback stability of sampled-data control system determined by the
ratio of the sampling frequency ωs to the bandwidth of the
closed-loop continuous-time control system ωbw

I rule of thumb: for best performance, choose ωs = 2π
T to be 25

times the bandwidth of the closed-loop continuous-time system

I for sample rates slower than 20 times the closed-loop bandwidth,
consider instead using direct digital design.
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Design procedure for controller emulation

1. design – by any method – a controller C(s) for P (s) to meet design
specifications

2. select a sampling period and emulate C(s) to obtain Cd[z]

3. simulate the closed-loop sampled data-system, and adjust design
or sampling period as needed

4. implement Cd[z] as a difference equation

I once again, rule of thumb: ωs = 2π
T ≥ 25ωbw
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Design example: cruise control

m
Fengine = u(t)Fdrag = bv

+v

I objective: track constant reference velocity commands
I design specs: 5% overshoot, 7s settling time for 0 to 100 km/h
I m = 1200 kg, b = 10000Ns/m

P (s) = (8.33× 10−7)
s+ (8.33× 10−3) , C(s) = 1

s

(8.6× 105)s+ (5.2× 103)
s+ 1.2
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Design example: cruise control contd.

I check bandwidth of closed-loop transfer function T (s) = y(s)/r(s)

10
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0

10
1

10
2

-100

-80

-60

-40

-20

0

20

ωbw ≈ 1.2 rad/s =⇒ ωs ≥ 25(1.2) = 30 rad/s

=⇒ T ≤ 2π
30 ≈ 0.2 s
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Design example: cruise control contd.

I discretize controller using bilinear transform with T = 0.2s

T = 0.2;
C_d = c2d(C,T,‘tustin’)

Cd[z] = (7.742× 104)z2 + (154.3)z − (7.727× 104)
z2 − 1.785z + 0.7854

I simulate sampled-data system

Cd[z] HT P (s)

ST

r[k] e[k] u[k] u(t) y(t)
−

y[k]
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Design example: cruise control contd.
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Design example: cruise control contd.
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Design example: cruise control contd.
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I system becomes unstable for T ≥ 4
I performance getting worse with slower sampling rates – why?
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Design example: cruise control contd.

I control input for T = 1.5s sampling rate
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Effect of sample-and-hold blocks

I consider the sample-hold combination

ST HT
f(t) g(t)

I if we ignore the effects of sample-and-hold, then g(t) ≈ f(t)

f(t)

g(t)

f(t− T
2 )

t

better approximation is

g(t) ≈ f
(
t− T

2

)
(time delay!)
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“Proof” of T/2 delay

I exercise: sample-and-hold HTST has impulse response

g(t) =

 1
T if 0 ≤ t ≤ T

0 otherwise

I exercise: compute the transfer function G(s)

G(s) = L {g(t)} = 1− e−sT

sT

=
−
∑∞
k=1(−sT )k/k!

sT

= 1− sT/2 + · · ·

≈ e−T2 s
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Approximating sample-and-hold with delay

I to account for sample-and-hold effects, we can lump in this time
delay with the plant, and design for the augmented plant

Paug(s) = e−
T
2 sP (s) .

I if computational delay Tcomp is significant, we can also include that
in the augmented plant as Paug(s) = e−(T2 +Tcomp)sP (s)

I to obtain rational Paug(s), formulas for approximating delay:

e−
T
2 s ≈ 1

1 + T
2 s

, e−
T
2 s ≈

1− T
4 s

1 + T
4 s

, e−
T
2 s ≈ 1(

1 + 1
n
T
2 s
)n
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Comparison of delay approximations for τ = 10 s
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I both approximations are pretty good up to ω ≈ 1/τ
Section 3: Emulation design of digital controllers 3-153



Modified design procedure for emulation

1. select sampling period T and use rational approximation of e−T2 s

2. build augmented plant model Paug(s)

3. design a controller C(s) for augmented plant Paug(s) to meet design
specifications

4. emulate C(s) to obtain Cd[z] with sampling period T

5. check performance by simulating the sampled data-system

6. implement Cd[z] as a difference equation
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Design example: cruise control contd.

I with T = 0.2 s, apply modified design procedure to augmented plant

Paug(s) = (8.33× 10−7)
s+ (8.33× 10−3)

1
1 + T

2 s
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Design example: cruise control contd.
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Design example: cruise control contd.

I can use modified design procedure to get decent performance with
larger sampling periods
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Design example: cruise control contd.
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MATLAB commands

I discretizing a continuous-time controller

s = tf(‘s’);
C = (s+2)/(s+1);
T = 0.01;
C_d = c2d(C,T,‘tustin’)

I Simulink code for sampled-data system on LEARN
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Additional references

I Nielsen, Chapter 6

I Åström & Wittenmark, Chapter 8

I Franklin, Powell, & Emami-Naeini, Chapter 8.3

I Franklin, Powell, & Workman, Chapter 6
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Personal Notes
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Personal Notes
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Personal Notes
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4. Pole placement for continuous-time systems

• pole placement
• pole placement and reference tracking
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Motivation for pole placement designs

I suppose we need to stabilize the following plant

P (s) = s2 − 1
s4 − s2 − 1

I how would you design a stabilizing controller? let’s try PID

C(s) = Kp +Kds+ 1
s
Ki = Kds

2 +Kps+Ki

s

I characteristic polynomial is

Π(s) = s5 +Kds
4 + (Kp − 1)s3 + (Ki −Kd)s2 − (1 +Kp)s−Ki

I there is no choice of gains which makes all the coefficients positive
I system cannot be stabilized by PID!
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Pole placement

C(s) P (s)r e u y

− P (s) = Np(s)
Dp(s)

C(s) = Nc(s)
Dc(s)

I feedback stability of closed-loop system determined by roots of

Π(s) = Np(s)Nc(s) +Dp(s)Dc(s)

I usually have step response specs on Tsettling, %OS, tracking, . . .

I idea: convert performance specs into “good region” of C−, then
design C(s) so that all closed-loop poles are in this region
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Converting performance specs into pole locations

I first step: relate pole locations to response for second-order system

G(s) = ω2
n

s2 + 2ζωns+ ω2
n

, 0 < ζ < 1

Re(s)

Im(s)

×

ωn

√
1− ζ2

−ζωn

ζ = cos(θ)

×

θ

t

y(t)
Mp

yss r

TpTr Ts
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Settling time spec

I 2% settling time for second-order system is approximately

Ts '
4
ζωn

=⇒ Ts ≤ Tmax
s if ζωn ≥

4
Tmax

s

Re(s)

Im(s)

4
Tmax

s
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Overshoot spec

I percentage overshoot for a second-order system is

%OS = exp
(
−ζπ√
1− ζ2

)
≤ %OSmax =⇒ ζ ≥ − ln(%OSmax)√

π2 + ln(%OSmax)2

Re(s)

Im(s)

θ
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Settling time and overshoot specs

Re(s)

Im(s)

Cgood

I think of Cgood as a very rough first guess for where to place poles

I we will see shortly that this guess often needs adjustment
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The pole-placement design problem

I suppose we have a strictly proper plant transfer function

P (s) = Np(s)
Dp(s) = bms

m + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

and k > 0 desired closed-loop poles, symmetric w.r.t. the real axis

Λ = {λ1, λ2, . . . , λk} ⊂ Cgood

Re(s)

Im(s)

Cgood

× ×

×

×

×

×
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The pole-placement design problem contd.

I the pole placement problem (P.P.P.) is to find a controller C(s) such
that the roots of the closed-loop characteristic polynomial are
exactly the poles specified by Λ = {λ1, λ2, . . . , λk}

I fact: if Np(s) and Dp(s) are coprime, the P.P.P. is solvable
• for proof details, look up Sylvester matrix and diophantine equations

I question: how complicated does our controller need to be to freely
place k poles?
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The pole-placement design problem contd.

I if C(s) is chosen to have order n− 1, P.P.P. has unique solution

C(s) = gn−1s
n−1 + · · ·+ g1s+ g0

fn−1sn−1 + · · · f1s+ f0

I with this choice, Π(s) is a polynomial of order 2n− 1

I need to choose 2n− 1 poles for set Λ, obtain desired polynomial

Πdes(s) = (s− λ1)(s− λ2) · · · (s− λ2n−1)

I note: due to symmetry of pole choices Λ, coefficients of Πdes(s)
will be real, as poles with non-zero imaginary part will appear as
complex conjugate pairs

Section 4: Pole placement for continuous-time systems 4-173



Example: first-order plant

P (s) = 1
s− 1

I since P (s) has order n = 1, take C(s) of order zero

C(s) = g0

I choose 2n− 1 = 1 poles based on specs, compute desired polynomial

Λ = {λ1} , Πdes(s) = (s− λ1)

I characteristic polynomial of closed-loop system

Π(s) = s− 1 + g0 .

I set Π(s) = Πdes(s) and equate powers of s =⇒ g0 = 1− λ1
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Example: second-order plant

P (s) = s+ 1
s(s− 1)

I plant is second order, so take

C(s) = g1s+ g0

f1s+ f0

I we need 2n− 1 = 3 poles. for simplicity here, let’s choose

Λ = {−3,−4,−5} =⇒ Πdes(s) = s3 + 12s2 + 47s+ 60

I characteristic polynomial is

Π(s) = (s+ 1)(g1s+ g0) + s(s− 1)(f1s+ f0)

= f1s
3 + (f0 − f1 + g1)s2 + (−f0 + g1 + g0)s+ g0
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Example: second-order plant contd

I set Π(s) = Πdes(s) and equate powers of s

f1 = 1

f0 − f1 + g1 = 12

−f0 + g1 + g0 = 47

g0 = 60

=⇒


1 0 0 0
−1 1 1 0
0 −1 1 1
0 0 0 1



f1

f0

g1

g0

 =


1
12
47
60


and solve for solution

f1

f0

g1

g0

 =


1
13
0
60

 =⇒ C(s) = 60
s+ 13
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Example: general second-order plant

I for a general plant of second order

P (s) = b2s
2 + b1s+ b0

a2s2 + a1s+ a0
, C(s) = g1s+ g0

f1s+ f0

and a desired characteristic polynomial

Πdes(s) = s3 + c2s
2 + c1s+ c0

the same procedure yields (exercise)
a2 0 b2 0
a1 a2 b1 b2

a0 a1 b0 b1

0 a0 0 b0



f1

f0

g1

g0

 =


1
c2

c1

c0


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Example: second-order plant contd.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

(note: response is not very good, would want to tune further)
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Example: fourth-order plant from earlier

0 10 20 30 40 50 60

-15

-10

-5

0

5

10

(note: response is unacceptably bad! What is going on?)
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Pole placement and closed-loop zeros

I recall closed-loop transfer function from r(s) to y(s)

y(s)
r(s) = P (s)C(s)

1 + P (s)C(s) = NpNc

NpNc +DpDc

I closed-loop TF shares zeros with plant and controller

I we specify poles (roots of denominator); cannot directly specify
zeros (roots of numerator)!

I slow or unstable zeros lead to bad closed-loop performance
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Tips for tuning pole placement designs

I no definitive recipe (mix of “art and science”)

I don’t choose all closed-loop poles far away from plant poles
• intuition: moving poles requires effort!
• example: if plant has poles at −a and −b, start by trying to place

poles at −1.1a, −1.1b, and ≈ −20a, then iterate

I sometimes useful to cancel stable zeros by forcing controller to have
appropriate poles

• example:

P (s) = s+ 1
(s+ 10)3 , C(s) = g2s

2 + g1s+ g0

(s+ 1)(f1s+ f0)
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Comments on pole placement

I easy to implement – just need to solve a linear equation

I MATLAB function C(s) = pp(P(s), Λ) on course website

I limitation: cannot specify zeros of closed-loop transfer functions,
can lead to poor bandwidth or high sensitivity to disturbances

I always simulate pole-placement designs, then adjust pole locations
to obtain a good response

I common exam mistake: do not conflate pole placement with the
emulation approach; these are independent concepts
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Pole placement and reference tracking

I want to track step reference with zero error (integral control)

I from previous discussion on tracking, there are three cases

(i) if P (s) has a zero at s = 0, step tracking is not possible

(ii) if P (s) has a pole at s = 0, we just need to stabilize the feedback
loop (e.g., use pole placement as above)

(iii) otherwise, need to include pole at s = 0 in controller: for example,
let C(s) = 1

s
C1(s)

C1(s) 1
s P (s)r e u y

−

C(s)
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Pole placement and reference tracking

I for design, we can group the 1
s block with P (s)

C1(s) 1
s P (s)r e y

−

Paug(s)

I now just design C1(s) for Paug(s) using normal pole placement

I final controller given by C(s) = 1
sC1(s) – order of controller?

I similar procedure for other ref. signals (internal model principle)
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Example: cruise control

m
Fengine = u(t)Fdrag = bv

+v

I objective: track constant reference velocity commands
I design specs: ≤ 1% overshoot, 7s settling time for 0 to 100 km/h
I m = 1200 kg, b = 10000Ns/m

mv̇ = −bv + u =⇒ P (s) = 1/m
s+ b/m

I single pole at s = −0.0083 rad/s (i.e., τ ≈ 120s)
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Example: cruise control contd.

I augment plant with integrator

Paug(s) = 1
s

1/m
s+ b/m

I overshoot and settling time specs yield Cgood

cos(θ) ≥ − ln(0.05)√
π2 + ln(0.05)2

= 0.82

ξωn ≥
4
7s = 0.57 s−1

Re(s)

Im(s)

34◦

−0.57
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Example: cruise control contd.

I must choose n+ (n− 1) = (2) + (1) = 3 poles; first attempt

Λfirst = {−0.009,−0.7,−0.7}

to obtain corresponding desired polynomial

Πdes(s) = (s+ 0.009)(s+ 0.7)(s+ 0.7) = s3 + c2s
2 + c1s+ c0

I solve pole placement equations
1 0 0 0

b/m 1 0 0
0 b/m 1/m 0
0 0 0 1/m



f1

f0

g1

g0

 =


1
c2

c1

c0


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Example: cruise control contd.

Λfirst = {−0.009,−0.7,−0.7}

0 2 4 6 8 10

0

20

40

60

80

100

120

0 2 4 6 8 10

0

5

10

15

20

25

30

I almost meeting specs, would like response a bit faster

Section 4: Pole placement for continuous-time systems 4-188



Example: cruise control contd.

I try slightly modified poles

Λsecond = {−0.012,−1,−1}
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I looks great, but just for fun, can we go even faster?
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Example: cruise control contd.

I try even faster poles Λthird = {−0.02,−5,−5}
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I note: driver would pull about 3 g’s in this car :)

I question: pole at s = −0.02 should lead to a response with a time
constant of τ ≈ 50s . . . why don’t we see a slower response then?
To find the answer, go explore the MATLAB code . . .
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MATLAB commands

I simulate system response
[r,t] = gensig(’sin’,2*pi);
y = lsim(G,r,t);

I calculate pole placement controller (code on LEARN)
P = (s+1)/(s^2+3*s+2);
poles = [-3,-4,-5];
C = pp(P,poles);

I connecting systems with named inputs/outputs
C = pid(2,1); C.u = ’e’; C.y = ’u’;
P.u = ’u’; P.y = ’y’;
Sum = sumblk(’e = r - y’);
T = connect(G,C,Sum,’r’,’y’);
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Additional references

I pole placement

• Nielsen, Chapter 4
• Åström & Wittenmark, Chapter 10
• Iglesias, John’s Hopkins ECE 484, Chapter 4
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5. Continuous-time LTI control systems

• models of continuous-time LTI systems
• LTI state-space models
• solutions and stability of state-space models
• transfer functions from state models
• nonlinear systems and linearization
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equivalent models of SISO LTI systems

I linear, constant-coefficient differential equations

ÿ + 2ζωnẏ + ω2
ny = ω2

nu

I transfer functions

G(s) = ω2
n

s2 + 2ζωns+ ω2
n

I impulse response (for 0 < ζ < 1)

g(t) = ωn√
1− ζ2

e−ζωnt sin
(√

1− ζ2ωnt
)

1(t)

I state-space models
ẋ = Ax+Bu

y = Cx+Du
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Example: cart with air resistance

m
Fengine = u(t)Fdrag = bż

z

differential equation: mz̈ = −bż + u

transfer function from u(s) to z(s): G(s) = 1
ms2 + bs

impulse response: g(t) = L −1{G(s)} = 1
b

(
1− e−bt/m

)
1(t)
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Example: cart with air resistance contd.

I differential equation: mz̈ = −bż + u

I for state model, introduce two “states”

x1 = z , x2 = ż x =
[
x1

x2

]

I take derivatives to find “state equations”

ẋ1 = ż

= x2

ẋ2 = z̈ = − b

m
ż + 1

m
u

= − b

m
x2 + 1

m
u

I write down “output/measurement equation”

y = x1 =
[
1 0

] [x1

x2

]
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Example: cart with air resistance contd.

In matrix form, the equations are

[
ẋ1

ẋ2

]
=
[

0 1
0 −b/m

]
︸ ︷︷ ︸

=A

[
x1

x2

]
+
[

0
1/m

]
︸ ︷︷ ︸

=B

u

y =
[
1 0

]
︸ ︷︷ ︸

=C

[
x1

x2

]
+ [0]︸︷︷︸

=D

u

I LTI state model completely specified by (A,B,C,D)
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LTI state-space models

a continuous time LTI state-space model has the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

I x(t) ∈ Rn is the state vector

I n ∈ N is the order

I u(t) ∈ Rm is the input vector

I y(t) ∈ Rp is the output vector

I A ∈ Rn×n

I B ∈ Rn×m

I C ∈ Rp×n

I D ∈ Rp×m

We focus on single-input single-output (SISO) systems: m = p = 1
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Why study state-space models?

I abstraction allows for systematic analysis and design

I extends to multi-input multi-output systems

I extends to nonlinear systems, stochastic systems, PDEs . . .

I (almost) all advanced control design is based on state models

• linear quadratic control (1960s–)
• robust control (1980s–)
• receding horizon / model predictive control (1990s–)
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Example: mass spring damper

m

k

b

u(t)

z

mz̈ + bż + kz = u

choose states

x1 = z , x2 = ż

ẋ =
[

0 1
−k/m −b/m

][
x1

x2

]
+
[

0
1/m

]
u

y =
[
1 0

] [x1

x2

]
+ [0]u
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Example: thermal control system

T1(t)

T2(t)

T0(t)

q(t)

T0 external temperature

T1, T2 temperatures of volumes

q heat flux into outer volume

m1,m2 masses of volumes

c1, c2 heat capacities

gij thermal conductances

m1c1Ṫ1 = g12 (T2 − T1)

m2c2Ṫ2 = −g12 (T2 − T1)− g20 (T2 − T0) + q(t)
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Example: thermal control system

I states: x = (x1, x2) = (T1, T2)
I output: y = T1

I inputs: u = (T0, q) (note: example of two input system)

m1c1Ṫ1 = −g12T1 + g12T2

m2c2Ṫ2 = −(g12 + g20)T2 + g12T1 + g20T0 + q(t)

[
Ṫ1

Ṫ2

]
=
[
− g12
m1c1

g12
m1c1

g12
m2c2

− g12+g20
m2c2

][
T1

T2

]
+
[

0 0
g20
m2c2

1
m2c2

][
T0

q

]

y =
[
1 0

] [T1

T2

]
+
[
0 0

] [T0

q

]
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Example: PI controller

I proportional-integral controller:

u(s)
e(s) = Kp + Ki

s
⇐⇒ u(t) = Kpe(t) +Ki

∫ t

0
e(τ) dτ

I define controller state variable xc ∈ R to be integral of error

ẋc(t) = e(t)

I state-space model is therefore

ẋc = [0]x+ [1]e

u = [Ki]xc + [Kp]e

I “A” matrix equal to zero, “D” matrix equal to proportional gain
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Example: high-order ODEs

y(n) + an−1y
(n−1) + · · ·+ a1y

(1) + a0y = u

x =


x1

x2
...
xn

 =


y

y(1)

...
y(n−1)


ẋ1 = x2

ẋ2 = x3

...

ẋn = −an−1xn − · · · − a0x1 + u

ẋ =


0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
... 1

−a0 −a1 · · · −an−2 −an−1



x1
x2
...
xn

+


0
0
...
0
1

u
y =
[
1 0 · · · 0 0

]
x+ [0]u
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Example: high-order ODEs w/ input derivatives (m < n)

y(n) + an−1y
(n−1) + · · ·+ a1y

(1) + a0y

= bmu
(m) + bm−1u

(m−1) + · · ·+ b0u

ẋ =



0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
... 1

−a0 −a1 · · · −an−2 −an−1




x1

x2
...
xn

+



0
0
...
0
1

u

y =
[
b0 · · · bm 0 · · · 0

]
x+ [0]u

(details for this example in a handout on LEARN)
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Example: generalized mechanical systems

mechanical systems with k degrees of freedom undergoing small motions

Mq̈ +Dq̇ +Kq = τ

I q ∈ Rk is the vector of generalized coordinates (positions, angles)

I M,D,K ∈ Rk×k are mass, damping, stiffness matrices

I with state vector x = (x1, x2) = (q, q̇), output y = q̇

ẋ =
[
q̇

q̈

]
=
[

0 I

−M−1K −M−1D

][
q

q̇

]
+
[

0

M−1

]
τ

y =
[
0 I

] [q
q̇

]
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Other comments on state models

I state vector x is internal to the system, acts as intermediary

ẋ = Ax+Bu

y = Cx+Du

u(t) y(t)

I for an nth order differential equation, you need n states

I there is no unique choice of state variables, but usually
• mechanical systems: positions and velocities
• analog circuits: capacitor voltages and inductor currents

I the condition for equilibrium is ẋ = 0 = Ax+Bu

I x, y, u are often deviations from some desired values
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Solving state-space models without inputs

I consider zero input u(t) = 0 with initial condition x(0) = x0

ẋ = Ax , x(0) = x0

I take Laplace transforms of both sides with x(s) = L {x(t)}

sx(s)− x0 = Ax(s) , x(s) =


x1(s)
...

xn(s)


I solving, we have that

x(s) = (sI −A)−1x0

I how do we take the inverse Laplace transform of this?
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Diagonalization and powers of matrices

I diagonalization A = V ΛV −1 provides a method to compute Ak

I if A is diagonalizable, then

Ak = (V ΛV −1)k

= (V ΛV −1)(V ΛV −1) · · · (V ΛV −1)

= V ΛkV −1

where

Λk =


λk1 0 · · · 0
0 λk2 · · · 0
...

...
. . .

...
0 0 0 λkn


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The matrix exponential

I for a scalar variable x ∈ R, regular exponential

ex = 1 + x+ x2

2 + x3

3! + · · · =
∞∑
k=0

xk

k!

I for a square matrix A ∈ Rn×n, matrix exponential

eA = In +A+ A2

2 + A3

3! + · · · =
∞∑
k=0

Ak

k! ∈ Rn×n

I if A is diagonalizable

eA =
∞∑
k=0

Ak

k! =
∞∑
k=0

V ΛkV −1

k! = V

( ∞∑
k=0

Λk

k!

)
V −1 = V eΛV −1
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Laplace transform of the matrix exponential

Let t be a time variable, and consider the signal eAt for t ≥ 0

eAt = V eΛtV −1 = V

 eλ1t 0 ··· 0
0 eλ2t ··· 0
...

...
. . .

...
0 0 ··· eλnt

V −1

Take Laplace-transform element-by-element

L {eAt} = L {V eΛtV −1}

= V L {eΛt}V −1 (by linearity)

= V (sI − Λ)−1V −1 (by L.T. that L {eλt} = 1
s−λ )

= (sV V −1 − V ΛV −1)−1

= (sI −A)−1
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Solution of state-space model contd.

I the Laplace domain solution was

x(s) = (sI −A)−1x0

I taking inverse Laplace transforms, we have the explicit solution

x(t) =

eAtx0 if t ≥ 0

0 if t < 0

Section 5: Continuous-time LTI control systems 5-215



Internal stability of state models

I state-space system ẋ = Ax is internally asymptotically stable if
x(t)→ 0 as t→∞ from any initial condition x(0)

I interpretation: with no control input, system “dissipates energy”

I suppose A is diagonalizable with V −1AV = Λ

• change of state variables z = V −1x =⇒ z(0) = V −1x(0)

z(t) = V −1x(t) = V −1eAtx(0) = V −1eAtV z(0) = eΛtz(0)

this says that zi(t) = eλitzi(0)

A continuous-time LTI state model is internally asymptotically
stable if and only if λi ∈ C− for all λi ∈ eig(A), i.e., all

eigenvalues of A have negative real part
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Example: second-order system with damping

ẋ =
[

0 1
−ω2

n −2ζωn

]
x , x(0) =

[
2
2

]
Re(s)

Im(s)

×

×
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Example: second-order system with no damping

ẋ =
[

0 1
−ω2

n 0

]
x , x(0) =

[
2
2

]
Re(s)

Im(s)

×

×
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Example: second-order system with negative damping

ẋ =
[

0 1
−ω2

n 2ζωn

]
x , x(0) =

[
2
2

]
Re(s)

Im(s)

×

×
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Solution of state-space model with input

I back to our general model with inputs

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0

I take L.T. of both sides with x(s) = L {x(t)}, u(s) = L {u(t)}

sx(s)− x(0) = Ax(s) +Bu(s)

=⇒ x(s) = (sI −A)−1x(0) + (sI −A)−1Bu(s)

I therefore

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ) dτ , t ≥ 0

I we will use this formula for direct design of digital controllers
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Transfer function from state models

ẋ = Ax+Bu

y = Cx+Du

u(t) y(t)

I taking Laplace transforms with zero initial condition x(0) = 0

sx(s) = Ax(s) +Bu(s)

y(s) = Cx(s) +Du(s)
=⇒

x(s) = (sI −A)−1Bu(s)

y(s) = Cx(s) +Du(s)

I eliminate x(s) to obtain

y(s)
u(s) = P (s) = C(sI −A)−1B +D

I state-space model uniquely determines P (s)
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Example: cart with air resistance contd.

m
u(t)bż

z

mz̈ = −bż + u

P (s) = 1
ms2 + bs

[
ẋ1
ẋ2

]
=
[

0 1
0 −b/m

][
x1
x2

]
+
[

0
1/m

]
u

y =
[
1 0

][x1
x2

] (sI −A)−1 =
[
s −1
0 s+ b/m

]−1

=
1

s(s+ b/m)

[
s+ b/m 1

0 s

]

P (s) = C(sI −A)−1B =
1/m

s(s+ b/m)
=

1
ms2 + bs
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Internal asymptotic stability vs. BIBO stability

I we have two stability concepts: internal stability and BIBO stability
I are they related? yes.

P (s) = C(sI −A)−1B +D

= C
adj(sI −A)
det(sI −A) B +D

= C adj(sI −A)B +D det(sI −A)
det(sI −A) = (some polynomial)

ΠA(s)

I all poles of P (s) come from eigenvalues of matrix A

I if state-space system internally stable, then P (s) is BIBO stable
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Nonlinear systems

I All real systems are nonlinear
• robot manipulator arms (Lagrangian dynamics)
• drones, UAV’s (aerodynamics)
• chemical reactors (mass-action kinetics)
• power systems (AC power flow)
• population dynamics (Lotka-Volterra models)
• . . .

I nonlinear systems do not have transfer functions

I nonlinear systems do have state models, but they do not look like
ẋ(t) = Ax(t) +Bu(t)
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Example: state model for simple pendulum

`

mg

θ

torque = u
m`2θ̈ = −mg` sin θ − bθ̇ + u

choose state variables

x1 = θ x2 = θ̇

I state space model is given by[
ẋ1

ẋ2

]
=
[

x2

− g` sin x1 − b
m`2x2 + 1

m`2u

]
⇐⇒ ẋ = f(x, u) .
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Nonlinear state models

a nonlinear state-space model has the form

ẋ = f(x, u)

y = h(x, u)

I x ∈ Rn is the state vector, u ∈ R is the input, y ∈ R is the output

I f(x, u) is a nonlinear function which describes the dynamics

I h(x, u) is a nonlinear function which describes the measurement

I if f and h are both linear in (x, u), then we have

ẋ = Ax+Bu

y = Cx+Du
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Equilibrium configurations

ẋ = f(x, u)

y = h(x, u)

I an equilibrium configuration is any state/input pair (x̄, ū) such that

f(x̄, ū) = 0

I at an equilibrium configuration, ẋ = 0 =⇒ x(t) = x̄ for all t

I the output is then fixed at ȳ = h(x̄, ū)
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Example: simple pendulum contd.

general case

x1

hanging down balancing up

0 = x̄2

0 = −g
`

sin x̄1 + 1
m`2

ū
(x̄, ū) =

([
0
0

]
, 0
)

(x̄, ū) =
([

π

0

]
, 0
)
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Example: simple pendulum contd.

I what if we wanted the angle to stay at 90◦?

0 = −g
`

sin π2 + 1
m`2

ū ⇐⇒ ū = mg`

(x̄, ū) =
([

π/2
0

]
,mg`

)

I torque balances gravity to create equilibrium
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Linearization of nonlinear systems

I nonlinear model is usually too difficult to design with

I linearization around an equilibrium yields approximate linear model

I Idea: for small changes around equilibrium (x̄, ū), functions f(x, u)
and h(x, u) are well-approximated by linear functions

I linearization will be dynamic model which uses deviation variables

δx = x− x̄

δu = u− ū

δy = y − ȳ
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Linearization and derivative matrices

I from vector calculus, Taylor expand f(x, u) around (x̄, ū)

f(x, u) ≈ f(x̄, ū) + ∂f

∂x
(x̄, ū) · (x− x̄) + ∂f

∂u
(x̄, ū) · (u− ū)

I matrices of partial derivatives, evaluated at equilibrium

A := ∂f

∂x
(x̄, ū) =


∂f1
∂x1

· · · ∂f1
∂xn...
...

∂fn
∂x1

· · · ∂fn
∂xn

 B := ∂f

∂u
(x̄, ū) =


∂f1
∂u
...

∂fn
∂u


I δx = x− x̄ approximately satisfies the differential equation

d
dt (δx) = ẋ = f(x, u) ≈ f(x̄, ū) +Aδx+Bδu
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Linearization and derivative matrices contd.

I for output y = h(x, u), Taylor expand h(x, u) around (x̄, ū)

h(x, u) ≈ h(x̄, ū) + ∂h

∂x
(x̄, ū) · (x− x̄) + ∂h

∂u
(x̄, ū) · (u− ū)

I matrices of partial derivatives, evaluated at equilibrium

C := ∂h

∂x
(x̄, ū) =

[
∂h
∂x1

· · · ∂h
∂xn

]
D := ∂h

∂u
(x̄, ū)

I output deviation δy = y − ȳ therefore satisfies

δy = y − ȳ = h(x, u)− ȳ

≈ (h(x̄, ū) + Cδx+Dδu)− ȳ

= Cδx+Dδu
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Linearization contd.

around equilibrium configuration (x̄, ū), we have the LTI model

˙δx = Aδx+Bδu

δy = Cδx+Dδu

I will be accurate as long as (x, u) stays close to (x̄, ū)

I works unbelievably well in practice (why?)

I computation of (A,B,C,D) easily automated using symbolic tools

syms x1 x2 u k b real
f = [x2;-k*sin(x1) - b*x2 + u];
A = subs(jacobian(f,[x1;x2]),[x1,x2,u],[0,0,0]);
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Controlling around an equilibrium via linearization

1. use science to find nonlinear model ẋ = f(x, u), y = h(x, u)

2. for your desired output ȳ, find appropriate equilibrium (x̄, ū)

3. linearize the nonlinear model around (x̄, ū) yielding

˙δx = Aδx+Bδu

δy = Cδx+Dδu
=⇒ P (s) = δy(s)

δu(s) = C(sIn −A)−1B +D

4. design a controller C(s) for the linearized system

5. check performance by simulating the nonlinear closed-loop system
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Control design based on linearization

C(s)
ẋ = f(x, u)
y = h(x, u)

ȳ δu u y

−
+
ū
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Note: this toy example is quite important . . .
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Example: inverted pendulum

(x̄, ū) =
([

π

0

]
, 0
) [

ẋ1

ẋ2

]
=
[

x2

− g` sin x1 − b
m`2x2 + 1

m`2u

]
y = x1

∂f

∂x
=

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

 0 1

− g
`

cosx1 − b
m`2

 =⇒ A =

0 1
g
`
− b
m`2



∂f

∂u
=

 ∂f1
∂u

∂f2
∂u

 =

 0

1
m`2

 =⇒ B =

 0

1
m`2


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Example: inverted pendulum contd.

∂h

∂x
=
[
∂h
∂x1

∂h
∂x2

]
=
[
1 0

]
=⇒ C =

∂h

∂x
(x̄, ū) =

[
1 0

]
∂h

∂u
= 0 =⇒ D =

∂h

∂u
(x̄, ū) = 0

I linearized model is therefore

d
dt

[
δx1

δx2

]
=
[

0 1
g
` − b

m`2

][
δx1

δx2

]
+
[

0
1
m`2

]
δu

δy =
[
1 0

] [δx1

δx2

]
+ [0]δu
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Example: inverted pendulum contd.

I intuitively, this equilibrium is unstable. check internal stability

det(sI −A) = det
[
s −1
− g` s+ b

mg`

]
= s

(
s+ b

m`2

)
− g

`

= s2 + b

m`2
s− g

`

Re(s)
Im(s)

× ×

I linearized system is internally unstable
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Example inverted pendulum contd.

I we hit the pendulum with torque disturbance
I open-loop response
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450
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Example inverted pendulum contd.

I we now design a controller to stabilize upright equilibrium point

I for now, use transfer function methods

P (s) = C(sI −A)−1B +D =
1
m`2

s2 + b
m`2 s− g

`

I exercise: design a stabilizing controller, e.g.,

Cpd(s) = Kp +Kd
s

τs+ 1 or Clead(s) = K
s+ z

s+ p
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Control design for inverted pendulum

K s+z
s+p Pendulum

π δu u θ

−
+

ū = 0

+

d(t)

I let’s simulate two different closed-loop systems

1. feedback connection of controller and linearized pendulum model
• this is the model we used for design

2. feedback connection of controller and nonlinear pendulum model
• this is the “real” system
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Example inverted pendulum contd.

I lead controller C(s) = K s+2
s+2.5

I pendulum subject to square pulse disturbance
I K = 0.65
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Example inverted pendulum contd.

I lead controller C(s) = K s+2
s+2.5

I pendulum subject to square pulse disturbance
I K = 3
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Final remarks on linearization-based control

I if you change equilibrium configurations, you must recompute the
matrices (A,B,C,D) which define the LTI model

I if the (A,B,C,D) matrices are not constant, then
something is wrong in your derivation; the matrices should not
depend on x or u

I linearization-based control works very well if (x, u) stays close to
equilibrium configuration (x̄, ū) – how ‘close’ you must stay is
application dependent
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MATLAB commands

I compute eigenpairs of matrix
A = [1,0,0;0,2,3;5,-5,1];
[V,Lambda] = eig(A);

I define state-space model
my_ss = ss(A,B,C,D);

I you can operate on state-space models like TF models, i.e.
bode(my_ss);
step(my_ss);

I if G(s) is a TF model, MATLAB will construct state-space realization
G = tf([1,0,1],[2,0,4]);
my_ss = ss(G);
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Additional references

I LTI continuous-time state-space models
• Nielsen, Chapter 2

• Åström & Murray, Chapter 5

• Franklin, Powell, & Emami-Naeini, Chapter 7

• Hespanha, Topics in Undergraduate Control System Design, Chap. 8

• Boyd & Lall, EE263 Course Notes, Chapters 24, 25, 28

I nonlinear systems and linearization
• Nielsen, Chapter 2

• Åström & Wittenmark, Chapters 5 and 9

• Franklin, Powell, & Emami-Naeini, Chapter 9

• Franklin, Powell, & Workman, Chapter 13
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6. Discrete-time LTI control systems

• discrete-time signals and z-transforms
• discrete-time LTI systems
• feedback stability
• time-domain analysis
• discrete-time frequency response
• state-space models: solutions, stability, transfer functions
• discrete-time stability analysis: Routh & Jury conditions
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Notation

I set of integers Z

I interior of the unit disk is D = {z ∈ C | |z| < 1}

I Unit step function

1[k] =

1 if k = 0, 1, 2, . . .

0 if else

δ[k] =

1 if k = 0

0 if else
1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

k

1[k]
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Discrete-time signals

I a discrete-time signal is a sequence of numbers f [0], f [1], f [2], . . .

5 10 15

−1

−0.5

0.5

1

k

f [k]

I only defined at discrete points, not inbetween

I may be a sampled signal, with associated sampling period

I in this chapter, we effectively assume sampling period T = 1
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The z-transform

I discrete equivalent of Laplace transform

I the (unilateral or one-sided) z-transform of a signal f [k] is

F [z] := Z{f [k]} =
∞∑
k=0

f [k]z−k , z ∈ C .

I if signal f [k] does not grow too fast, i.e., if

|f [k]| ≤Mρk

for some M,ρ > 0, then z-transform sum converges for all values of
z ∈ C satisfying |z| > ρ
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Convergence of z-transform

I suppose f [k] satisfies |f [k]| ≤Mρk, and write z = rejθ. Then

|F [z]| =

∣∣∣∣∣
∞∑
k=0

f [k]z−k
∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

f [k](rejθ)−k
∣∣∣∣∣ ≤

∞∑
k=0

∣∣f [k]r−ke−jkθ
∣∣

≤
∞∑
k=0

|f [k]| · |r−k| · |e−jkθ|︸ ︷︷ ︸
=1

=
∞∑
k=0

|f [k]| · r−k

≤
∞∑
k=0

Mρkr−k = M

∞∑
k=0

(
ρ

r

)k
(geometric series sum)

= M
1

1− ρ/r
if r > ρ
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Convergence of z-transform contd.

I F [z] is well-defined for all z outside a disk of radius ρ

Re(z)

Im(z)

ρ

Region of Convergence

I in general, ρ equals magnitude of largest pole of F [z]
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Example: exponential function

f [k] = ak , a ∈ R

F [z] =
∞∑
k=0

akz−k =
∞∑
k=0

(a
z

)k
= 1

1− a/z = z

z − a
, for |z| > |a|

Re(z)

Im(z)

|a|

Region of Convergence

I note that f [k] satisfies bound
|f [k]| ≤Mρk with

M = 1 ρ = |a|
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Example: impulse function

f [k] = δ[k] =

1 if k = 0

0 if else

F [z] =
∞∑
k=0

δ[k]z−k = z−0 = 1 , for all z ∈ C

Re(z)

Im(z)

Region of Convergence

I note that f [k] satisfies bound
|f [k]| ≤Mρk with

M = 1 ρ = 0
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Key properties of z-transform

I linearity
Z{α1f1 + α2f2} = α1F1[z] + α2F2[z]

I accumulation formula

Z

{
k∑
`=0

f [`]
}

= z

z − 1F [z]

I time-shifting formula (with zero initial conditions)

Z {f [k −m]} = z−mF [z]

I convolution

Z{g ∗ f} = Z
{

k∑
`=0

g[k − `]f [`]
}

= G[z]F [z]
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Inverse z-transform

I given F [z], signal f [k] can be reconstructed through contour integral

f [k] = 1
2πj

∮
C
F [z]zk−1 dz , k ≥ 0

where C is a closed counter-clockwise contour in the R.O.C.

Re(z)

Im(z)

ρ

Region of Convergence

C
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Inverse z-transforms contd.

I in practice, we do partial fraction expansion, often on F [z]
z

I example

F [z] = 8z − 19
(z − 2)(z − 3) =⇒ F [z]

z
= 8z − 19
z(z − 2)(z − 3)

I partial fractions gives (exercise: find a0, a1, a2)

F [z]
z

= a0

z
+ a1

z − 2 + a2

z − 3
=⇒ F [z] = a0 + a1

z

z − 2 + a2
z

z − 3

I therefore
f [k] = a0δ[k] + a12k + a23k , k ≥ 0
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Discrete-time LTI systems

I system G takes input signal u[k], produces output signal y[k]

G
u[k] y[k]

I linearity, time-invariance, and causality defined exactly as they were
for continuous-time systems
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Representations of LTI systems

G
u[k] y[k]

I in z-domain, transfer function G[z]

y[z] = G[z]u[z]

I in time-domain, impulse response g[k]

y[k] = g ∗ u :=
k∑
`=0

g[k − `]u[`] .

I these are equivalent, can show that

G[z] = Z{g[k]} and g[k] = Z−1{G[z]}
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Transfer function representation contd.

G[z]
u[z] y[z]

I we call G[z] rational if G[z] = N [z]
D[z] for some polynomials N [z] and

D[z] with real coefficients

I a pole p of G[z] satisfies limz→p |G[z]| =∞

I a zero ζ of G[z] satisfies G[ζ] = 0

I the degree deg(D) of the denominator is the order of the system

I G[z] is proper if deg(N) ≤ deg(D), and is strictly proper if
deg(N) < deg(D)

I DC gain of G[z] is G[1] (not G[0]!)
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Bounded-input bounded-output stability

I a signal y[k] is bounded if |y[k]| ≤ C for all k ≥ 0

G
u[k] y[k]

I BIBO stability: every bounded u[k] produces a bounded y[k]

I if the LTI system G is rational and proper, then G is BIBO stable if
and only if either of the following equivalent statements hold:

• every pole of the transfer function G[z] belongs to D

• the sum
∑∞

k=0 |g[k]| of the impulse response is finite.
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Examples

1
z

1
z + 1

(z + 3)
z2 + 3z + 2

2−k k1002−k δ[k] 1[k]
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Linear constant-coefficient difference equations

I discrete-time equivalent of differential equations (n < m)

y[k] + a1y[k − 1] + · · ·+ any[k − n] = b0u[k] + · · ·+ bmu[k −m]

I initial conditions {y[−1], . . . , y[−n]} and input sequence
{u[−m], . . . , u[0], . . .} uniquely determine output sequence
{y[0], y[1], . . .} (for example, by recursion)

I examples:

• delay system: y[k] = u[k − 1]
• averaging system: y[k] = 1

2 (u[k] + u[k − 1])

I difference equations and state-space models are how digital
controllers are implemented
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Transfer functions from difference equations

I for difference equation

y[k] + a1y[k − 1] + · · ·+ any[k − n] = b0u[k] + · · ·+ bmu[k −m]

I take z-transforms with zero initial conditions:

Y [z] + a1z
−1Y [z] + · · ·+ anz

−nY [z] = b0U [z] + · · ·+ bmz
−mU [z]

(1 + a1z
−1 + · · ·+ anz

−n)Y [z] =
(
b0 + · · ·+ bmz

−m)U [z]

G[z] = Y [z]
U [z] = b0 + · · ·+ bmz

−m

1 + a1z−1 + · · ·+ anz−n

= b0z
n + · · ·+ bmz

n−m

zn + a1zn−1 + · · ·+ an
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Example: summing system

I output is a running sum of inputs: y[k] = y[k − 1] + u[k − 1]

Y [z] = z−1Y [z] + z−1U [z] =⇒ G[z] = Y [z]
U [z] = 1

z − 1

I system is not BIBO stable due to pole at z = 1

1 2 3 4 5

0.5

1

k

u[k]

G

1 2 3 4 5

2

4

k

y[k]
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Example: finite impulse response (FIR) filters

I the impulse response of an FIR filter is non-zero for only a finite
number of time steps

g[k] = b0δ[k] + b1δ[k − 1] + · · ·+ bmδ[k −m]

−2 2 4 6 8 10 12 14 16

2

4

6

8

k

g[k]

I transfer function G[z] = Z{g[k]} is

G[z] = b0 + b1z
−1 + · · ·+ bmz

−m

and has all of its poles at z = 0
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Example: unit step response of FIR filter

0
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Feedback stability of discrete-time control systems

C[z] P [z]
+

d[z]
r[z] e[z] u[z] y[z]
−

I r and d are external signals, e, u and y are internal signals

I the closed-loop is feedback stable if every bounded (r, d) leads to
bounded (e, u, y)

I 2 inputs, 3 outputs =⇒ 6 transfer functions
e[z]
r[z] = 1

1 + PC

u[z]
r[z] = C

1 + PC

y[z]
r[z] = PC

1 + PC

e[z]
d[z] = −P

1 + PC

u[z]
d[z] = 1

1 + PC

y[z]
r[z] = P

1 + PC
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Feedback stability contd.

I assume P [z] is rational and strictly proper: P [z] = Np[z]
Dp[z]

I assume C[z] is rational and proper: C[z] = Nc[z]
Dc[z]

I we calculate that

y[z]
r[z] = PC

1 + PC
=

Np
Dp

Nc
Dc

1 + Np
Dp

Nc
Dc

= NpNc

NpNc +DpDc

I characteristic polynomial: Π[z] := Np[z]Nc[z] +Dp[z]Dc[z]

I the closed-loop is feedback stable if and only if all roots of Π[z]
belong to D
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Example: feedback stability

I plant: y[k] = y[k − 1] + u[k − 1], or T.F. P [z] = 1
z−1

I controller: u[k] = 1
2 (e[k] + e[k − 1]), or T.F. C[z] = z+1

2z

I compute characteristic polynomial

Π[z] = (z + 1) + 2z(z − 1) = 2
(
z − 1

4 + j

√
7

4

)(
z − 1

4 − j
√

7
4

)
I magnitude of pole(s) is[(

1
4

)2
+
(√

7
4

)2]1/2

= 1√
2
< 1

I closed-loop system is feedback stable
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Example: feedback stability contd.

I unit step response of unity-gain feedback system

0

0.5
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1.5

2
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Time-domain analysis

G
u[k] y[k]

(i) rise time Tr, settling time Tp

(ii) peak time Tp, peak max Mp

(iii) steady state value yss? 5 10 15 20

0.5

1

1.5

r

k

y[k]

I Final value theorem: if F [z] = Z{f [k]} is rational and proper,
with all poles of (z − 1)F [z] contained in D, then
fss = limk→∞ f [k] exists and

fss = lim
k→∞

f [k] = lim
z→1

(z − 1)F [z] .
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Example: second-order system

for a step u[k] = 1[k], find steady-state value for y[k]

G[z] = z + 2
z(z − 0.5)

Y [z] = G[z]U [z] = z + 2
z(z − 0.5)

z

z − 1

(z − 1)Y [z] = z + 2
(z − 0.5)

this has all poles inside the unit circle, therefore

lim
k→∞

y[k] = lim
z→1

(z − 1)Y [z] = 6 = G[1]

I DC gain G[1] gives steady-state value of step response
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First-order discrete-time systems

I prototypical first-order system is described by

y[k] = −a1y[k − 1] + b1u[k − 1] =⇒ G[z] = b1
z + a1

I pole at z = −a1, system is BIBO stable if |a1| < 1

I to normalize DC gain such that G[1] = 1, set b1 = 1 + a1

G[z] = 1 + a1

z + a1

I unit step response

Y [z] = 1 + a1

z + a1

z

z − 1
Z−1

7−−−→ y[k] = 1− (−a1)k
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Step response of first-order system

y[k] = 1− (−a1)k , k ≥ 0

for −1 < a1 < 0
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r

k

y[k]

for 0 < a1 < 1
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Step response of first-order system contd.

I in discrete-time, first-order systems can have overshoot

I magnitude of a1 controls settling time

Re(z)

Im(z)

D

× × × × ×

1-step-delay system

overshoot
slowerfaster
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Second-order discrete-time systems

I prototypical second-order system is described by

y[k] + a1y[k − 1] + a2y[k − 2] = b2u[k − 2]

I transfer function
G[z] = b2

z2 + a1z + a2

I to normalized DC gain G[1] = 1, set b2 = 1 + a1 + a2

I three cases of interest: a2 > 0, a2 < 0, and a2 = 0

I if a2 > 0, two conjugate poles z± = re±jθ, determined by

a2 = r2 a1 = −2r cos(θ)

I system BIBO stable if r < 1 ⇐⇒ a2 < 1
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Step response of second-order systems

I messy inverse z-transform calculation gives formula

y[k] = 1− αrk cos(θk + β) , k ≥ 0

where α, β are constants; θ determines the amount of oscillation

for r = 0.7, θ = 20
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for r = 0.7, θ = 60
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Step response of second-order system contd.

y[k] = 1− αrk cos(θk + β)

I the value of r determines the settling time

for r = 0.7, θ = 60
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Step-response of second-order systems contd.

I responses very similar to continuous-time second-order systems
I pole location meanings are very different

Re(z)

Im(z)

D

θ

decay rate

×

×

oscillation freq.

Section 6: Discrete-time LTI control systems 6-284



Frequency response of discrete-time systems

I for a continuous-time LTI system which is BIBO stable

G(s)
cos(ωt) yss(t) = A cos(ωt+ φ)

where A = |G(jω)| and φ = ∠G(jω)

I is something similar true for discrete-time systems?

I assume G[z] is rational, proper, and BIBO stable

I output y[k] of system is given by convolution

y[k] =
∞∑

m=−∞
g[m]u[k −m]
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Frequency response contd.

I let’s try the complex exponential input u[k] = ejωk

I annoying technical note: we will start applying input at k = −∞, so
that system can reach a nice steady-state by time k = 0.

y[k] =
∞∑

m=−∞
g[m]ejω(k−m)

= ejωk
∞∑

m=−∞
g[m]e−jωm

= ejωkG[ejω] (discrete Fourier transform)

G[z]
ejωk yss[k] = G[ejω]ejωk
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Frequency response contd.

I we may now take the real part of each signal

Re(ejωk) = cos(ωk)

Re(G[ejω]ejωk) =
∣∣G[ejω]

∣∣ cos(ωk + ∠G[ejω])

G[z]
cos(ωk) A cos(ωk + φ)

where
A =

∣∣G[ejω]
∣∣ φ = ∠G[ejω]

I G[ejω] is the frequency response of the system

I cosine applied at input yields shifted and scaled cosine at the output
Section 6: Discrete-time LTI control systems 6-287



Frequency response contd.

I to get frequency response, evaluate G[z] at z = ejω

I what do things look like in the complex plane?

Re(z)

Im(z)

ρ

1

1

I G[ejω] is a periodic function of ω
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Example: frequency response of FIR filter

I Bode magnitude plot

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

8

10

12

14

16

18

20

22

I note: typically frequency plotted from [0, π] on log scale
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Example: frequency response

G[z] = 3
z − 0.5 with input u[k] = cos(3k)

I system is BIBO stable, so steady-state exists, and is of the form
A cos(3k + φ)

A =
∣∣G[ejω]

∣∣ = 3
|ej3 − 0.5| ' 2.005

φ = ∠G[ejω] = ∠3− ∠(ej3 − 0.5)

= 0− ∠(cos(3)− 0.5 + j sin(3))

= −arctan
(

sin(3)
cos(3)− 0.5

)
' −174◦

I steady-state output is yss[k] = 2.005 cos(3k − 174◦)
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Discrete-time LTI state-space models

I a discrete-time LTI state-space model has the form

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]

I x[k] ∈ Rn is the state vector

I n ∈ N is the order

I u[k] ∈ Rm is the input vector

I y[k] ∈ Rp is the output vector

I A ∈ Rn×n

I B ∈ Rn×m

I C ∈ Rp×n

I D ∈ Rp×m

often, we write x+ for x[k + 1] and simply x for x[k]
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Example: second-order system

I second-order system: f [k] + a1f [k − 1] + a2f [k − 2] = b0u[k]

I let x1[k] = f [k − 2] and x2[k] = f [k − 1]

x1[k + 1] = f [k − 1]

= x2[k]

x2[k + 1] = f [k]

= −a1f [k − 1]− a2f [k − 2] + b0u[k]

= −a1x2[k]− a2x1[k] + b0u[k]

I state model with output x1[k] = f [k − 2] is therefore[
x1

x2

]+

=
[

0 1
−a2 −a1

][
x1

x2

]
+
[

0
b0

]
u

y =
[
1 0

] [x1

x2

]
+ [0]u
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Other comments on state models

I state vector x is internal to the system, acts as intermediary

x+ = Ax+Bu

y = Cx+Du

u[k] y[k]

I for an nth order difference equation, you need n states

I there is no unique choice of state variables

I the condition for equilibrium is

x+ = x ⇐⇒ x = Ax+Bu

I x, y, u are often deviations from desired values
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Solving state-space models without inputs

I consider zero input u[k] = 0 with initial condition x[0] = x0 ∈ Rn

x[k + 1] = Ax[k] , x[0] = x0

I just by iterating, we find that

x[1] = Ax0

x[2] = A(Ax0) = A2x0

...

x[k] = Akx0

I so with no input, the solution is

x[k] = Akx0 , k ≥ 0
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Computing Ak via z-transforms

I we know solution to x+ = Ax is x[k] = Akx[0]

I we could also z-transform (element-by-element) both sides to find

zX[z]− zx[0] = AX[z] ⇐⇒ (zI −A)X[z] = zx[0]

⇐⇒ (I − z−1A)X[z] = x[0]

⇐⇒ X[z] = (I − z−1A)−1x[0]

⇐⇒ x[k] = Z−1{(I − z−1A)−1}x[0]

I comparing the solutions, we find that

Ak = Z−1{(I − z−1A)−1}
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Example: computing Ak

x[k + 1] =
[

0 1
−2 −3

]
x[k] , x[0] =

[
1
0

]
compute that

(I − z−1A)−1 = z(zI −A)−1 = z

[
z −1
2 z + 3

]−1

=
z

z2 + 3z + 2

[
z + 3 1
−2 z

]
therefore

Ak = Z−1

{[
z(z+3)

(z+1)(z+2)
z

(z+1)(z+2)
−2z

(z+1)(z+2)
z2

(z+1)(z+2)

]}

=
[

2(−1)k − (−2)k (−1)k − (−2)k

2(−2)k − 2(−1)k 2(−2)k − (−1)k

]
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Internal stability of state models

I state-space system x+ = Ax is internally asymptotically stable if
x[k]→ 0 as k →∞ from any initial condition x[0]

I with no external inputs, the state goes to zero

I suppose A is diagonalizable with V −1AV = Λ

• change of state variables z = V −1x =⇒ z[0] = V −1x[0]

z[k] = V −1x[k] = V −1Akx[0] = V −1AkV z[0] = Λkz[0]

• this says that zi[k] = λki zi[0]

A discrete-time LTI state model is internally asymptotically
stable if and only if λi ∈ D for all λi ∈ eig(A), i.e., all

eigenvalues of A have magnitude less than one
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Example: internally stable second-order system

x+ =
[

0 1
−0.6 −0.6

]
x , x[0] =

[
2
2

]
Re(z)

Im(z)

D×

×

-2 0 2

-3

-2

-1

0

1

2

3

-2

0

2

0 10 20 30

-2

0

2

0 10 20 30
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Example: unstable second-order system

x+ =
[

0 1
−1 0

]
x , x[0] =

[
2
2

]
Re(z)

Im(z)

D×

×

-2 0 2

-3

-2

-1

0

1

2

3

-2

0

2

0 5 10 15 20

-2

0

2

0 5 10 15 20
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Example: unstable second-order system

x+ =
[

0 1.2
−1 0

]
x , x[0] =

[
2
2

]
Re(z)

Im(z)

D
×

×

-10 -5 0 5 10

-10

-5

0

5

10

-10

0

10

0 5 10 15 20

-10

0

10

0 5 10 15 20
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Solution of state-space model with input

back to our general model with inputs

x[k + 1] = Ax[k] +Bu[k] , x[0] ∈ Rn

we can just iterate to find the solution

x[1] = Ax[0] +Bu[0]

x[2] = A2x[0] +ABu[0] +Bu[1]

x[3] = A3x[0] +A2Bu[0] +ABu[1] +Bu[2]
...

x[k] = Akx[0] +
k−1∑
j=0

Ak−j−1Bu[j]

I combination of natural response and forced response
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Transfer function from state models

x+ = Ax+Bu

y = Cx+Du

u[k] y[k]

taking z-transforms with zero initial conditions x[0] = 0

zX[z] = AX[z] +BU [z]

Y [z] = CX[z] +DU [z]
=⇒

X[z] = (zI −A)−1BU [z]

Y [z] = CX[z] +DU [z]

Y [z]
U [z] = P [z] = C(zI −A)−1B +D

I state-space model uniquely determines P [z]
I transfer functions from state-space models are always proper
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Internal asymptotic stability vs. BIBO stability

I internal stability and BIBO stability are related

P [z] = C(zI −A)−1B +D

= C
adj(zI −A)
det(zI −A) B +D

= C adj(zI −A)B +D det(zI −A)
det(zI −A) = (some polynomial)

ΠA[z]

I every pole of P [z] is an eigenvalue of A

I state model internally asymptotically stable =⇒ TF is BIBO stable
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Feedback stability of state-space models

I we can understand feedback stability using state models

x+
c = Acxc +Bce

yc = Ccxc +Dce

x+
p = Apxp +Bpu

y = Cpxp

+
d

r e u y

−

PlantController

I idea: eliminate e, yc, u and find write state model with states
x = (xp, xc), inputs (r, d) and output y

I note: in this case, our state-space model will have two inputs

Section 6: Discrete-time LTI control systems 6-304



Feedback stability using state-space models

x+
c = Acxc +Bce

yc = Ccxc +Dce

x+
p = Apxp +Bpu

y = Cpxp

+
d

r e u y

−

x+
p = Apxp +Bp(d+ yc)

y = Cpxp

x+
c = Acxc +Bc(r − y)

yc = Ccxc +Dc(r − y)

combine:
[
xp

xc

]+

=
[
Ap −BpDcCp BpCc

−BcCp Ac

]
︸ ︷︷ ︸

:=Acl

[
xp

xc

]
︸ ︷︷ ︸
:=xcl

+
[
BpDc Bp

Bc 0

]
︸ ︷︷ ︸

:=Bcl

[
r

d

]

y =
[
Cp 0

]
︸ ︷︷ ︸

Ccl

[
xp

xc

]
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Feedback stability using state-space models

I the closed-loop state model has the form

x+
cl = Aclxcl +Bcl

[
r

d

]
, y = Cclxcl

I from before: internal asymptotic stability of state model =⇒ BIBO
stability of transfer function

I similarly now, internal asymptotic stability of closed-loop model =⇒
BIBO stability of any closed-loop transfer function (i.e., feedback
stability)

λi ∈ D for all

λi ∈ eig(Acl)
=⇒

all transfer func.

are BIBO stable
⇐⇒

feedback stability of

feedback system
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Discrete-time stability analysis

I we have seen several discrete-time stability concepts

(i) BIBO stability of a transfer function G[z]

(ii) feedback stability with plant P [z] and controller C[z]

(iii) internal asymptotic stability of state-space models

(iv) feedback stability with state-space plant and controller

I in all cases, we must ask whether all roots of some polynomial

Π[z] = a0z
n + a1z

n−1 + · · ·+ an−1z + an

are contained in D

I we now develop a tool for actually checking stability
Section 6: Discrete-time LTI control systems 6-307



Review: Routh-Hurwitz for continuous-time systems

I goal: determine whether all roots of polynomial Π(s) are in C−

Π(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0

I algorithmic test through the Routh array

row n an an−2 an−4 · · ·
row n-1 an−1 an−3 an−5 · · ·
row n-2 b1 b2 b3 · · ·
row n-3 c1 c2 c3 · · ·
· · · · · · · · · · · · · · ·
row 2 ∗ ∗
row 1 ∗
row 0 ∗

bi = an−1an−2i − anan−2i−1

an−1

ci = b1an−2i−1 − an−1bi+1

b1

di = · · ·
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Routh-Hurwitz contd.

I necessary conditions for all roots in C−
• the coefficients ai must all be non-zero

• the coefficients ai must all be positive

I sufficient conditions for all roots in C−
• if all entries in the first column are positive, then all roots are in C−

• there is one pole in C+ for every sign change in the first column

I useful for tuning controller gains
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Routh-Hurwitz for discrete-time systems

I Routh-Hurwitz addresses roots in C−, not in D

I key trick: use the transformation z = 1+v
1−v between C− and D

v-plane z-plane

Re(v)

Im(v)

C−

z = 1+v
1−v

v = z−1
z+1

Re(z)

Im(z)

+1−1

D
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Routh-Hurwitz for discrete-time systems contd.

given a polynomial

Π[z] = zn + a1z
n−1 + · · ·+ an−1z + an

(i) evaluate Π[z] at z = 1+v
1−v , that is, form Π

[
1+v
1−v

]
(ii) multiply through by (1− v)n to obtain a new polynomial Π̂(v)

(iii) apply standard Routh-Hurwitz test to Π̂(v)

The polynomial Π[z] has all roots in D if and only if the
polynomial Π̂(v) has all roots in C−
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Example: second-order system

Π[z] = z2 + a1z + a2

I form Π̂(v)

Π
[

1 + v

1− v

]
=
(

1 + v

1− v

)2
+ a1

(
1 + v

1− v

)
+ a2

Π̂(v) = (1− v)2Π
[

1 + v

1− v

]
= (1 + v)2 + a1(1 + v)(1− v) + a2(1− v)2

= (1 + a2 − a1)v2 + 2(1− a2)v + (1 + a2 + a1)
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Example: second-order system contd.

Π̂(v) = (1 + a2 − a1)v2 + 2(1− a2)v + (1 + a2 + a1)

row 2 1 + a2 − a1 1 + a2 + a1

row 1 2(1− a2) 0
row 0 1 + a2 + a1 0

I we need all first column entries to be positive

1 + a2 − a1 > 0 and 1− a2 > 0 and 1 + a2 + a1 > 0
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Example: second-order system contd.

I we have three inequalities

1 + a2 − a1 > 0 1− a2 > 0 1 + a2 + a1 > 0

1 + a2 > a1 a2 < 1 1 + a2 > −a1

I if a2 ≤ −1, first and third inequalities are impossible, so a2 > −1

I conditions are therefore

|a2| < 1

|a1| < 1 + a2
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Example: second-order system contd.

Π[z] = z2 + a1z + a2
|a2| < 1

|a1| < |1 + a2|

a2 = 1.1 a1 = 0.3 a2 = −0.4 a1 = 0.7

Re(z)

Im(z)

D×

×

Re(z)

Im(z)

D

× ×
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Jury’s necessary conditions

I alternative set of tests for all roots of polynomial

Π[z] = a0z
n + a1z

n−1 + · · ·+ an−1z + an

to be contained in D

I Jury’s necessary stability conditions are

(i) Π[1] > 0

(ii) (−1)nΠ[−1] > 0

(iii) |an| < |a0|

I equivalently, these conditions are sufficient for instability
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Example: testing feedback stability

I first-order plant with “PI” controller

P [z] = z

z + a
, C[z] = Kp +Ki

z

z − 1 , where a > 0

I characteristic polynomial

Π[z] = (Kp +Ki)z2 −Kpz + (z + a)(z − 1)

= (1 +Kp +Ki)z2 + (a− 1−Kp)z − a

I Jury’s necessary conditions tell us that — at least — we need

(i) Ki > 0

(ii) 1 +Kp + 1
2Ki > a

(iii) |1 +Kp +Ki| > a
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Example: testing feedback stability contd.

I the necessary & sufficient conditions from Routh-Hurwtiz are∣∣∣∣ −a
1 +Kp +Ki

∣∣∣∣ < 1 ,
∣∣∣∣ a− 1−Kp

1 +Kp +Ki

∣∣∣∣ < ∣∣∣∣1− a

1 +Kp +Ki

∣∣∣∣
I first condition says |1 +Kp +Ki| > a

I second condition says that

|1 +Kp − a| < 1 +Kp +Ki − a

• if LHS is positive, this says Ki > 0

• if LHS is negative, this says 1 +Kp + 1
2Ki > a
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MATLAB commands

I specifying discrete-time model

T = 1; z = tf(‘z’,T); G = z/(z-1);

I computing z-transform

syms k z
f = k^2*sin(2*pi*k); F = ztrans(f,k,z);
f_again = iztrans(F,z,k);

I specifying state models

my_ss = ss(A,B,C,D,T);

I pole, zero, feedback, connect, bode, pzplot, . . .

I custom command routh (on LEARN)
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Additional references

I discrete time systems and control systems

• Nielsen, Chapter 5

• Phillips, Nagle, & Chakrabortty, Chapter 2

• Franklin, Powell, & Workman, Chapter 4

• Franklin, Powell, & Emami-Naeini, Chapter 5

I discrete-time stability tests

• Nielsen, Chapter 8

• Phillips, Nagle, & Chakrabortty, Chapter 7
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Personal Notes
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7. Discretizing plants for direct design

• step-invariant discretization
• stability of sampled-data systems
• frequency response of discretized model
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Back to sampled-data systems

I we have been doing emulation design: design C(s) then discretize it

I alternative approach: take plant P , discretize it, then design
discrete-time controller for the discrete-time plant

C[z] HT P

ST

r[k] e[k] u[k] u(t) y(t)
−

y[k]

I lets slightly redraw this block diagram
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Step-invariant discretization

C HT P ST
r[k] e[k] u[k] u(t) y(t) y[k]
−

Discrete-time system Pd

I the system inside brackets is a discrete-time system: we call it

Pd = c2d(P )

I remarkably, we will show Pd is an LTI system
I therefore, controller “sees” a discrete-time LTI system!
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Step-invariant discretization

I we will represent P by a state-space model (other choices possible)

HT
ẋ = Ax+Bu

y = Cx+Du
ST

u[k] u(t) y(t) y[k]

I if x(0) is the initial condition at time t0 = 0, then

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ) dτ , t ≥ 0

I more generally, if x(t0) is the initial condition at time t0, then

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ)Bu(τ) dτ , t ≥ t0
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Step-invariant discretization contd.

I let tk = kT be the sampling times, T > 0 sampling period

I set initial time t0 = tk, solution at time t = tk+1 is

x(tk+1) = eA(tk+1−tk)x(tk) +
∫ tk+1

tk

eA(tk+1−τ)Bu(τ) dτ

HT
ẋ = Ax+Bu

y = Cx+Du
ST

u[k] u(t) y(t) y[k]

I u(t) comes from hold block =⇒ u(t) = u(tk) = const. over [tk, tk+1]

x(tk+1) = eA(tk+1−tk)x(tk) +
(∫ tk+1

tk

eA(tk+1−τ)B dτ
)
u(tk)
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Step-invariant discretization contd.

I change of variables σ = tk+1 − τ inside integral

x(tk+1) = eATx(tk) +
(∫ T

0
eAσB dσ

)
u(tk)

I with x[k] = x(tk) and u[k] = u(tk), get discrete-time system

x[k + 1] = Adx[k] +Bdu[k]
Ad = eAT

Bd =
∫ T

0
eAσB dσ

I output equation is simply y[k] = Cx[k] +Du[k], therefore

Cd = C , Dd = D
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Comments on step-invariant discretization

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
“c2d′′7−−−→

x[k + 1] = Adx[k] +Bdu[k]

y[k] = Cdx[k] +Ddu[k]

I notation: Pd = c2d(P )

I we made no approximations – Pd is an exact description of P at
the sampling instants (analogy: stroboscope)

I also called “zero-order hold” discretization

I if A is invertible, then a simplified formula for Bd is (exercise)

Bd = A−1(eAT − In)B
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Transfer function formula for step-invariant trans.

I what if we have a transfer function instead of state model?

I can also show that step-invariant transform given by

Pd[z] = z − 1
z
Z
{
ST

(
L −1

{
P (s)
s

})}

1. compute inverse L.T. of P (s) 1
s
(continuous-time step applied to P )

2. sample the resulting signal

3. take the z-transform of the resulting sequence

4. divide by z/(z − 1) (divide by discrete-time step)
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Equivalent roads step-invariant transform

ẋ = Ax+Bu

y = Cx+Du

x+ = Adx+Bdu

y = Cdx+Ddu

P (s) Pd[z]
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Example: first-order system

P (s) = α

s+ α
=⇒

ẋ = −αx+ u

y = αx
=⇒

A = −α , B = 1

C = α , D = 0

compute discretization

Ad = e−αT Bd = A−1(eAT − 1)B = 1
α

(
1− e−αT

)
Cd = α Dd = 0

therefore

x[k + 1] = e−αTx[k] + 1− e−αT

α
u[k]

y[k + 1] = αx[k]
Pd[z] = 1− e−αT

z − e−αT
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Example: satellite attitude control model

Jθ̈ = τ

states: x = (θ, θ̇)

input: u = τ

output: y = θ

=⇒
ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1
J

]
u(t)

y(t) =
[
1 0

]
x(t)

I need to compute eAT

(sI −A)−1 =
[
s −1
0 s

]−1

=
[

1
s

1
s2

0 1
s

]

eAt = L −1{(sI −A)−1} =
[

1 t

0 1

]
=⇒ eAT =

[
1 T

0 1

]
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Example: satellite model contd.

Bd =
∫ T

0
eAσB dσ =

∫ T

0

[
1 σ

0 1

][
0
1
J

]
dσ = · · · =

[
T 2

2J
T
J

]

I therefore, we find the discrete-time model

ẋ =
[

0 1
0 0

]
x+

[
0
1
J

]
u

y =
[
1 0

]
x

c2d7−−→
x[k + 1] =

[
1 T

0 1

]
x[k] +

[
T 2

2J
T
J

]
u[k]

y[k] =
[
1 0

]
x[k]

I exercise:
Pd[z] = T 2

2J
z + 1

(z − 1)2
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Stability of step-invariant discretization

I from before, eigenvalues of matrix eA are {e(eigenvalues ofA)}

I said differently, if λ ∈ eig(A), then eλ ∈ eig(eA)

I claim: Pd is internally stable if and only if P is internally stable

I proof: suppose s = α+ jβ is an eigenvalue of A. Then
z = esT = e(α+jβ)T = eαT ejβT is an eigenvalue of Ad = eAT , and

|z| = |eαT | × |ejβT | = eαT

I since T > 0, we therefore have that

eαT < 1 ⇐⇒ α < 0

I moral: step-invariant discretization preserves plant stability
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Feedback stability of sampled-data systems

I the discrete-time system

C Pd

d
r e u y

−

represents the sampled-data system at the sampling instants.

I question: if the discrete-time system is feedback stable, can we say
the original sampled-data system is also feedback stable?

I answer: yes (modulo a detail we will now discuss)
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Pathological sampling

I particular sampling rates can cause an issue with c2d

I example

ẋ =
[

0 1
−1 0

]
x+

[
0
1

]
u

y =
[
1 0

]
x

=⇒ P (s) = 1
s2 + 1

I compute c2d with sampling period T = 2π

Ad = eA(2π) =
[

1 0
0 1

]
Bd = A−1(eA(2π) − I2)B =

[
0
0

]

I therefore
Pd[z] = C(zI2 −Ad)−1Bd = 0 (!!!)
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Pathological sampling contd.

I we say a sampling period T is pathological if the number of poles of
Pd[z] (counting multiplicities) is less than the number of poles of
P (s) (counting multiplicities)

I problem is “resonance” of sampling period with complex poles

I in practice, pathological sampling never happens (need very finely
tuned sampling rate)

If the sampling period is not pathological, then the
sampled-data system is feedback stable if and only if the

discrete-time system is feedback stable

I for the rest of the course, all statements are implicitly prefixed with
“assuming the sampling rate is not pathological”
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What’s with the name ‘step-invariant’?

I let Pd = c2d(P ), and consider the following experiment

P

PdST

ST

u(t) = 1(t)

y1[k]

y2[k]

y1[k] = ST (P 1(t)) y2[k] = Pd (ST 1(t))

= (ST P HT ) 1[k] = Pd 1[k]

= Pd1[k]

I step response of Pd is the same as sampled step response of P
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Example: step response of cruise control model

(T = 0.2s)
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Frequency response of discretized plant

I we know the frequency response P (jω) of the plant is very useful

I the discretized plant Pd = c2d(P ) has frequency response Pd[ejωT ]

I what is the relationship between these two? thought experiment:

P (s)

Pd[z]ST

u(t) = ejωt

y(t)

y[k]

I how do y(t) and y[k] compare in steady-state?
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Frequency response of discretized plant contd.

I top branch of diagram gives y(t) = P (jω)ejωt, bottom branch gives

ST HT P (s) ST
ejωt (2) (3) (4) (5)

Pd[z]

I signal (2) is ejωkT =⇒ signal (5) is Pd[ejωT ] · ejωkT

I at low frequencies where ω << ωNyquist = ωs/2, there is no aliasing
• signal (3) is close to signal (1)
• signal (4) is close to P (jω)ejωt

• signal (5) is close to P (jω)ejωkT

=⇒ Pd[ejωT ] ' P (jω) at low frequencies
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Example: cruise control model (T = 0.2s)
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1
b
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MATLAB commands

I computing step-invariant transformation (explicitly)

Ad = expm(A*T);
Bd = inv(A)*(Ad-eye(n));

I computing step-invariant transformation (built-in)

P = ss(A,B,C,D);
Pd = c2d(P,T,‘zoh’);
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Additional references

I step-invariant discretization (ZOH)

• Nielsen, Chapter 7

• Franklin, Powell, & Workman, Chapter 4.3.3

• Åström & Wittenmark, Chapter 3
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Personal Notes
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Personal Notes
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8. Direct design of digital controllers

• pole placement for discrete-time systems
• tracking reference signals (transfer functions)
• state-space control design
• state feedback, controllability, and pole placement
• observers, observability, and output feedback
• preview of optimal control
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Sampled-data control problem

C HT P ST
r[k] e[k] u[k] u(t) y(t) y[k]
−

Discrete-time system Pd

I plant and controller described by LTI transfer function or LTI
state-space models

Sampled-data design problem: given plant P and a set of
design specifications, design a discrete-time controller C such
that the closed-loop sampled-data system meets the design
specifications.
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Big picture for direct design

1. choose an initial sampling period T
• possibly dictated by hardware, informed by design specs

2. discretize plant P to obtain Pd

• note: Pd is implicitly a function of T

3. design — by any method — a discrete-time controller C for Pd to
meet your design specs

• note: C is also a function of T , since it was tuned for the plant Pd

4. simulate sampled-data system; if performance specs are not met,
adjust controller design and/or decrease T
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Pole placement for discrete-time systems

I in continuous-time, we selected a subset Cgood of C− in which to
place the poles of the closed-loop system

I from step-invariant transformation, we saw that if s ∈ C is a
eigenvalue/pole of P , then z = esT is an eigenvalue/pole of Pd

I idea: we can map Cgood ⊂ C− to a subset Dgood ⊂ D

Re(s)

Im(s)

Cgood

z = esT

Re(z)

Im(z)

D

Dgood
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Pole placement procedure in discrete-time

1. use design specs to find Cgood

2. choose a set of symmetric pole locations

Λ = {λ1, . . . , λ2n−1} ⊂ Cgood

3. map pole locations from Cgood to Dgood

E = {eλ1T , . . . , eλ2n−1T }

Πdes[z] = (z − eλ1T ) · · · (z − eλ2n−1T )

4. solve discrete-time pole placement problem for controller

Pd[z] = Np[z]
Dp[z] , C[z] = Nc[z]

Dc[z] = gn−1z
n−1 + · · ·+ g1z + g0

fn−1zn−1 + · · ·+ f1z + f0

Π[z] = NpNc +DpDc
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Tracking reference signals

C[z] Pd[z]r e u y

−

Tracking problem: Given a plant Pd[z], design a controller C[z] such
that the closed-loop system is feedback stable and

lim
k→∞

(r[k]− y[k]) = 0 .

Internal Model Principle: Assume Pd[z] is strictly proper, C[z] is
proper, and that the closed-loop system is feedback stable. Then

limk→∞ (r[k]− y[k]) = 0 if and only if Pd[z]C[z] contains an internal
model of the unstable part of r[z].
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Example: step tracking

I for a step r[k] = 1[k], r[z] = z
z−1

I there are three cases

(i) if Pd[z] has a zero at z = 1, then step-tracking is not possible

(ii) if Pd[z] has a pole at z = 1, C[z] can be any stabilizing controller

(iii) if Pd[z] does not have a pole or zero at z = 1, then C[z] must have
a pole at z = 1

I pole at z = 1 is “integral control” (running sum of tracking error)

u[k] = Z−1{u[z]} = Z−1
{

z

z − 1e[z]
}

=
k∑
`=0

e[`]
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Control design for LTI state-space models

I all MIMO (multi-input multi-output) control techniques are based
on state-space models

I allows for use of powerful computational techniques, optimization

I we will keep things as simple as possible, introduce the basic ideas
for single-input single-output discrete-time models

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]

I nearly identical theory for continuous-time state models
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State-space regulation problem

x+ = Ax+Bu

y = Cx+Du

u[k] y[k]

I regulation problem: find a controller such that x[k]→ 0 for any
choice of initial condition x[0]

I in other words: closed-loop system is internally asymptotically stable
(recall that this implies feedback stability of the closed-loop system)

I designing a regulating controller (“regulator”) can be extended to
reference tracking
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Regulation by state feedback

I simplest case: assume we can measure the entire state x[k], and we
try to design a state-feedback controller

u[k] = Fx[k] ,
F =

[
f1 f2 · · · fn

]
“state-feedback gain”

F x+ = Ax+Bu
0 u[k] x[k]

+
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State feedback and controllability

I closed-loop system is

x+ = Ax+Bu = Ax+BFx = (A+BF )︸ ︷︷ ︸
Acl

x

I to achieve internal asymptotic stability, need to find F such that

eig(A+BF ) ⊂ D

I when can we find such an F? Need new idea of controllability

I definition: a state-space system is controllable if from every initial
state x[0] ∈ Rn, there is a sequence of control inputs
{u[0], u[1], . . . , u[n− 1]} such that x[n] = 0

I idea: can choose inputs to “deliver” the state to the origin
Section 8: Direct design of digital controllers 8-360



Controllability contd.

I let’s think about how system state changes over time

x[1] = Ax[0] +Bu[0]

x[2] = Ax[1] +Bu[1] = A2x[0] +Bu[1] +ABu[0]
...

x[n] = Anx[0] +Bu[n− 1] +ABu[n− 2] + · · ·+An−1Bu[0]

I since we want x[n] = 0, we can also write this as

−Anx[0] =
[
B AB · · · An−1B

]
︸ ︷︷ ︸

Controllability matrix Wc


u[n− 1]
u[n− 2]

...
u[0]


︸ ︷︷ ︸

:=uc
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Controllability contd.

I required input sequence is determined by linear equation

−Anx[0] = Wcuc

I if rank(Wc) = n, we can solve for uc for any x[0]

conclusion: a state-space system is controllable if the
controllability matrix

Wc =
[
B AB · · · An−1B

]
∈ Rn×n

has rank n.

I vectors {B,AB,A2B, . . . , An−1B} tell us about the directions in
state-space that we can “push” the system using our input
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State-feedback control and pole placement

I controllability lets us do “pole” placement for state-space systems

I suppose we have a desired (symmetric w.r.t. real axis) set of
closed-loop eigenvalues

{z1, . . . , zn} ⊂ D

for closed-loop system x+ = (A+BF )x

Pole-placement theorem for state feedback: there exists a
state-feedback matrix F ∈ R1×n such that A+BF has the
desired eigenvalues if and only if the system is controllable
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Calculating state-feedback gain F

I to calculate F =
[
f1 f2 · · · fn

]
, there are two approaches

1. let Πdes[z] = (z − z1) · · · (z − zn) be the desired characteristic
polynomial, and match coefficients of z from the equation

Π[z] = det(zI − (A+BF )) = Πdes[z]

2. use Ackerman’s Formula

F = −
[
0 0 · · · 1

]
W−1

c Πdes[A]

where
Πdes[A] = (A− z1I) · · · (A− znI)

I both implemented in MATLAB as place and acker
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Example: satellite attitude control

I discretized model of satellite Jθ̈ = τ

x[k + 1] =
[

1 T

0 1

]
x[k] +

[
T 2

2J
T
J

]
u[k]

y[k] =
[
1 0

]
x[k]

I system is internally unstable (repeated eigenvalue at z = 1)

I objective: stabilize x = 0 using state-feedback

I system is controllable for all sampling periods T > 0

Wc =
[
B AB

]
=
[
T 2

2J
3T 2

2J
T
J

T
J

]
, det(Wc) = −T

3

J2 6= 0
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Example: satellite attitude control contd.

I we must select two eigenvalues for A+BF , let them be z1, z2

Πdes[z] = (z − z1)(z − z2) = z2 + (−z1 − z2)z + z1z2

I we can form the closed-loop system matrix

A+BF =
[

1 T

0 1

]
+
[
T 2

2J
T
J

] [
f1 f2

]
=
[

1 + f1T
2

2J T + f2T
2

2J
f1T
J 1 + f2T

J

]

I characteristic polynomial Π[z] = det(zI − (A+BF ))

Π[z] = z2 +
(
f1T

2 + 2f2T − 4J
2J

)
z +

(
f1T

2 − 2f2T + 2J
2J

)
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Example: satellite attitude control contd.

I comparing coefficients, we get two simultaneous equations

−(z1 + z2) = f1T
2 + 2f2T − 4J

2J z1z2 = f1T
2 − 2f2T + 2J

2J
which we can solve to find f1 and f2:

f1 = −J
T

(1− z1 − z2 + z1z2) , f2 = − J

2T (3− z1 − z2 − z1z2)

and our controller is then

u[k] =
[
f1 f2

] [x1[k]
x2[k]

]

I since states x1 and x2 are position and velocity, f1 is the feedback
gain on position, while f2 is the gain on velocity (PD control)

Section 8: Direct design of digital controllers 8-367



Example: satellite attitude control contd.

I z1,2 = 0.4± 0.3j, x[0] = (1.5, 1.5), J = 1 kg ·m2, T = 1 s
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Example: satellite attitude control contd.
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Deadbeat control

I deadbeat design is fastest (most aggressive) design possible

I we place all eigenvalues of A+BF at the origin z = 0 (nilpotency)

det(zI − (A+BF )) = zn

I fact: if M ∈ Rn×n is nilpotent, there exists p ≤ n s.t. Mp = 0

I recall: solution to state model from initial condition x[0] is

x[k + 1] = (A+BF )x[k] =⇒ x[k] = (A+BF )kx[0]

I therefore, x[p] = 0; state goes to the origin after p time steps!
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Example: satellite attitude control (deadbeat tuning)

I z1,2 = 0, x[0] = (1.5, 1.5), J = 1 kg ·m2, T = 1 s
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I deadbeat tuning results in convergence in 2 time steps, but with a
larger swing in velocity (x2) compared to previous tuning
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Example: satellite attitude control (deadbeat tuning)
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Intersample ripple

I suppose we have designed a state-feedback F for discretized plant

I what happens when implemented in a sampled-data system?

F HT ẋ = Ax+Bu

ST

0 u[k] u(t) x(t)

x[k]

+

I we know that x[k] = x(kT )→ 0

I question: what is happening between samples?
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Intersample ripple contd.

I there are two basic possibilities

x(t) stable

5 10 15
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Intersample ripple contd.

I claim: x(t) converges to zero (no sustained oscillations)
I proof: consider a sampling interval [kT, (k + 1)T ]

(k + 1)TkT t

δ

solution of state-model at time t is

x(t) = eA(t−kT )x(kT ) +
∫ t

kT

eA(t−τ)Bu(τ) dτ

= eA(t−kT )x(kT ) +
∫ t

kT

eA(t−τ)Bdτ u(kT )
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Intersample ripple contd.

I change variables σ = t− τ

x(t) = eA(t−kT )x(kT ) +
∫ 0

t−kT
eAσB(−dσ)u(kT )

= eAδx(kT ) +
∫ δ

0
eAσB dσ u(kT )

I but u(kT ) = Fx(kT ), therefore

x(t) =
(
eAδ +

∫ δ

0
eAσ dσ BF

)
x(kT ) = Mδx(kT )

or simply x(kT + δ) = Mδx(kT ).

I x(kT )→ 0, and therefore x(kT + δ)→ 0

I but δ was arbitrary, therefore x(t)→ 0 as t→∞
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Example: satellite attitude control contd.

I z1,2 = 0.4± 0.3j, x[0] = (1.5, 1.5), J = 1 kg ·m2, T = 1 s
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I takeaway: everything is fine between the samples
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Example: satellite attitude control contd.

I z1,2 = 0, x[0] = (1.5, 1.5), J = 1 kg ·m2, T = 1 s
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I takeaway: everything is fine between the samples
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Output feedback for state-space systems

I usually, we cannot measure the entire state x[k] ∈ Rn

• some variables in model not easy to measure

• might require too many sensors

I when we design transfer function controllers, we only use the
measured output y[k], so state feedback looks quite restrictive

I the solution to this problem is to use an observer, which takes the
output y[k] and produces an estimate x̂[k] of the state x[k]

I we can then use the estimated state for state-feedback control

u[k] = Fx̂[k]
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Observers for state-space systems

I naively, knowing y[k] and u[k], we could try to solve equation

y[k] = Cx[k] +Du[k]

for current state x[k] at each time k (not a great idea, why?)

I if we apply an input and look at the corresponding time series of the
output, we will be able to infer something more information about
the state

I key idea: use the sequence of inputs and measurements over time
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The Luenberger observer

x+ = Ax+Bu

y = Cx+Du

Observer

u[k] y[k]

x̂[k]

I the observer is a discrete-time LTI system with state x̂[k]

x̂+ = Ax̂+Bu+ L(ŷ − y)

ŷ = Cx̂+Du

L =


l1
...
ln

 ∈ Rn×1

“observer gain”
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Analysis of Luenberger observer

x̂+ = Ax̂+Bu︸ ︷︷ ︸
prediction

+L(ŷ − y)︸ ︷︷ ︸
correction

ŷ = Cx̂+Du︸ ︷︷ ︸
prediction

L =


l1
...
ln

 ∈ Rn×1

I let ε[k] = x[k]− x̂[k] be the estimation error

ε+ = (Ax+Bu)− (Ax̂+Bu+ L(ŷ − y))

= A(x− x̂)− L(Cx̂+Du− Cx−Du)

= A(x− x̂) + LC(x− x̂)

ε+ = (A+ LC)ε

I error will satisfy ε[k]→ 0 from every I.C. ε[0] if we choose L s.t.

eig(A+ LC) ⊂ D
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Observability

I need new idea of observability

I definition: a system is observable if from knowledge of the inputs
{u[0], u[1], . . . , u[n− 1]} and outputs {y[0], y[1], . . . , y[n− 1]} up to
time n− 1, we can uniquely determine the state x[n] at time n

I idea is that output contains “enough” information about the state

y[0] = Cx[0] +Du[0]

y[1] = Cx[1] +Du[1] = · · · = CAx[0] + CBu[0] +Du[1]

y[2] = Cx[2] +Du[2] = · · · = CA2x[0] + CABu[0] + CBu[1] +Du[2]
...

y[n− 1] = CAn−1x[0] + CAn−2Bu[0] + · · ·+ CBu[n− 2] +Du[n− 1]
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Observability contd.

I we can write this as a linear system of equations for x[0]
y[0]
y[1]
. . .

y[n− 1]


︸ ︷︷ ︸

:=yo

=


C

CA
...

CAn−1


︸ ︷︷ ︸

:=Wo

x[0]+


D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAn−2B · · · CB D




u[0]
u[1]
...

u[n− 1]


︸ ︷︷ ︸

:=ξ

or simply
yo − ξ = Wo x[0]

I if we could solve for x[0] ∈ Rn, then we can immediately find x[n] as

x[n] = Anx[0] +
n−1∑
j=0

An−j−1Bu[j]
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Observability contd.

I if rank(Wo) = n, we can uniquely solve for the linear equation

yo − ξ = Wo x[0]

for x[0] and then uniquely determine x[n]!

I conclusion: a state-space system is observable if the observability
matrix

Wo =


C

CA
...

CAn−1

 ∈ Rn×n

has rank n.
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Observability and observer design

I observability guarantees we can design an observer

I suppose we have a desired (symmetric w.r.t. real axis) set of
eigenvalues

{ζ1, . . . , ζn} ⊂ D

for estimation error dynamics ε+ = (A+ LC)ε

Pole-placement theorem for observer design: There exists
an observer gain matrix L ∈ Rn×1 such that A+ LC has the
desired eigenvalues if and only if the system is observable
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Calculating the observer gain L

I to calculate L =
[
l1 l2 · · · ln

]T
, there are two approaches

1. let Πdes[z] = (z − ζ1) · · · (z − ζn) be the desired characteristic
polynomial, and match coefficients of z from the equation

Π[z] = det(zI − (A+ LC)) = Πdes[z]

2. use Ackerman’s Formula

L = −Πdes[A]W−1
o
[
0 0 · · · 1

]T

where
Πdes[A] = (A− ζ1I) · · · (A− ζnI)

I both implemented in MATLAB as place and acker
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Example: observer for satellite system

I discretized model of satellite Jθ̈ = τ

x[k + 1] =
[

1 T

0 1

]
x[k] +

[
T 2

2J
T
J

]
u[k]

y[k] =
[
1 0

]
x[k]

I objective: design observer to estimate x[k] from y[k]

I system is observable for all sampling periods T :

Wo =
[
C

CA

]
=
[

1 0
1 T

]
, det(Wo) = T 6= 0
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Example: observer for satellite system contd.

I we must select two eigenvalues for A+ LC, let them be ζ1, ζ2

Πdes[z] = (z − ζ1)(z − ζ2) = z2 + (−ζ1 − ζ2)z + ζ1ζ2

I we can form the system matrix for the estimation error

A+ LC =
[

1 T

0 1

]
+
[
l1

l2

] [
1 0

]
=
[

1 + l1 T

l2 1

]

I characteristic polynomial Π[z] = det(zI − (A+ LC))

Π[z] = z2 + (−2− l1)z + (1 + l1 − l2T )
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Example: observer for satellite system contd.

I comparing coefficients, we get two simultaneous equations

−(ζ1 + ζ2) = −2− l1 ζ1ζ2 = 1 + l1 − l2T

which we can solve to find l1 and l2:

l1 = ζ1 + ζ2 − 2 , l2 = 1
T

(ζ1 + ζ2 − ζ1ζ2 − 1)

I our observer is therefore

x̂+ =
[

1 T

0 1

]
x̂+

[
T 2

2J
T
J

]
u+

[
l1

l2

]
(ŷ − y)

ŷ =
[
1 0

]
x̂
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Example: observer for satellite system contd.

I satellite system subject to sinusoidal force input, ζ1,2 = 0.4± 0.3j
I initial conditions x[0] = (4,−2), x̂[0] = (0, 0)
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Example: observer for satellite system contd.

I satellite system subject to sinusoidal toruqe input, ζ1,2 = 0
I initial conditions x[0] = (4,−2), x̂[0] = (0, 0)
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I takeaway: estimates converge in 2 steps with deadbeat tuning, but
with large error at time step k = 1 compared to previous tuning
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Comments on state feedback / observer design

I for state-feedback controllers, aggressive pole placements (i.e., closer
to the origin) will give very stable system, but

• control effort will be very large

• state variables may have poor transient response (overshoot)

I for observers, aggressive pole placements (i.e., closer to the origin)
will make estimation error go to zero quickly, but

• measurement noise will be amplified

• estimation error may have poor transient response (overshoot)

I usually, want to select least aggressive pole placements which still
give a response meeting specs; this is a trial-and-error procedure
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Combining state-feedback and observers

I combination of observer and state-feedback controller can be used
to solve the state-space regulation problem

F
x+ = Ax+Bu

y = Cx

Observer

u[k] y[k]

x̂[k]

0

I control input produced using estimated state

u[k] = Fx̂[k]
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Output feedback control

I observer and state-feedback matrix F form dynamic controller

x̂+ = Ax̂+Bu+ L(ŷ − y)

u = Fx̂

where eig(A+BF ) ⊂ D and eig(A+ LC) ⊂ D

I substituting for ŷ = Cx̂ and u = Fx̂, controller has state model

x̂+ = (A+BF + LC)x̂− Ly

u = Fx̂

with input y and output u
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Output feedback control cpntd.

I observer + state feedback controller:

x̂+ = (A+BF + LC)x̂− Ly

u = Fx̂

with input y and output u

I controller has same order as plant

I if you prefer transfer functions, controller has the TF

u[z]
y[z] = −F (zIn − (A+BF + LC))−1L
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Sampled-data implementation

F HT
ẋ = Ax+Bu

y = Cx

STx̂+ = (Ad +BdF + LCd)x̂− Ly

0 u[k] u(t) y(t)

y[k]x̂[k]

+
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Example: output feedback for satellite system contd.

I observer and feedback gain with poles z1,2 = 0.4± 0.3j
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Example: output feedback for satellite system contd.

I observer and feedback gain with deadbeat poles z1,2 = 0
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I same story as before: deadbeat tuning is more “aggressive”: it gives
faster convergence, but with worse transients
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Incorporating reference signals

I output reference r included by slight twist on previous controller

I if we want y = r in steady-state, need to find x̄ and ū such that

x̄ = Ax̄+Bū

r = Cx̄+Dū
⇐⇒

[
A− In B

C D

][
x̄

ū

]
=
[

0

r

]

therefore [
x̄

ū

]
=
[
A− In B

C D

]−1 [
0

1

]
r :=

[
Mx̄

Mū

]
r

I now use modified control law

u[k] = ū+ F (x̂[k]− x̄) = Fx̂+ (Mū − FMx̄)r
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Incorporating reference signals contd.

Mū − FMx̄

F

x+ = Ax+Bu

y = Cx

Observer

y[k]

x̂[k]

r u[k]

I this solution can work quite well; a more sophisticated approach
would introduce an integral state (see problem set for details)

xI [k + 1] = xI [k] + (Cx[k]− r[k])︸ ︷︷ ︸
tracking error
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Example: reference tracking for satellite system contd.

I observer and feedback gain with poles z1,2 = 0.4± 0.3j
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Example: reference tracking for satellite system contd.

I observer and feedback gain with deadbeat poles z1,2 = 0
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I as expected, deadbeat tuning gives fast response at the cost of
worse transient behaviour
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Preview of optimal control

I picking locations for poles/eigenvalues is hard work, and for large
control problems is simply not a realistic solution

I in optimal control, we specify a “cost” that we want to minimize,
and find the controller that minimizes that cost

I problem of selecting poles is transformed into the problem of
designing a cost; what should our cost include?

• for regulation, we want x[k] and y[k] to stay small
• to minimize control effort, u[k] should stay small also

I therefore, cost should penalize both u[k] and y[k]
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The linear quadratic regulator

I the linear quadratic regulator (LQR) cost is

Cost/Loss Function = JLQR :=
∞∑
k=0

(
y[k]2 + ρu[k]2

)
where ρ > 0 is a tuning parameter

I if JLQR is finite, then y[k] and u[k] converge to zero (duh)

I cost captures transient of output and transient of control input

• if ρ is big, we are saying that control effort is expensive

• if ρ is small, we are saying that control effort is inexpensive

I goal: find control sequence {u[0], u[1], . . .} that minimizes JLQR
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Solution of LQR problem

I if state-space system is controllable and observable, LQR problem
can be solved, and solution is a state feedback

u[k] = FLQRx[k]

I feedback matrix FLQR ∈ R1×n computed in MATLAB as

F = -lqr(sys, C’*C, rho, zeros(n,1));

I control design problem reduced to picking a single constant ρ
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Example: LQR feedback for satellite

I deadbeat observer with LQR feedback gain, ρ = 10
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Example: LQR feedback for satellite

I deadbeat observer with LQR feedback gain, ρ = 1
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Example: LQR feedback for satellite

I deadbeat observer with LQR feedback gain, ρ = 0.1
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Example: LQR feedback for satellite

I comparison of control efforts during third step change
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Modelling of simple pendulum on cart

M

m

`

θ

(0, 0)

g

u(t)

+p

I p = position of cart
I rtip = pendulum tip

rtip =
[
p+ ` sin θ
` cos θ

]

ṙtip =
[
ṗ+ `θ̇ cos θ
−`θ̇ sin θ

]

kinetic energy: T =
1
2
Mṗ2 +

1
2
m‖ṙtip‖22

=
1
2

(M +m)ṗ2 +m`ṗθ̇ cos θ +
1
2
m`2θ̇2

potential energy: U = Utip = −mg`(1− cos θ)
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Modelling of simple pendulum on cart

I the Lagrangian L is kinetic minus potential

L =
1
2

(M +m)ṗ2 +m`ṗθ̇ cos θ +
1
2
m`2θ̇2 +mg`(1− cos θ)

I equations of motion given by two Lagrange equations
d
dt

(
∂L

∂ṗ

)
−
∂L

∂p
= u ,

d
dt

(
∂L

∂θ̇

)
−
∂L

∂θ
= 0

which yield

(M +m)p̈+m` cos(θ)θ̈ −m`θ̇2 sin(θ) = u

m`2θ̈ +m` cos(θ)p̈−mg` sin(θ) = 0
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Design example: pendulum on cart

I equations can be transformed into[
p̈

θ̈

]
=
[
M +m m` cos(θ)
m` cos(θ) m`2

]−1 [
m`θ̇2 sin(θ) + u

mg` sin(θ)

]

can can subsequently be put into state-space form

ẋ = f(x, u) , y = h(x, u)

with x = (p, ṗ, θ, θ̇)T, y = position of cart

I control objectives:

1. stabilize upright position θ = 0 with constant position p = 0

2. track constant position references
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Design example: pendulum on cart

I exercise: linearized model around (p, ṗ, θ, θ̇) = (0, 0, 0, 0) is
ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0
0 0 −m

M g 0
0 0 0 1
0 0 M+m

M
g
` 0



x1

x2

x3

x4

+


0
1
M

0
− 1
M`

u
y =

[
1 0 0 0

]
x

I poles and zeros of transfer function

Re(s)Im(s)
× ×√

M+m
M

g
`

◦ ◦√
g
`

×
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Design example: pendulum on cart

I parameters are m = 1 kg, M = 0.5 kg, ` = 1m

I take T = 0.05s, and build discrete-time model
pend_ct = ss(A,B,C,D);
pend_dt = c2d(pend_ct,T);

I can check system is controllable and observable
W_c = ctrb(Ad,Bd);
W_o = obsv(Ad,Cd);

I design controller and observer gains
rho=0.5;
F = -lqr(pend_dt, Cd’*Cd, rho, zeros(n,1));
L = acker(Ad’, -Cd’, [0;0;0;0])’;
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Design example: pendulum on cart

I control signal u[k] is given by

u[k] = Fx̂[k] + (Mū − FMx̄)r[k]

I observer state-space model is therefore

x̂+ = Adx̂+Bdu+ L(Cdx̂− y)

= (Ad +BdF + LCd)x̂+ (Mū − FMx̄)Bdr − Ly

I note: observer has two inputs, first is reference r[k], second is plant
output y[k]
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Design example: pendulum on cart

I compute scaling for reference input

Temp = [Ad-eye(n),Bd;Cd,0]\[zeros(n,1);1];
Mu = Temp(n+1:end); Mx = Temp(1:n);
Nbar = Mu-F*Mx;

I define observer matrices for Simulink

Ao = Ad+Bd*F+L*Cd;
Bo = [Bd*Nbar,-L];
Co = eye(n); Do = zeros(n,2);
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Design example: pendulum on cart
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State-space control of pendulum on cart T = 0.05s
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State-space control of pendulum on cart T = 0.2s
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State-space control of pendulum on cart T = 0.4s

0 5 10 15 20 25 30 35 40

-0.5

0

0.5

0 5 10 15 20 25 30 35 40

-5

0

5

0 5 10 15 20 25 30 35 40

-2

-1

0

1

2

I can maintain performance with quite large sampling period!
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MATLAB commands

I controllability and observability matrices

sys_dt = ss(Ad,Bd,Cd,Dd,T);
sys_dt = c2d(sys,T);
W_o = obsv(sys);
W_c = ctrb(sys);

I pole-placement using Ackerman

F = -acker(Ad, Bd, pole_vec);
L = -acker(Ad’, Cd’, pole_vec)’;

I LQR controller

F = -lqr(sys_dt, Cd’*Cd, rho, zeros(n,1));
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Additional references

I Nielsen, Chapter 9

I Åström & Wittenmark, Chapters 5 and 9

I Phillips, Nagle, & Chakrabortty, Chapter 9

I Franklin, Powell, & Workman, Chapter 8

I Hespanha, Topics in Undergraduate Control System Design, Chapter
8, 9, 11 (topics are discussed for continuous-time models)
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9. Introduction to system identification

• identification of functions
• identification of dynamic systems
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Motivation for system identification

I nearly all of the control design we have done is model-based, in that
our controller is designed based on a model of the plant

I in principle, feedback gives us robustness against model uncertainty;
in practice, we still want/need to have a decent model

I sometimes it is impossible to model a system from first principles

• may be unclear how to model some components

• functional forms of nonlinearities may be unknown

I other times, an accurate first-principles model may be unnecessarily
complex for control purposes

Section 9: Introduction to system identification 9-428



System identification

I system identification is the process of determining a dynamic
model from measured input/output data

I identification can be

• unstructured, where we assume a general class of models (e.g., LTI)

• structured, where we fix a model structure and estimate parameters

I system identification aims for simple (e.g., LTI) models that are
useful for actually doing control
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Identification of functions

I suppose we have a static input/output relationship

f(·)
u(t) y(t)

I example: u is voltage applied to a load, y is the current drawn

I the precise function f is unknown (and probably unknowable)

I idea: apply inputs, measure outputs, and fit a model f̂ for f

f̂(u) = θ1ϕ1(u) + θ2ϕ2(u) + · · ·+ θnϕn(u)

where {θ1, . . . , θn} are unknown parameters and {ϕi(·)} are basis
functions that we must choose
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Identification of functions contd.

I example: if we have a nonlinear resistive load, we may choose

f̂(u) = θ1 + θ2u+ θ3u
2 + θ4u

3

I we now run N > 0 experiments, where we apply an input ui and
record the output yi, generating N pairs of data points

(ui, yi) , i ∈ {1, . . . , N}.

I for each input ui, we can estimate the output using our model f̂

ŷi = f̂(ui) = θ1ϕ1(ui) + · · ·+ θnϕn(ui) , i ∈ {1, . . . , N}
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Least squares

I stacking all these equations, we obtain
ŷ1

ŷ2
...
ŷN


︸ ︷︷ ︸

:=ŷ

=


ϕ1(u1) ϕ2(u1) · · · ϕn(u1)
ϕ2(u2) ϕ2(u2) · · · ϕn(u2)

...
...

. . .
...

ϕ1(uN ) ϕ2(uN ) · · · ϕn(uN )


︸ ︷︷ ︸

:=Φ


θ1

θ2
...
θn


︸ ︷︷ ︸

:=θ

I least squares identification minimizes measurement and prediction
mismatch in mean-square sense

minimize
θ∈Rn

Jls(θ) =
N∑
i=1

(yi − ŷi)2 = (y − ŷ)T(y − ŷ) .

I any solution θ∗ ∈ Rn to this problem is a least squares minimizer
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Least squares contd.

I least squares cost is

Jls(θ) = (y − ŷ)T(y − ŷ) = yTy + ŷTŷ − 2yTŷ

= yTy + θTΦTΦθ − 2yTΦθ

I take gradient of cost w.r.t. θ and set to zero

∇θJls(θ) = 2ΦTΦθ − 2ΦTy = 0 =⇒ θ∗ = (ΦTΦ)−1ΦTy

I inverse will exist as long as N ≥ n and {ui} are sufficiently diverse

I quality of fit expressed as

Jls(θ∗)
yTy

= 1− yTΦθ∗

yTy
(ideally << 1)
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Least squares and measurement noise

I measurements typically corrupted by noise yi → yi + vi

I assume noise is zero-mean E[vi] = 0

I instead of least-square solution θ∗, we have least squares estimate

θ̂ = (ΦTΦ)−1ΦT(y + v)

I least squares is an unbiased estimator of θ∗

E[θ̂] = E[(ΦTΦ)−1ΦTy] + E[(ΦTΦ)−1ΦTv]

= E[(ΦTΦ)−1ΦTy] + (ΦTΦ)−1ΦT E[v]︸︷︷︸
=0

= θ∗
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Example: nonlinear resistor

I data generated from I = (0.5)V − (0.02)V 2 + (0.006)V 3 + v, where
v is Gaussian with standard deviation 0.4

I ϕ1(V ) = V , ϕ2(V ) = V 2, ϕ3(V ) = V 3
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θ̂ =

 0.5066
−0.0227
0.0062


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Identification of dynamic systems

I we will examine structured identification of discrete-time LTI systems

G[z] = y[z]
u[z] = b0 + b1z

−1 + · · ·+ bmz
−m

1 + a1z−1 + · · ·+ anz−n
= B[z]
A[z]

of fixed order n, with corresponding difference equation

y[k] + a1y[k − 1] + · · ·+ any[k − n]

= b0u[k] + · · ·+ bmu[k −m]

I Identification problem: given experimental input/output data for u
and y, find (the best) estimates for {ai} and {bi}
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Identification of dynamic systems contd.

I idea is to apply known input sequence {u[1], . . . , u[N ]} and record
output sequence {y[1], y[2], . . . , y[N ]}

I generate prediction from estimated model

ŷ[k] = −â1ŷ[k − 1]− · · · − ânŷ[k − n]

+ b̂0u[k] + · · ·+ b̂mu[k −m]

where {â1, . . . , ân, b̂0, . . . , b̂m} are our parameters to be estimated

I since y[k] depends on past values of y, the first prediction we can
make is y[n+ 1] at time n+ 1; we will therefore have N − n values
to compare between measurement and prediction
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Identification of dynamic systems contd.

I lay out all equations for estimates
ŷ[n+ 1]
ŷ[n+ 2]

...
ŷ[N ]


︸ ︷︷ ︸

ŷ

=


y[n] · · · y[1] u[n+ 1] · · · u[n+ 1−m]

y[n+ 1] · · · y[2] u[n+ 2] · · · u[n+ 2−m]
...

...
...

...
y[N − 1] · · · y[N − n] u[N ] · · · u[N −m]


︸ ︷︷ ︸

Φ



−â1
...
−ân
b̂0
...
b̂m


︸ ︷︷ ︸

θ

I like before, form least squares problem

minimize
θ∈Rn+m+1

Jls(θ) =
N∑

i=n+1
(y[i]− ŷ[i])2 = (y − ŷ)T(y − ŷ) .

with solution
θ∗ = (ΦTΦ)−1ΦTy
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Example: mass with friction

I we wish to identify mass and damping for model (m = 2, b = 0.3)

mv̇ = −bv + u =⇒ v̇ = − b

m
v + 1

m
u
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Example: mass with friction

I applying the c2d transformation, we obtain discrete model

v[k + 1] = e−bT/m︸ ︷︷ ︸
−a1

v[k] + 1
b

(
1− e−bT/m

)
︸ ︷︷ ︸

b1

u[k]

or in standard difference equation form with y[k] := v[k]

y[k] + a1y[k − 1] = b1u[k − 1]

I therefore, we will fit a model P̂d of the form

ŷ[k] = −â1ŷ[k − 1] + b̂1u[k − 1]
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Example: mass with friction

I m = 2, b = 0.3, T = 0.01, N = 2000 samples
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Noise and dynamic system identification

I if least squares is unbiased, why are our results so poor?

I as before, the expected value of our estimate is

E[θ̂] = E[(ΦTΦ)−1ΦTy] + E[(ΦTΦ)−1ΦTv] .

but Φ depends on y, which depend on noise v, therefore

E[(ΦTΦ)−1ΦTv] 6= (ΦTΦ)−1ΦTE[v] = 0

I our estimate θ̂ is biased

I need a methodology for removing this bias
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Noise and dynamic system identification contd.

I our underlying system is described by the model

x[k] + a1x[k − 1] + · · ·+ anx[k − n]

= b0u[k] + · · ·+ bmu[k −m]

from which we take noisy measurements y[k] = x[k] + v[k]

I take z-transforms with zero initial conditions:

(1 + a1z
−1 + · · ·+ anz

−n)X[z] = (b0 + · · ·+ bmz
−m)U [z]

Y [z] = X[z] + V [z]

or, eliminating X[z],

A[z]Y [z] = B[z]U [z] + A[z]V [z]︸ ︷︷ ︸
noise filtered by system!
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Noise and dynamic system identification contd.

I dividing by A[z], we obtain

A[z]
(
Y [z]
A[z]

)
︸ ︷︷ ︸

:=Ȳ [z]

= B[z]
(
U [z]
A[z]

)
︸ ︷︷ ︸

:=Ū [z]

+V [z]

I we have “unmixed” the noise and the system

I TF from Ū to Ȳ is G[z], i.e., the same as TF from U to Y

I therefore: to estimate the transfer function G[z], it makes no
difference where we use the original measured data (u[k], y[k]), or
the filtered data (ū[k], ȳ[k])!
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Noise and dynamic system identification contd.

I since Ȳ [z] = Y [z]/A[z], we have A[z]Ȳ [z] = Y [z], and the signal
ȳ[k] may be constructed as

ȳ[k] = −a1ȳ[k − 1]− · · · − anȳ[k − n] + y[k]

I similarly, can construct signal ū[k] via

ū[k] = −a1ū[k − 1]− · · · − anū[k − n] + u[k]

I problem: we don’t know the coefficients {a1, . . . , an}

I idea: instead use current estimates {â1, . . . , ân}
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Iterative least-squares for dynamic system id

1. run least squares with unfiltered data u[k] and y[k], obtaining initial
estimates {â1, . . . , ân} and {b̂1, . . . , b̂m}

2. build the approximate system denominator

Â[z] = 1 + â1z
−1 + · · ·+ ânz

−n

and filter the input/output data (u[k], y[k]) to obtain (ū[k], ȳ[k])

3. using the filtered data (ū[k], ȳ[k]), recompute the least squares
solution to find updated estimates {â1, . . . , ân} and {b̂1, . . . , b̂m}

4. repeat steps (2)–(4) until coefficients stop changing
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Example: mass with friction

I filter data with filter Â[z] = 1 + â1z
−1

Ahat = [1,ahat_1];
u_filt = filter(1,Ahat,u);
y_filt = filter(1,AHat,y);

I resolve least-squares problem

Phi = [y_filt(n:N-1),u_filt(n:N-1)];
theta = Phi\y_filt(n+1:N);
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Example: mass with friction (data filtered once)
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Example: mass with friction (data filtered twice)
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Final comments on system identification

I many more non-trivial issues such as

• selecting appropriate test inputs

• numerical conditioning of data for least squares

• choice of sampling frequency in discretization of c.t. model

• combining multiple experiments

• identifying systems in closed-loop

• recursive (online) system ID

• other choices for objective function

• . . .
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MATLAB commands

I solve non-square linear system

x = A\b;

I filter vector x using filter F [z] = 1+8z−2

1+z−1+2z−2

x_filt = filter([1,0,8],[1,1,2],x);

I extract coefficients from transfer function

[Bd,Ad]=tfdata(Pd);
Bd=Bd{1}; Ad=Ad{1};
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Additional references

I Nielsen Chapter 3

I Åström & Wittenmark, Chapter 13

I Swevers, Introduction to System Identification (slides)

I Keesman (System Identification) Chapter 6

I Franklin, Powell, & Workman, Chapter 12

I Phillips, Nagle, & Chakrabortty, Chapter 10

I Hespanha, Topics in Undergraduate Control System Design,
Chapters 2–4
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https://people.mech.kuleuven.be/~jswevers/h04x3a/lecture_c2_c3.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.380.8248


Parting thoughts on ECE 484 . . .

I broadly speaking, control design is about managing dynamics and
uncertainty in real-time using feedback (and feedforward)

I state-of-the-art control design looks like fancy versions of the LQR
problem, but with

• many sensors and actuators, distributed architectures

• more emphasis on optimization theory

• stochastic, robust, nonlinear, large-scale . . .

I multivariable optimal control in ECE 488 (planes, robots, etc.)

I the really good stuff is in graduate school
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Personal Notes
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10. Appendix: mathematics review

Section 10: Appendix: mathematics review 10-457



Important Laplace transforms

Name f(t) F (s) = L {f(t)}

Delta δ(t) 1

Step 1(t) 1/s

Ramp t 1/s2

Monomial tn n!/tn+1

Sine sin(ω0t) ω0/(s2 + ω2
0)

Cosine cos(ω0t) s/(s2 + ω2
0)

Exponential e−αt 1/(s+ a)

Exp/Sin e−αt sin(ω0t) ω0/[(s+ α)2 + ω2
0 ]

Exp/Cos e−αt cos(ω0t) (s+ α)/[(s+ α)2 + ω2
0 ]

(note: all signals assumed to be zero for t < 0)
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Properties of the Laplace transform

Name f(t) L {f(t)}

Superposition αf1(t) + βf2(t) αF1(s) + βF2(s)

Delay f(t− τ) e−τsF (s)

Derivative rule ḟ(t) sF (s)− f(0)

Integral rule
∫ t

0 f(τ) dτ 1
s
F (s)

Convolution f1(t) ∗ f2(t) F1(s)F2(s)

Initial value theorem f(0+) lims→∞ sF (s)

Final value theorem limt→∞ f(t) lims→0 sF (s)

(note: all signals assumed to be zero for t < 0)
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Important z-transforms

Name f [k] F [z] = Z{f [k]}

Delta δ[k] 1

Step 1[k] z/(z − 1)

Ramp k z/(z − 1)2

Exponential ak z/(z − a)

Sine sin(ω0k) z sin(ω0)/(z2 − 2z cos(ω0) + 1)

Cosine cos(ω0k) z(z − cos(ω0))/(z2 − 2z cos(ω0) + 1)

(note: all signals assumed to be zero for k < 0)
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Properties of the z-transform

Name f [k] Z{f [k]}

Superposition αf1[k] + βf2[k] αF1[z] + βF2[z]

Delay-by-n f [k − n] z−nF [z]

Advance-by-1 f [k + 1] zF [z]− zf [0]

Sum rule
∑k

`=0 f [`] z
z−1F [z]

Convolution f1[k] ∗ f2[k] F1[z]F2[z]

Initial value theorem f [0+] limz→∞ F [z]

Final value theorem limk→∞ f [k] limz→1(z − 1)F [z]

(note: all signals assumed to be zero for k < 0)
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Linear algebra and matrices

I vector spaces and subspaces

I matrix definitions

I invertibility

I eigenvalues/eigenvectors

I diagonalization
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Vector spaces and subspaces

I a space of objects which can be added and scaled by constants
I most important vector space for our purposes is Rn with elements

x =


x1
...
xn

 , xi ∈ R,

where addition and scalar multiplication are defined by

x+ y =


x1 + y1

...
xn + yn

 , αx =


αx1
...

αxn

 , α ∈ R.
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Vector spaces and subspaces contd.

I a set X = {x1, x2, . . . , xk} of vectors is linearly independent if

α1x1 + · · ·+ αnxn = 0 =⇒ α1 = · · · = αn = 0 .

I the span of X is the set of all possible linear combinations

span(X) = {α1x1 + · · ·+ αnxn | α1, . . . , αn ∈ R}

I a subspace S of Rn is a subset which is also a vector space
• all subspaces of Rn are hyperplanes passing through the origin

I a basis for a subspace S is a set X = {x1, x2, . . . , xk} of linearly
independent vectors such that span(X) = S, and the dimension
dim(S) of the subspace is the smallest number of vectors required in
such a basis (in this case, k vectors)
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Matrices

A square n× n matrix is a collection of n2 real numbers

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


I A ∈ Rn×n means that A is an n× n matrix with real entires

I A defines a linear transformation from Rn to Rn via matrix-vector
multiplication

y = Ax ⇐⇒ yi =
n∑
j=1

Aijxj , i = 1, . . . , n.
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Range, nullspace, and the rank-nullity theorem

For a matrix A ∈ Rn×n

I nullspace: null(A) := {x ∈ Rn | Ax = 0}
• the subspace of input vectors that get “zeroed out” by A
• nullity(A) := dim(null(A))

I range: range(A) := {Ax | x ∈ Rn}
• the subspace of linear combinations of columns of A
• rank(A) = dim(range(A))

Rank-Nullity Theorem: rank(A) + nullity(A) = n
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Invertibility of matrices

I square matrix A ∈ Rn×n is invertible or nonsingular if there exists
another matrix B ∈ Rn×n such that AB = BA = In

I the inverse is always unique and we denote it by A−1

I the following statements are all equivalent:
• A is invertible

• rank(A) = n

• nullity(A) = 0

• the columns of A form a basis for Rn

• 0 /∈ eig(A)

• det(A) 6= 0

I if A,B,C are all invertible, then (ABC)−1 = C−1B−1A−1
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Solvability of linear systems of equations

For A ∈ Rn×n and b ∈ Rn, consider the equation

Ax = b

in the unknown vector x ∈ Rn.

I the equation is solvable if and only if b ∈ range(A)

I in this case, all solutions can be written as x = p+ v, where p is a
particular solution satisfying Ap = b and v ∈ null(A) is any
homogeneous solution, i.e., a solution to Ax = 0.

I for every b ∈ Rn there exists a unique x solving Ax = b if and only if
A is invertible.
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Constructing inverses

For A ∈ R2×2

A =
[
a b

c d

]
A−1 = 1

ad− bc

[
d −b
−c a

]

assuming det(A) = ad− bc 6= 0.

I For A ∈ Rn×n there is a formula similar to the above

A−1 = 1
det(A)adj(A) .

I adj(A) is the adjugate matrix

• [adj(A)]ij is formed from (j, i)th minor of A
• important for relating state-space and transfer function models
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Eigenvalues and eigenvectors

I Eigenvalue equation: Ax = λx

• λ ∈ C is the eigenvalue
• x ∈ Cn is the (right) eigenvector

I eigenvalues obtained from characteristic polynomial ΠA(s)

ΠA(s) := det(sIn −A)

set of eigenvalues = eig(A) := {λ ∈ C | ΠA(λ) = 0}

I given eigenvalue λi, eigenvector xi obtained by solving

(A− λiIn)xi = 0

I eigenvalues are unique, eigenvectors are not
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Diagonalization

I A ∈ Rn×n, with eigenvalues λi and eigenvectors vi ∈ Rn

Avi = λivi

form matrix of eigenvectors: V =
[
v1 v2 · · · vn

]
∈ Rn×n

I if {v1, v2, . . . , vn} are linearly independent then V is invertible

V −1AV = Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 0 λn


I similar ideas (Jordan form) when diagonalization is not possible
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Example

A =
[
−1 1
2 −2

]
λI2 −A =

[
λ+ 1 −1
−2 λ+ 2

]

ΠA(λ) = det(λI2 −A) = λ2 + 3λ+ 2− 2 = λ(λ+ 3)

eig(A) = {λ1, λ2} = {0,−3} with vλ1 =
[

1
1

]
vλ2 =

[
1
−2

]

Λ = V −1AV =
[

1 1
1 2

]−1 [
−1 1
2 −2

][
1 1
1 2

]
=
[

0 0
0 −3

]
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